
HAL Id: hal-01310101
https://hal.sorbonne-universite.fr/hal-01310101v1

Submitted on 1 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variations on Parallel Explicit Emptiness Checks for
Generalized Büchi Automata

Etienne Renault, Alexandre Duret-Lutz, Fabrice Kordon, Denis Poitrenaud

To cite this version:
Etienne Renault, Alexandre Duret-Lutz, Fabrice Kordon, Denis Poitrenaud. Variations on Parallel
Explicit Emptiness Checks for Generalized Büchi Automata. International Journal on Software Tools
for Technology Transfer, 2017, 19 (6), pp.653-673. �10.1007/s10009-016-0422-5�. �hal-01310101�

https://hal.sorbonne-universite.fr/hal-01310101v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Variations on Parallel
Explicit Emptiness Checks
for Generalized Büchi
Automata

E. Renault(1) · A. Duret-Lutz(1)

F. Kordon(2,3) · D. Poitrenaud(3,4)

Abstract We present new parallel explicit emptiness

checks for LTL model checking. Unlike existing par-

allel emptiness checks, these are based on a Strongly

Connected Component (SCC) enumeration, support

generalized Büchi acceptance, and require no synchro-

nization points nor recomputing procedures. A salient

feature of our algorithms is the use of a global union-

find data structure in which multiple threads share

structural information about the automaton checked.

Besides these basic algorithms, we present one ar-

chitectural variant isolating threads that write to the

union-find, and one extension that decomposes the au-

tomaton based on the strength of its SCCs to use more

optimized emptiness checks.

The results from an extensive experimentation of

our algorithms and their variations show encourag-

ing performances, especially when the decomposition

technique is used.

1 Introduction

Automata-theoretic approach to explicit LTL model

checking explores the product between two ω-auto-

mata: one automaton that represents the system, and

the other that represents the negation of the property

to check on this system. This product corresponds to

the intersection between the executions of the system

and the behaviors disallowed by the property. The

property is verified if this product has no accepting

executions (i.e., its language is empty).

(1) LRDE, EPITA, Kremlin-Bicêtre, France · (2) Sorbonne
Universités, UPMC Univ. Paris 06, France · (3) CNRS UMR
7606, LIP6, F-75005 Paris, France · (4) Université Paris
Descartes, Paris, France

Usually, the property is represented by a Büchi au-

tomaton (BA), and the system by a Kripke structure.

Here we represent the property with a more concise

Transition-based Generalized Büchi Automaton (TG-

BA), in which the Büchi acceptance condition is gen-

eralized to use multiple acceptance conditions. Fur-

thermore, any BA can be represented by a TGBA

without changing the transition structure: the TGBA-

based emptiness checks we present are therefore com-

patible with BAs.

A BA (or TGBA) has a non-empty language iff

it contains an accepting cycle reachable from the ini-

tial state (for model checking, this maps to a coun-

terexample). An emptiness check is an algorithm that

searches for such a cycle.

Most sequential explicit emptiness checks are based

on a Depth-First Search (DFS) exploration of the au-

tomaton and can be classified in two families: those

based on an enumeration of Strongly Connected Com-

ponents (SCC), and those based on a Nested Depth

First Search (NDFS) (see [38, 17, 35] for surveys).

Recently, parallel (or distributed) emptiness checks

have been proposed [12, 2, 15, 13, 3, 5]: they are

mainly based on a Breadth First Search (BFS) ex-

ploration that scales better than DFS [34]. Multicore

adaptations of these algorithms with lock-free data

structure have been discussed, but not evaluated [6].

Recent publications show that NDFS-based algo-

rithms combined with the swarming technique [23]

scale better in practice [20, 27, 26, 21]. As its name im-

plies, an NDFS algorithm uses two nested DFS: a first

DFS explores a BA to search for accepting states, and
a second DFS is started (in post order) to find cycles

around these accepting states. In these parallel setups,

each thread performs the same search strategy (an

NDFS) and differs only in the search order (swarm-

ing). Because each thread shares some information

about its own progress in the NDFS, some mecha-

nisms are necessary to avoid conflicts. These conflicts

can be prevented using synchronization points: if a

state is handled by multiple threads in the nested

DFS, its status is only updated after all threads have

finished. Conflicts can also be resolved a posteri us-

ing recomputing procedures that perform yet another

DFS. So far, attempts to design scalable parallel DFS-

based emptiness check that does not require such mech-

anisms have failed [21].

More recent works [28, 10, 11] focus on the paral-

lel computation of SCCs and possible adaptations to

emptiness checks. These target graphs that are com-

posed of large and (possibly) unique SCC, also using

synchronization or locking schemes to ensure correct-

2 Renault et al.

ness, even if Bloemen [10] argues that his algorithm

may be implemented lockless.

This paper is an extension of our work published at

TACAS’15 [37] where we proposed new parallel empti-

ness checks for TGBA built upon two SCC-based stra-

tegies that do not require such synchronization points

nor recomputing procedures. The reason no such mech-

anisms are necessary is that threads only share struc-

tural information about the automaton of the form

“states x and y are in the same SCC” or “state x

cannot be part of a counterexample”. Since threads

do not share any information about the progress of

their search, we can actually mix threads with differ-

ent strategies in the same emptiness check. Because

the shared information can be used to partition the

states of the automaton, it is stored in a global and

lock-free union-find data structure [1]. As it name sug-

gests, a union-find is a data structure that represents

sets and provides efficient union, and membership-

check procedures that can be implemented in near-

constant time [40, 31]

In addition to the above (common with our pre-

vious paper [37]), we investigate two variants. In the

first one, threads that write to the union-find are iso-

lated, in an attempt to limit the contention on the

shared data structure. Our second variant mixes the

above emptiness checks with a decomposition tech-

nique we presented at TACAS’13 [36]. This decompo-

sition is actually compatible with any parallel empti-

ness check: the property automaton is decomposed

into three subautomata with different strengths. Two

of them can then be checked using more efficient empti-

ness checks. In a parallel context, it can also be seen

as an improvement of the swarming technique: the de-

composition favors a more uniform distribution of the

paths covered by the different threads.

The paper is organized as follows. First section 2

defines TGBAs and introduces our notations. Sec-

tion 3 details the two SCC-based strategies previously

presented at TACAS’15 [37] augmented with exam-

ples, and a discussion of counterexample generation.

The two aforementioned variants of those algorithms

are presented in Section 4. Some of the related al-

gorithms discussed in Section 5 are finally used for

comparison in the benchmarks of Section 6.

2 Preliminaries

A TGBA is a tuple A = 〈AP , Q, q0, δ,F〉 where AP is

a finite set of atomic propositions, Q is a finite set of

states, q0 is a designated initial state, F is a finite set

of acceptance marks, and δ ⊆ Q × 2F × BAP × Q is

the (non-deterministic) transition relation where each

transition is labeled by a subset of acceptance marks

and an assignment of the atomic propositions.

A path between two states q, q′ ∈ Q is a finite

and non-empty sequence of adjacent transitions ρ =

(s1, α1, , s2)(s2, α2, , s3) . . . (sn, αn, , sn+1) ∈ δ+ with

s1 = q and sn+1 = q′. We denote the existence of such

a path by q q′. When q = q′ the path is a cycle.

This cycle is accepting iff
⋃

0<i≤n αi = F .

A non-empty set S ⊆ Q is a Strongly Connected

Component (SCC) iff ∀s, s′ ∈ S, s 6= s′ ⇒ s s′ and

S is maximal w.r.t. inclusion. If S is not maximal,

we call it a partial SCC. An SCC S is complete iff

∀s ∈ S, ∀` ∈ BAP ,∃α ∈ 2F ,∃q ∈ S, (s, α, `, q) ∈ δ.

An SCC is accepting iff it contains an accepting cycle.

The language of a TGBA A is non-empty iff there

is a path from q0 to an accepting SCC (denoted by

L (A) 6= ∅).
The automata-theoretic approach to model check-

ing amounts to check the emptiness of the language

of a TGBA that represents the product of a system (a

TGBA where F = ∅) with the negation of the prop-

erty to verify (another TGBA).

3 Generalized Parallel Emptiness Checks

In a previous work [35] we presented sequential empti-

ness checks for generalized Büchi automata derived

from the SCC enumeration algorithms of Tarjan [39]

and Dijkstra [18], and a third one using a union-find

data-structure. This section adapts these algorithms

to a parallel setting.

The sequential versions of the Tarjan-based and

the Dijkstra-based emptiness checks both have very

similar structures: they explore the automaton using

a single DFS to search for an accepting SCC and main-

tain a partition of the states into three classes. States

that have not already been visited are UNKNOWN;

a state is LIVE when it is part of an SCC that has

not been fully explored (i.e., it is part of an SCC that

contains at least one state on the DFS stack); the

other states are called DEAD. A DEAD state cannot

be part of an accepting SCC. Any LIVE state can

reach a state on the DFS stack, therefore a transition

from the state at the top of the DFS stack leading to a

LIVE state is called a closing edge. Figure 1 illustrates

some of these concepts.

The two algorithms differ in the way they prop-

agate information about currently visited SCCs, and

in when they detect accepting SCCs. A Tarjan-based

emptiness check propagates information when edges

are backtracked, and may only find an accepting SCC

when its root is popped. (The root of an SCC is the

Variations on Parallel Explicit Emptiness Checks for Generalized Büchi Automata 3

Fig. 1 LIVE states are numbered by their live number, DEAD states are stroke. Clouds represents (partial) SCCs as discovered
so far. The current state of the DFS is 7, and the DFS stack is represented by thick edges. All plain edges have already been
explored while dashed edges are yet to be explored. Closing edges have white triangular tips.

0 1 2 3 6 7

5 4

first state encountered by the DFS when entering it.)

A Dijkstra-based emptiness check propagates infor-

mation every time a closing edge is detected: when

this happens, a partial SCC made of all states on the

cycle closed by the closing edge is immediately formed.

While we have shown these two emptiness checks to be

comparable [35], the Dijkstra-based algorithm reports

counterexamples earlier: as soon as all the transitions

belonging to an accepting cycle have been seen.

A third algorithm was a variant of Dijkstra using a

union-find data structure to manage the membership

of each state to its SCC. Note that this data structure

could also be used for a Tarjan-based emptiness check.

Here, we parallelize the Tarjan-based and Dijkstra-

based algorithms and use a (lock-free) shared union-

find data structure. We rely on the swarming tech-

nique: each thread executes the same algorithm, but

explores the automaton in a different order [23]. Fur-

thermore, threads will use the union-find to share in-

formation about membership to SCCs, acceptance of

these SCCs, and DEAD states. Note that the shared

information is stable: the fact that two states belong

to the same SCC, or that a state is DEAD will never

change over the execution of the algorithm. All threads

may therefore reuse this information freely to accel-

erate their exploration, and to find accepting cycles

collaboratively.

3.1 Generic Canvas

Algorithm 1 presents the structure common to the

Tarjan and Dijkstra-based parallel emptiness checks1.

All threads share (1) the automaton A to explore,

(2) a stop variable used to stop all threads as soon

an accepting cycle is found or one thread detects that

the whole automaton has been visited, and (3) the

1 According to our definition, transitions of the automa-
ton should be labeled by atomic propositions (line 8), but
we omit this information as it is not pertinent to emptiness
check algorithms.

union-find data-structure. The union-find maintains

the membership of each state to the various SCCs of

the automaton, or the set of DEAD states (a state is

DEAD if it belongs to the same class as the artificial

Dead state). Furthermore, the union-find is extended

to store the acceptance marks occurring in an SCC.

The union-find structure partitions the set Q′ =

Q ∪ {Dead} labeled with an element of 2F and offers

the following methods:

– make set(s ∈ Q′) creates a new class containing

the state s if s is not already in the union-find.

– contains(s ∈ Q′) checks whether s is already in

the union-find.

– unite(s1 ∈ Q′, s2 ∈ Q′, acc ∈ 2F) merges the

classes of s1 and s2, and adds the acceptance marks

acc to the resulting class. This method returns the

set of acceptance marks of resulting class. How-

ever, when the class constructed by unite contains

Dead , this method always returns ∅. An accepting

cycle can therefore be reported as soon as unite

returns F .

– same set(s1 ∈ Q′, s2 ∈ Q′) checks whether two

states belong to the same class.

Such a union-find structure can be implemented

thread-safe in many ways [9]: with fine/coarse grain

locking or lock-free based either on transactional mem-

ory or on compare-and-swap operations.

The original sequential algorithms maintains a stack

of LIVE states in order to mark all states of an ex-

plored SCC as DEAD. In our previous work [35], we

suggested to use the union-find for this, allowing to

mark all states of an SCC as dead by doing a sin-

gle unite with an artificial Dead state. However, this

notion of LIVE state (and closing edge detection) is

dependent on the traversal order, and will therefore

be different in each thread. Consequently, each thread

has to keep track locally of its own LIVE states. Thus,

each thread maintains the following local variables:

– The dfs stack stores elements of type Step com-

posed of the current state (src), the acceptance

mark (acc) for the incoming transition (or ∅ for

4 Renault et al.

Algorithm 1: Main procedure

1 Shared Variables:
2 A: TGBA of 〈AP , Q, q0, δ,F〉
3 stop: boolean

4 uf : union-find of 〈Q ∪ Dead , 2F 〉

5 Global Structures:
6 struct Step { src: Q, acc: 2F ,
7 pos: int, succ: 2δ }
8 struct Transition {src: Q, acc: 2F , dst: Q}
9 enum Strategy { Mixed, Tarjan, Dijkstra}

10 enum Status { LIVE, DEAD, UNKNOWN}

11 Local Variables:
12 dfs: stack of 〈Step〉
13 live: stack of 〈Q 〉
14 livenum: hashmap of 〈Q, int 〉
15 pstack : stack of 〈P 〉
16 str2 : Strategy

17 main(str : Strategy)

18 stop ← ⊥
19 str2 ← str

20 uf .make set(〈Dead , ∅ 〉)
21 if str = Mixed
22 str ← Dijkstra
23 str2 ← Tarjan

24 Run EC(str , 1) ‖ . . . ‖ EC(str , bn
2
c) ‖

25 EC(str2 , 1+bn
2
c) ‖ . . . ‖ EC(str2 , n)

26 Wait for all threads to finish

27 GET STATUS(q ∈ Q) → Status
28 if livenum.contains(q)

29 return LIVE

30 else if uf .contains(q) ∧
31 uf .same set(q, Dead)
32 return DEAD

33 else
34 return UNKNOWN

35 EC(str : Strategy, tid : int)
36 seed(tid) // Random Number Gen.

37 PUSHstr(∅, q0)
38 while ¬ dfs.empty() ∧ ¬ stop

39 Step step ← dfs.top()
40 if step.succ 6= ∅
41 Transition t ← randomly

42 pick one off from step.succ
43 switch GET STATUS(t.dst)

44 case DEAD
45 skip

46 case LIVE
47 UPDATEstr(t.acc, t.dst)

48 case UNKNOWN
49 PUSHstr(t.acc, t.dst)

50 else

51 POPstr()

52 stop ← >

the initial state), an identifier pos (whose use is

different in Dijkstra and Tarjan) and the set succ

of unvisited successors of the src state.

– The live stack stores all the LIVE states that are

not on the dfs stack (as suggested by Nuutila and

Soisalon-Soininen [30]).

– The hash map livenum associates each LIVE state

to a (locally) unique increasing identifier.

– pstack holds identifiers that are used differently in

the emptiness checks of this paper.

With these data structures, a thread can decide whe-

ther a state is LIVE, DEAD, or UNKNOWN (i.e.,

new) by first checking livenum (a local structure),

and then uf (a shared structure). This test is done

by GET STATUS. Note that a state marked LIVE lo-

cally may have already been marked DEAD by an-

other thread, thus leading to redundant work. How-

ever, avoiding this extra work would require more

queries to the shared uf .

The procedure EC shows the generic DFS executed

by all threads. The successors are ordered randomly in

each thread, and the DFS stops as soon as one thread

sets the stop flag. GET STATUS is called on each reached

state to decide how it has to be handled: DEAD states

are ignored, UNKNOWN states are pushed on the dfs

stack, and and LIVE states, which are reached when

following a closing edge, will be handled differently

by each algorithm. This generic DFS is adapted to

the Tarjan and Dijkstra strategies by calling PUSHstr
on new states, UPDATEstr on closing edges, and POPstr
when all the successors of a state have been visited by

this thread.

Several parallel instances of this EC algorithm are

instantiated by the main procedure, possibly using dif-

ferent strategies. Each instance is parameterized by a

unique identifier tid and a Strategy selecting either

Dijkstra or Tarjan. If main is called with the Mixed

strategy, it instantiates a mix of both emptiness-checks.

When one thread reports an accepting cycle or ends

the exploration of the entire automaton, it sets the

stop variable, causing all threads to terminate. The

main procedure only has to wait for the termination

of all threads.

Figure 2 presents the general architecture of the

algorithm up to n threads. We observe that the union-

find data structure, denoted by UF, is shared among

all the threads. Since every operation on this struc-

ture may modify it, every access needs read/write

permissions. With this architecture, it’s clear that two

Variations on Parallel Explicit Emptiness Checks for Generalized Büchi Automata 5

Fig. 2 Parallel emptiness check architecture.

thread 1

thread 2

thread 3

thread 4

...

thread n

UF

r/w

r/w

r/w

r/w

r/w

threads can only exchange information using the union-

find, and so only exchange structural information.

3.2 The Tarjan Strategy

Strategy 1 shows how the generic canvas is refined to

implement the Tarjan strategy. Here, each new LIVE

state is numbered with the actual number of LIVE

states during the PUSHTarjan operation. Furthermore

each state is associated to a lowlink, i.e., the smallest

live number of any state known to be reachable from

this state. These lowlinks, whose purpose is to detect

the root of each SCC, are only maintained for the

states on the dfs stack, and are stored on the pstack .

Lowlinks are updated either when a closing edge

is detected in UPDATETarjan (in this case the current

state and the destination of the closing edge are in

the same SCC) or when a non-root state is popped in

POPTarjan (in this case the current state and its pre-

decessor on the dfs stack are in the same SCC). Every

time a lowlink is updated, we therefore learn that two

states belong to the same SCC and can publish this

fact to the shared uf taking into account any accep-

tance mark between those two states. If the uf detects

that the union of these acceptance marks with those

already known for this SCC is F , then the existence

of an accepting cycle can be reported immediately.

POPTarjan has two behaviors depending on whether

the state being popped is a root or not. At this point, a

state is a root if its lowlink is equal to its live number.

Non-root states are transferred from the dfs stack to

the live stack. When a root state is popped, we first

publish that the whole SCC associated to this root is

DEAD, and locally we remove all these states from

live and livenum using the markdead function.

If there is no accepting cycle, the number of calls

to unite performed in a single thread by this strategy

is always the number of transitions in each SCC (cor-

responding to the lowlink updates) plus the number

of SCCs (corresponding to the calls to markdead).

Figure 3 illustrates, on a toy example, one possible

behavior of two threads executing the Tarjan strat-

egy. This example shows a collaborative detection of

a counterexample by multiple threads.

The union-find is represented by a set of pairs

(state, accepting mark) and the parent of each pair

is represented by an arrow. Two pairs belong to the

same class if they have a common ancestor. For each

thread, we also display the states on the dfs stack

(also highlighted on the automaton) and their asso-

ciated lowlink number stored in pstack . In this par-

ticular scenario, for a given state, the live number of

a state is identical to its position in the dfs stack. In

the general case, the correspondence between a LIVE

state and its live number is given by livenum (not

illustrated here).

Strategy 1: Tarjan

0 struct P {p : int}

11 PUSHTarjan(acc ∈ 2F , q ∈ Q)
22 uf .make set(q)
33 p ← livenum.size()
44 livenum.insert(〈 q, p 〉)
55 pstack .push(〈 p 〉)
66 dfs.push(〈 q, acc, p, succ(q)〉)

77 UPDATETarjan(acc ∈ 2F , d ∈ Q)
88 pstack .top().p ←
99 min(pstack .top().p, livenum.get(d))

1010 a ← uf .unite(d , dfs.top().src, acc)
1111 if a = F
1212 stop ← >
1313 report accepting cycle found

1414 POPTarjan()

1515 s ← dfs.pop()
1616 〈 ll 〉 ← pstack .pop()
1717 if ll = s.pos
1818 markdead(s)

1919 else
2020 pstack .top().p ← min(pstack .top().p, ll)

2121 a ← uf .unite(s.src, dfs.top().src, s.acc)
2222 if a = F
2323 stop ← >
2424 report accepting cycle found

2525 live.push(s.src)

26 // Common to all strategies.

2727 markdead(s ∈ Step)
2828 uf .unite(s.src, Dead)
2929 livenum.remove(s.src)
3030 while livenum.size() > s.pos
3131 q ← live.pop()
3232 livenum.remove(q)

At the initial stage (also not shown here), the shared

union-find data structure contains only the Dead class

and the DFS stack of each thread is empty. In the sce-

nario we consider, thread 1 starts from s0, detects s1
(step 1), marks this state as dead and backtracks to s0
(step 2). In the union-find, we can observe that s1 is

6 Renault et al.

Fig. 3 Pure Tarjan: all threads perform a Tarjan strategy on an automaton with F = { , }.

s0

s1s2

s4

s3

s5

thread 1
dfs
s0
s1

pstack

0
1

thread 2
dfs pstack

union-find :

Dead , ∅ s1, ∅ s0, ∅

s0

s1s2

s4

s3

s5

thread 1
dfs
s0

pstack

0

thread 2
dfs pstack

union-find :

Dead , ∅ s1, ∅ s0, ∅

Step 1: thread 1 discovers s0 and s1 Step 2: thread 1 pop s1 and mark it dead

s0

s1s2

s4

s3

s5

thread 1
dfs
s0
s2
s4

0
1
2

pstack

thread 2
dfs
s0
s3
s5

0
1
2

pstack

union-find :

Dead , ∅ s1, ∅ s0, ∅ s4, ∅

s2, ∅s3, ∅s5, ∅

s0

s1s2

s4

s3

s5

thread 1
dfs
s0
s2
s4

0
1
0

pstack

thread 2
dfs
s0
s3
s5

0
1
2

pstack

union-find :

Dead , ∅ s1, ∅ s0, s4, ∅

s2, ∅s3, ∅s5, ∅

Step 3: thread 1 discovers s2 and s4 Step 4: thread 1 discovers (s4, s0)
while thread 2 discovers s0, s3 and s5

s0

s1s2

s4

s3

s5

thread 1
dfs
s0
s2
s4

0
1
0

pstack

thread 2
dfs
s0
s3
s5

0
1
0

pstack

union-find :

Dead , ∅ s1, ∅ s0, s4, ∅

s2, ∅s3, ∅s5, ∅

s0

s1s2

s4

s3

s5

thread 1
dfs
s0
s2
s4

0
1
0

pstack

thread 2
dfs
s0
s3

0
0

pstack

union-find :

Dead , ∅ s1, ∅ s0, s4, ∅

s2, ∅s3, ∅s5, ∅

Step 5: thread 2 discovers (s5, s0) Step 6: thread 2 pops s5

s0

s1s2

s4

s3

s5

thread 1
dfs
s0
s2
s4

0
1
0

pstack

thread 2
dfs
s0 0

pstack

union-find :

Dead , ∅ s1, ∅ s0, s4, ∅

s2, ∅s3, ∅s5, ∅

s0

s1s2

s4

s3

s5

thread 1
dfs pstack

thread 2
dfs pstack

union-find :

Dead , ∅ s1, ∅ s0, s4, ∅

s2, ∅s3, ∅s5, ∅

Step 7: thread 2 pops s3 Step 8: Counterexample extraction
(details section 3.7)

Variations on Parallel Explicit Emptiness Checks for Generalized Büchi Automata 7

dead since it belongs to the same class as the artificial

Dead state. Then threads 1 and 2 explore simultane-

ously the automaton in a different order thanks to the

swarming, thus reaching step 3. In step 4, thread 1 de-

tects the closing-edge (s4, s0) and the classes contain-

ing these states are merged in the union-find keeping

track of the white acceptance mark on the topmost an-

cestor. In step 5, thread 2 discovers the closing-edge

(s5, s0) and therefore unites s5 with s0: this creates

the class containing s0 and s4 and s5.

In step 6 and 7, the thread 2 backtracks its dfs.

Therefore s5, s3 and s0 are united. During the union of

s3 and s0 the black acceptance mark is added to the

topmost ancestor of this class. Thus, the algorithm

can stop at this point because it has a proof that an

accepting SCC exists.

Step 8 will illustrates counterexample detection

and will be discussed later (details Section 3.7).

3.3 The Dijkstra Strategy

Strategy 2 shows how the generic canvas is refined to

implement the Dijkstra strategy. The way LIVE states

are numbered and marked as DEAD is identical to the

previous strategy. The difference lies in the way SCC

information is encoded and updated.

This algorithm maintains pstack , a stack of poten-

tial roots, represented (1) by their positions p in the

dfs stack (so we can later get the incoming acceptance

marks and the live number of the potential roots), and

(2) the union acc of all the acceptance marks seen in

the cycles visited around the potential root.

Here pstack is updated in two situations. First,

line 12 removes potential roots that are discovered

not to be actual root because a closing edge is de-

tected. Second, line 22 removes states that are ei-

ther an actual root or belongs to an SCC marked

as DEAD by another thread. This differs from Tar-

jan where pstack is always updated as it contains all

states, even non-root. When a closing edge is detected,

the live number dpos of its destination can be used to

pop all the potential roots on this cycle (those whose

live number are greater than dpos), and merge the

sets of acceptance marks along the way: this happens

in UPDATEDijkstra . Note that the dfs stack has to be

addressable like an array during this operation.

As it is presented, UPDATEDijkstra calls unite only

when a potential root is discovered not to be a root

(lines 10–14). In the particular case where a closing

edge does not invalidate any potential root, no unite

operation is performed; still, the acceptance marks on

this closing edge are updated locally (line 15). For

Strategy 2: Dijkstra

0 struct P {p : int , acc : 2F}

11 PUSHDijkstra(acc ∈ 2F , q ∈ Q)
22 uf .make set(q)

33 p ← livenum.size()
44 livenum.insert(〈 q, p 〉)
55 pstack .push(〈dfs.size(), ∅ 〉)
66 dfs.push(〈 q, acc, p, succ(q)〉)

77 UPDATEDijkstra(acc ∈ 2F , d ∈ Q)
88 dpos ← livenum.get(d)

99 〈r ,a〉 ← pstack .top()
1010 a ← a ∪ acc

1111 while dpos < dfs[r].pos

1212 〈r , la〉 ← pstack .pop()
1313 a ← a ∪ dfs[r].acc ∪ la

1414 a ← uf .unite(d , dfs[r].src, a)

1515 pstack .top().acc ← a
1616 if a = F
1717 stop ← >
1818 report accepting cycle found

1919 POPDijkstra()

2020 s ← dfs.pop()
2121 if pstack .top().p = dfs.size()
2222 pstack .pop()
2323 markdead(s) // Detailed in Strategy 1

2424 else

2525 live.push(s.src)

instance in Figure 1, when the closing edge (7, 4) is

explored, the root of the right-most SCC (containing

state 7) will be popped (effectively merging the two

right-most SCCs in uf) but when the closing edge

(7, 2) is later explored no pop will occur because the

two states now belong to the same SCC. This strategy

therefore does not share all its acceptance information

with other threads. In this strategy, the acceptance ac-

cumulated in pstack locally are enough to detect ac-

cepting cycles. However the unite operation on line

14 will also return some acceptance marks discovered

by other threads around this state: this additional in-

formation is also accumulated in pstack to speedup

the detection of accepting cycles.

In this strategy, a given thread only calls unite

to merge two disjoint sets of states belonging to the

same SCC. Thus, the total number of unite needed

to build an SCC of n states is equal to n − 1. This

is better than the Tarjan-based version, but it also

means we share less information between threads.

Figure 4 shows a possible behavior of two threads

executing the Dijkstra strategy on the same example

as in Figure 3. We assume that threads visit the tran-

sitions in the same order and the same interleaving

8 Renault et al.

as in the Tarjan scenario. The discovery of the coun-

terexample is still collaborative in this strategy.

We reuse the same data structure for the union-

find and the dfs stack. However the pstack now con-

tains pairs describing each partial SCC: its root num-

ber and its acceptance marks. For each thread, the

root number gives the index of the corresponding state

in the dfs stack. Thus a given state could have a dif-

ferent root number in each thread (not the case in this

scenario).

The initial stage (step 0) is the same as for Tarjan:

the shared union-find data structure contains only the

Dead class and the stacks of each thread are empty.

Until step 3 the only difference is in the contents of

the two pstacks.

In step 4, thread 1 detects the closing-edge (s4, s0).

Since the root s0 has 0 as DFS number, all entries of

pstack having a DFS number greater than the one of

s0 are merged. The resulting acceptance mark is the

union of (1) the acceptance marks of the merged en-

tries, (2) the in-going acceptance marks of all merged

states, (3) the set of acceptance marks stored in the

union-find for each class and, (4) the acceptance mark

of the closing-edge. The corresponding states s0, s2
and s4 are united in union-find; thus the representa-

tive s0 of this class also holds the acceptance mark
previously computed.

In step 5, thread 2 discovers the closing-edge (s5, s0)

and operates a merge similar to the previous one. This

time, acceptance mark is returned by unite and

both marks are merged into the union-find and the

pstack . Thread 2 can stop the algorithm at this point

because it has a proof that an accepting SCC exists.

3.4 The Mixed Strategy

Figure 5 presents two situations on which Dijkstra and

Tarjan strategies can clearly be distinguished.

The left-hand side presents a bad case for the Tar-

jan strategy. Regardless of the transition order chosen

during the exploration, the presence of an accepting

cycle is only detected when state 1 is popped. This late

detection can be costly because it implies the explo-

ration of the whole subgraph represented by a cloud.

The Dijkstra strategy will report the accepting cy-

cle as soon as all the involved transitions have been

visited. So if the transition (1, 0) is visited before the

transition going to the cloud, the subgraph represented

by this cloud will not be visited since the counterex-

ample will be detected before.

On the right-hand side of Fig. 5, the dotted tran-

sition represents a long path of m transitions, without

acceptance marks. On this automaton, both strategies

will report an accepting cycle when transition (n, 0)

is visited. However, the two strategies differ in their

handling of transition (m, 0): when Dijkstra visits this

transition, it has to pop all the candidate roots 1 . . .m,

calling unitem times; Tarjan however only has to up-

date the lowlink of m (calling unite once), and it de-

lays the update of the lowlinks of states 0 . . .m− 1 to

when these states would be popped (which will never

happen because an accepting cycle is reported).

In an attempt to get the best of both worlds, the

strategy called “Mixed” in Algo. 1 is a kind of collabo-

rative portfolio approach: half of the available threads

run the Dijkstra strategy and the other half run the

Tarjan strategy. These two strategies can be combined

as desired since they share the same kind of structural

information.

3.5 Discussion.

All these strategies have one drawback since they use

a local check to detect whether a state is alive or not:

if one thread marks an SCC as DEAD, other threads

already exploring the same SCC will not detect it and

will continue to perform unite operations. Checking

whether a state is DEAD in the global uf could be

done for instance by changing the condition of line 40

of Algo. 1 into:

step.succ 6= ∅ ∧ ¬uf .same set(step.src,Dead)

However such a change would be costly, as it would re-

quire as many accesses to the shared structure as there

are transitions in the automaton. To avoid these addi-

tional accesses to uf , we propose to change the inter-

face of unite so it returns an additional Boolean flag

indicating that one of the two states is already marked

as DEAD in uf . Then whenever unite is called and

the extra bit is set, the algorithm can immediately

backtrack the dfs stack until it finds a state that is

not marked as DEAD.

3.6 Sketch of Proof

Since the Tarjan strategy is really close to the Dijk-

stra strategy, we only give the scheme of a proof2 that

the latter algorithm will necessarily terminate and will

report a counterexample if and only if there is an ac-

cepting cycle in the automaton.

Theorem 1. For all automata A the emptiness check

terminates.

2 A complete proof can be found at: http://www.lrde.

epita.fr/~renault/publis/TACAS15.pdf

http://www.lrde.epita.fr/~renault/publis/TACAS15.pdf
http://www.lrde.epita.fr/~renault/publis/TACAS15.pdf

Variations on Parallel Explicit Emptiness Checks for Generalized Büchi Automata 9

Fig. 4 Pure Dijkstra: all threads perform a Dijkstra strategy on an automaton with F = { , }.

s0

s1s2

s4

s3

s5

thread 1
dfs pstack

thread 2
dfs pstack

union-find :

Dead , ∅

s0

s1s2

s4

s3

s5

thread 1
dfs
s0
s1

〈0, ∅〉
〈1, ∅〉

pstack

thread 2
dfs pstack

union-find :

Dead , ∅ s1, ∅ s0, ∅

Step 0: the automaton to explore Step 1: thread 1 discovers s0 and s1

s0

s1s2

s4

s3

s5

thread 1
dfs
s0 〈0, ∅〉

pstack

thread 2
dfs pstack

union-find :

Dead , ∅ s1, ∅ s0, ∅

s0

s1s2

s4

s3

s5

thread 1
dfs
s0
s2
s4

〈0, ∅〉
〈1, ∅〉
〈2, ∅〉

pstack

thread 2
dfs pstack
s0
s3
s5

〈0, ∅〉
〈1, ∅〉
〈2, ∅〉union-find :

Dead , ∅ s1, ∅ s0, ∅ s4, ∅

s2, ∅s3, ∅s5, ∅

Step 2: thread 1 pop s1 and mark it dead Step 3: thread 1 discovers s2 and s4
while thread 2 discovers s0, s3 and s5

s0

s1s2

s4

s3

s5

thread 1
dfs
s0
s2
s4

〈0, 〉
pstack

thread 2
dfs pstack
s0
s3
s5

〈0, ∅〉
〈1, ∅〉
〈2, ∅〉union-find :

Dead , ∅ s1, ∅ s0, s4, ∅

s2, ∅s3, ∅s5, ∅

s0

s1s2

s4

s3

s5

thread 1
dfs
s0
s2
s4

〈0, 〉
pstack

thread 2
dfs pstack
s0
s3
s5

〈0, 〉

union-find :

Dead , ∅ s1, ∅ s0, s4, ∅

s2, ∅s3, ∅s5, ∅

Step 4: thread 1 discovers (s4, s0) Step 5: thread 2 discovers (s5, s0)

Fig. 5 Worst cases to detect accepting cycle using only one thread. The left automaton is bad for Tarjan since the accepting
cycle is always found only after popping state 1. The right one disadvantages Dijkstra since the union of the states represented
by dots can be costly.

0 1 .. 0 m n

10 Renault et al.

Theorem 2. The emptiness check reports an accept-

ing cycle iff L (A) 6= ∅.
The theorem 1 is obvious since the emptiness check

performs a DFS on a finite graph. Theorem 2 ensues

from the invariants below which use the following no-

tations. For any thread, n denotes the size of its pstack

stack. For 0 ≤ i < n, Si denotes the set of states in the

same partial SCC represented by pstack [i]: ∀i < n−1

Si =

{
q ∈ livenum

∣∣∣∣∣ dfs[pstack [i].p].pos ≤ livenum[q] ∧
livenum[q] ≤ dfs[pstack [i+ 1].p].pos

}
Sn−1 = {q ∈ livenum | dfs[pstack [n− 1].p].pos ≤ livenum[q]}

The following invariants hold for all lines of algorithm 1:

Invariant 1. pstack contains a subset of positions in

dfs, in increasing order.

Invariant 2. For all 0 ≤ i < n− 1, there is a transi-

tion with the acceptance marks dfs[pstack [i+1].p].acc

between Si and Si+1.

Invariant 3. For all 0 ≤ i < n, the subgraph induced

by Si is a partial SCC.

Invariant 4. If the class of a state inside the union-

find is associated to acc 6= ∅, then the SCC containing

this state has a cycle visiting acc. (Note: a state in the

same class as Dead is always associated to ∅.)
Invariant 5. The first thread marking a state as

DEAD has seen the full SCC containing this state.

Invariant 6. The set of DEAD states is a union of

maximal SCC.

Invariant 7. If a state is DEAD it cannot be part of

an accepting cycle.

These invariants establish both directions of The-

orem 2: invariants 1–4 prove that when the algorithm

reports a counterexample there exists a cycle visiting

all acceptance marks; invariants 5–7 justify that when

the algorithm exits without reporting anything, then

no state can be part of a counterexample.

3.7 Counterexample extraction

An expected feature of model-checker is to report a

counterexample when the property is violated. It is

trivial for sequential NDFS-based emptiness checks

because the stack is the counterexample [16]. For the

parallel version cndfs, the counterexample is also given

by the DFS stack of the detecting thread [21].

Extracting a counterexample from the SCC-based

algorithms is harder because when the algorithm re-

ports the existence of a counterexample we only know

that some reachable partial SCC contains all accep-

tance marks. The DFS stack of the detecting thread

gives a finite path to one state of the accepting SCC.

For all algorithms based on Dijkstra (sequential

or parallel), when a counterexample is detected all

the states of the accepting cycle have been marked

as belonging to the same partial SCC. For instance,

at step 5 of Figure 4, the detection of the closing

edge (s5, s0) merges states s0, s2, s3, s4 and s5 in

the same partition. Thus, we can restrict ourselves to

these states to extract the accepting cycle. The proce-

dure suggested by Couvreur et al. [17] can extract an

accepting cycle by looking only at the states of this

partial SCC.

When Tarjan-based algorithms report the existence

of a counterexample, all the states of the accepting

cycle are not necessarily united in the same partial

SCC. For example, at step 7 of Figure 3, s2 is not in

the same class as states s0, s1, s3, s4 and s5.

In order to apply Couvreur’s algorithm [17] all

these states must be merged in the same class. Hence,

when a thread detects a counterexample, all threads

must empty their DFS stack by repeatedly applying a

variant of POPTarjan without lines 18 and 22–25. The

result of emptying the two stacks is shown at step 8 of

Figure 3. At this point, the classes of the union-find

contains at least all necessary states and the previous

counterexample extraction technique can be applied.

4 Variations on Emptiness Checks

This section proposes two variations compatible with

the emptiness checks strategies we presented. The first

one is an architectural change that separates writers

and readers of the union-find. The second one decom-

poses the property automaton based on the strength

of its SCCs, and such that each part can be checked

with the most appropriate emptiness check.

4.1 Asynchronous Emptiness Checks

Every operations on the union-find may lead to an

update of the data structure. If many threads work

on the same subset of states, we can therefore expect

a high degree of contention. Here we present an adap-

tation of the previous algorithms that helps to con-

trol the number of readers and writers on the shared

union-find data structure.

The main idea is to divide threads into two cat-

egories: (1) producers that will explore the automa-

ton and compute structural information and, (2) con-

sumers that will record this information into the union-

find. Producers will only read the information hold

by the union-find to detect DEAD states, while con-

sumers will detect the existence of a counterexample

Variations on Parallel Explicit Emptiness Checks for Generalized Büchi Automata 11

as a side effect of updating the union-find. The archi-

tecture of this new algorithm is described in Figure 6.

Every time a structural information is computed

by the producer, this information is stored into a ded-

icated lock-free queue [29]. In order to reduce the con-

tention on this queue, we opted to provide one ded-

icated queue per producer while consumers share all

queues.

With this architecture, we expect that the explo-

ration can be faster since producers do not perform

costly write operations on the union-find. Moreover,

it also provides a canvas where we can easily adapt

the number of producers and consumers according to

the cost of successor computation (which could have

an impact on the scalability of parallel algorithms).

The information stored in the queues is described

by the lfq element structure of Algorithm 2. It con-

tains a field info that describes the type of operation

to be performed by the consumer :

– unite means a union between two states; the con-

sumer must unite states src and dst with the ac-

ceptance set acc inside of the shared union-find.

– makedead means that an SCC has been fully vis-

ited. The consumer must unite state src with the

artificial Dead state.

For the sake of clarity, let us suppose that we have

an interface lf queue that encapsulates all queues and

offers the following methods:

– get(): dequeues one lfq element among all the

queues. If no such element exists, this methods re-

turns null.

– put(lfq element e, int tid): enqueues e to the queue

associated to producer tid.

Algorithm 2 describes the main procedure of the

one consumer thread. The pseudo-code is quite sim-

ple: every time the operation of line 8 returns an el-

ement different from null, this element is processed.

At line 12–13, we can note that every state is system-

atically inserted into the union-find. Since producers

cannot write into the union-find, this is require to en-

sure the validity of operation line 14.

Here we describe how to adapt Strategy 2 to this

asynchronous architecture (we postpone the adapta-

tion of Strategy 1 to the end of this section).

– The call to uf .make set(q) is removed (line 2 of

Strategy 2).

– The call to uf .unite(d , dfs[r].src, a) (line 14 of

Strategy 2) is replaced by queue.put({d , dfs[r].src,

unite, a}) in order to transmit the structural in-

formation to consumers.

Fig. 6 Asynchronous parallel emptiness check architecture.

prod 1

...

prod n

cons 1

...

cons m

put get

get

put

get

get
UF

r

r

r/w

r/w

Algorithm 2: Consumer Main Procedure

1 Additional Shared Variables:

2 enum info { unite, makedead}
3 struct lfq element { src: Q, dst: Q,
4 type: info, acc: 2F }
5 lfq queue queue

6 ECconsumer()

7 while ¬ stop
8 lfq element e ← queue.get()
9 if e = null

10 continue

11 if e.info = unite
12 uf .make set(e.src)
13 uf .make set(e.dst)

14 a ← uf .unite(e.src, e.dst, e.acc)

15 if a = F
1616 stop ← >
1717 report accepting cycle found

18 else
19 uf .unite(e.src, Dead)

– The call to uf .unite(s.src, Dead) in markdead

(line 28 of Strategy 1) is replaced by queue.put({d ,

null, makedead, a}).

– States that are removed from livenum by lines 29–

32 of Strategy 1 are added to a local set (as de-

scribed in previous work [35, Sec. 7]) to ensure

that this strategy will not revisit these states in

case they have not yet been united with Dead by

a consumer.

– At line 31 of Algorithm 1, the call to same set

in the method GET STATUS performs a write oper-

ation (for path-compression optimization) which

the producer is not allowed to perform. Two so-

lutions are feasible: (1) deactivate path compres-

sion for every same set performed by producers,

or (2) provide a new function is maybe dead that

only look if the parent of an element is the artifi-

cial Dead state. We opted for the latter: while it

avoid path-compression, it also decreases the load

12 Renault et al.

on the structure by looking up only the parent and

not following the path down to its representative.

Since dead states are now locally available, we

can only miss states already marked as dead by

another producer.

Discussion. In this section we opted to present the

asynchronous emptiness checks for the Dijkstra strat-

egy. Nonetheless a similar adaptation can easily be

done for the Tarjan strategy. The only difference con-

cerns the termination: since the Tarjan strategy does

not keep track of the acceptance sets of each partial

SCC, producers cannot stop all threads when they end

theirs exploration (line 52 of Algorithm 1). Indeed, if

we do so, some counterexample can be missed because

some structural information has yet to be processed

by consumers. The algorithm can only end when one

producer has finished its exploration and when its as-

sociated queue is empty.

4.2 Combination with Decomposition Technique

For some subclasses of automata, there exist empti-

ness check procedures that are more efficient [14]. For

terminal automata, where an accepting run exists iff a

terminal state is reachable, emptiness can be decided

by a reachability search. In weak automata [14], there

is no need to keep track of live states: states may be

marked as DEAD as soon as the DFS backtracks.

In previous work [36], we suggested to exploit these

dedicated algorithms by decomposing the property

automaton according to the type of its SCCs. This de-

composition produces automata of different subclasses

(a.k.a. strength) that can be checked in parallel.

Before defining the strength of the property au-

tomaton, let us characterize the different types of SCCs.

The type of an SCC is:

– non accepting if it does not contain any accepting

cycle,

– inherently terminal if it contains only accepting

cycles and is complete (i.e., for each letter, each

state has an outgoing transition remaining in the

same SCC),

– inherently weak if it contains only accepting cycles

and it is not inherently terminal,

– strong if it is accepting and contains some non-

accepting cycle.

These four types define a partition of the SCCs of an

automaton.

We say that the strength of an automaton is:

– inherently terminal iff all its accepting SCCs are

inherently terminal,

– inherently weak iff all its accepting SCCs are in-

herently terminal or inherently weak.

– general in all cases.

These three classes form a hierarchy where inherently

terminal automata are inherently weak, which in turn

are general. Note that the above constrains concern

only accepting SCCs, but these automata may also

contain non-accepting (transient) SCC.

Given a property automaton that mixes SCCs of

different types, we can decompose it into three au-

tomata AT , AW and AS that will catch respectively

terminal, weak and strong behaviors. We denote T ,

W , and S, the set of all transitions belonging respec-

tively to some terminal, weak, or strong SCC. For a set

of transitions X, we denote Pre(X) the set of states

that can reach some transition in X. We assume that

q0 ∈ Pre(X) even if X is empty or unreachable.

Property 1 Let A = 〈AP , Q, q0, δ, {f1, . . . , fn}〉 be a

TGBA. Let AT = 〈AP , QT , q
0, δT , { }〉, AW = 〈AP ,

QW , q0, δW , { }〉, AS = 〈AP , QS , q
0, δS ,F〉 be three

automata (of respective strength: terminal, weak, and

general) defined with:

QT = Pre(T)

δT =

(s, c, `, d)

∣∣∣∣∣∣∣
∃(s, , `, d) ∈ δ with s, d ∈ QT

and

{
c = { } if (s, , `, d) ∈ T
c = ∅ otherwise

QW = Pre(W)

δW =

(s, c, `, d)

∣∣∣∣∣∣∣
∃(s, , `, d) ∈ δ with s, d ∈ QW

and

{
c = { } if (s, , `, d) ∈W
c = ∅ otherwise

QS = Pre(S)

δS =

(s, c, `, d)

∣∣∣∣∣∣∣
∃ (s, c′, `, d) ∈ δ with s, d ∈ QS

and

{
c = c′ if (s, , `, d) ∈ S
c = ∅ otherwise

Then we have3 :

L (A) = L (AT) ∪L (AW) ∪L (AS).

Given a system Sys, we build three synchronous

products (AT ⊗ Sys, AW ⊗ Sys, and AS ⊗ Sys) and

check each of them for emptiness, using the appropri-

ate dedicated emptiness check:

3 Note that if A is unambiguous [7] we also have that
L (AT), L (AW), and L (AS) are pairwise disjoint.

Variations on Parallel Explicit Emptiness Checks for Generalized Büchi Automata 13

Fig. 7 Architecture for the Strategy S1 with n the number of threads and P the number of decomposed automata.

thread 1

thread 2

thread 3

thread 4

...

thread n

UF

r/w

r/w

r/w

r/w

r/w

producer 1

...

producer n

consumer 1

...

consumer m

put get

get

put

get

get
UF

r

r

r/w

r/w

Fig. 6

Fig. 2

strong part
n
P

workers

weak part
n
P

workers

term part
n
P

workers

Counterexample
found or

wait for the
end of all

emptiness checks

worker 1

...

worker p

set of dead states

r/w

r/w

worker 1

...

worker p

open set

r/w

r/w

– For the terminal automaton and with the suppo-

sition that the system does not have deadlocks,

a reachability algorithm is sufficient. In a parallel

setting, such an algorithm is implemented using an

open-set, that is traditionally composed of a hash

set (containing all visited states) and a queue (con-

taining all states to process).

The algorithm starts with only the initial state in

the queue and the hash table. Then, every thread

can pop a state q from the queue and inserts all

the successors of q not visited by any thread in

both the hash table and the queue. The algorithm

ends when all states have been visited, or when it

reaches a state from a terminal SCC of the prop-

erty automaton. In this latter case, since Sys does

not have deadlock, a counterexample has been de-

tected (even if it has not yet been computed).

– For the weak automaton, each thread performs a

single swarmed DFS. When a state is popped, it is

marked as DEAD in a shared hash table so other

threads will not revisit it. When a thread detects

a closing-edge reaching directly a state of its DFS

stack, and if this state belongs to an accepting SCC

of the property automaton, then a counterexam-

ple has been detected. The algorithm ends when

a counterexample has been detected or when all

states have been marked as DEAD.

– For the general automaton, we use the algorithms

defined in Sections 3.2, 3.3, and 4.1.

Given N threads, we consider two strategies:

S1: if the property automaton can be decomposed into

P automata, then each product will be checked us-

ing N
P threads. Figure 7 describes the architecture

of this strategy (which is a multicore adaptation

of a previous work [36]).

S2: another approach aims to use the maximum num-

ber of threads for each product. In this case, the

first one is checked using N threads. Then if no

counterexample is found, N threads are used for

the next product. In this strategy, the automata

are ordered by strengths: terminal, then weak, and

finally general. This way more complex emptiness

checks are avoided whenever possible. Moreover

since the three synchronous products do not have

similar size, this strategy is expected to obtain a

better speedup at each stage.

5 Related Work

We now compare our approach to recent parallel empti-

ness checks or parallel SCC-computations. For a more

detailed overview of related work, we refer the inter-

ested reader to Bloemen’s master thesis [10]. In this

section, we focus on the following contenders, whose

implementation is available respectively in DiVinE [4]

and LTSmin [24]:

– owcty [15, 4]: a non-DFS based algorithm which

does not work on-the-fly (this aspect has been im-

proved for weak automata [5]). This algorithm uses

a fixpoint to remove from the automaton all states

that cannot lead to an accepting cycle.

14 Renault et al.

Table 1 Comparison of parallel emptiness checks (or parallel SCC computation algorithms). |T | is the number of transitions
of the automaton to explore, |Q| is the number of states, P is the number of thread used, and α is the inverse Ackermann
function (which is the “almost-constant” complexity of union-find operations [40]).

Algorithm Reference On-the-fly Complexity Generalized Lockless
owcty [15, 4] × O(|T |2) ? ×
cndfs [21] X O(P × |T |) × ×
Lowe [28] X O(|T |2) X ×

Bloemen [10, 11] X O(P × |T | × |Q|) X ×
this paper Sections 3–4 X O(P × |T | × α(|Q|)) X X

– cndfs [21]: an NDFS based algorithm compati-

ble with on-the-fly exploration. The main idea is

to swarm a classical, sequential NDFS. The usual

blue and red colors are shared between threads,

however since the coloring is highly dependent on

the traversal order, synchronizations are required

to ensure the correctness of the shared informa-

tion.

The following two algorithms have been recently pub-

lished, but no implementation have been released yet.

They both rely on locks, while our implementation

can be made lock-free.

– Lowe’s algorithm [28]: a swarmed variant of Tar-

jan where each state is visited by a unique thread.

A state is backtracked only once all its successors

have been visited (maybe by another thread), and

a special data structure is used to resolve dead-

locks between threads waiting for states to be vis-

ited by other threads.

– Bloemen’s algorithm (UF-SCC) [11]: it uses a shared

union-find to perform a DFS in terms of SCCs (not

states), works on-the-fly and supports generalized

acceptance. It is an extension of algorithms we pre-

sented previously [37] (a preliminary version of this

paper). Unlike our algorithms, UF-SCC tackles the

problem of sharing LIVE states. For this purpose,

the shared union-find is enriched by extra informa-

tion: (1) the identities of threads currently visiting

a given partial SCC, and (2) the set of states that

have been fully visited for a partial SCC.

Table 1, derived from Bloemen [10], summarizes

the worst-case complexity of all these algorithms. Am-

ong SCC-based algorithms, ours are those with the

better complexities. They appear to be the only ones

that do not require locking scheme, but Bloemen ar-

gues that his algorithm may also be implemented with-

out lock [10].

While cndfs has the best worst-case complexity

of Table 1, it does not support generalized accep-

tance conditions: a degeneralization is required, which

leads to a bigger synchronized product. It is still un-

known if owcty or cndfs can efficiently be extended

to generalized acceptance marks in parallel settings.

Indeed, the sequential versions of these algorithms ex-

ists for generalized Büchi acceptance marks [25, 41],

but their complexity depends on the number of accep-

tance marks.

Finally, if we compare our algorithm to the two

other SCC computation algorithms [28, 10], our tech-

nique is inappropriate when the automaton to explore

consists in a unique, large, and non-accepting SCC. In

that situation, the threads share useless information:

the acceptance marks observed in the SCC may not

help to discover a (non-existing) counterexample, and

the SCC can only be marked as DEAD once it has

been fully explored by one thread (the other threads

are therefore superfluous, if not counterproductive).

6 Implementation and Benchmarks

After discussing worst-case complexities in the previ-

ous section, we now measure actual implementations.

Table 2 presents the models we use in our bench-

mark. The models are a subset of the BEEM bench-

mark [32], such that every type of model of the classi-

fication of Pelánek [33] is represented, and all synchro-

nized products have a high number of states, transi-

tions, and SCCs. Because there are too few LTL for-

mulas supplied by BEEM, we opted to generate ran-

dom formulas to verify on each model. We computed

a total number of 3268 formulas that all require a gen-

eral emptiness check.4

Among the 3268 formulas, 1706 result in products

with the model having an empty language (the empti-

ness check may terminate before exploring the full

product). All formulas were selected so that the se-

quential NDFS emptiness check of Gaiser and Schwoon

[22] would take between 15 seconds and 30 minutes on

an four Intel(R) Xeon(R) CPUX7460@ 2.66GHz with

128GB of RAM. This 24-core machine is also used for

the following parallel experiments.

The sizes given in Table 2 are averaged over all the

selected formulas, for each model.

4 For a description of our setup, including selected mod-
els, formulas, and detailed results, see http://www.lrde.

epita.fr/~renault/benchs/STTT-2015/results.html.

http://www.lrde.epita.fr/~renault/benchs/STTT-2015/results.html
http://www.lrde.epita.fr/~renault/benchs/STTT-2015/results.html

Variations on Parallel Explicit Emptiness Checks for Generalized Büchi Automata 15

Table 2 Statistics about synchronized products having an empty language (X) and non-empty one (×).

Avg. States Avg. Trans. Avg. SCCs
Model (X) (×) (X) (×) (X) (×)

adding.4 5 637 711 7 720 939 10 725 851 14 341 202 5 635 309 7 716 385
bridge.3 1 702 938 3 114 566 4 740 247 8 615 971 1 701 048 3 106 797

brp.4 15 630 523 38 474 669 33 580 776 94 561 556 4 674 238 16 520 165
collision.4 30 384 332 101 596 324 82 372 580 349 949 837 347 535 22 677 968

cyclic-scheduler.3 724 400 1 364 512 6 274 289 12 368 800 453 547 711 794
elevator.4 2 371 413 3 270 061 7 001 559 9 817 617 1 327 005 1 502 808

elevator2.3 10 339 003 13 818 813 79 636 749 120 821 886 2 926 881 6 413 279
exit.3 3 664 436 8 617 173 11 995 418 29 408 340 3 659 550 8 609 674

leader-election.3 546 145 762 684 3 200 607 4 033 362 546 145 762 684
production-cell.3 2 169 112 3 908 715 7 303 450 13 470 569 1 236 881 1 925 909

All the approaches mentioned in Sections 3 and 4

have been implemented in Spot [19]. The union-find

structure is lock-free and uses two common optimiza-

tions: “Immediate Parent Check”, and “Path Com-

pression” [31].

The seed used to choose a successor randomly de-

pends on the thread identifier tid passed to EC. Thus

our strategies have the same exploration order when

executed sequentially; when the strategies are run in

parallel, this order may be altered by information shared

by other threads.

6.1 Comparison with state-of-the-art algorithms

Figure 8 presents the comparison of our prototype im-

plementation in Spot against the cndfs algorithm im-

plemented in LTSmin [24] and the owcty algorithm

implemented in DiVinE 2.4 [4]. We selected owcty

because it is reported to be the most efficient paral-

lel emptiness check based on a non-DFS exploration,

while cndfs is reported to be the most efficient based

on a DFS [21]. Unfortunately, we were not able to

compare our approach with the recent works of Lowe

[28] and Bloemen et al. [10, 11] since no implementa-

tion have been released.

The state-spaces used in this benchmark are de-

rived from DiVinE 2.4 in three different ways. owcty is

the default algorithm for DiVinE, and uses DiVinE’s

own successor computation function. For the algo-

rithms presented in this paper, and implemented in

Spot, we use a version of DiVinE 2.4 patched by the

LTSmin team5 to compile the successor function of the

system, and the product with the property automaton

is performed on-the-fly. LTSmin’s cndfs can be con-

figured to use the very same successor function, how-

ever doing so exhibits several cases where the result of

LTSmin disagrees with both Spot and DiVinE: this is

apparently a bug in the on-the-fly product. To work

5 http://fmt.cs.utwente.nl/tools/ltsmin/#divine

around this issue, we precompiled the entire product

for cndfs, as suggested by the LTSmin team.

From our original benchmark, we excluded 11 cases

where owcty failed to answer within one hour, and 784

cases where LTSmin failed to precompile a product

within one hour. The remaining 2475 cases are suc-

cessfully (and consistently) solved by all algorithms

within the one hour limit.

DiVinE and LTSmin implement all sorts of opti-

mizations (like state compression, caching of succes-

sors, dedicated memory allocator...) while our imple-

mentation in Spot is still at a prototype stage. So

in absolute time, the sequential version of cndfs is

around 3 time faster. Since the implementations are

different, we compare the average speedup of the par-

allel version of each algorithm against its sequential

version.6 The actual time can be found in the detailed

results4.

The left-hand side of Figure 8 shows those speedups,

averaged for each model, for verified formulas (where

the entire product has to be explored).

First, it appears that the Tarjan strategy’s speedup

is always lower than those of Dijkstra or Mixed for

empty products. These low speedups can be explained

by contention on the shared union-find data structure

during unite operations. In an SCC of n states and m

edges, a thread applying the Tarjan strategy performs

m unite calls while applying Dijkstra one needs only

n − 1 unite invocations before they both mark the

whole SCC as DEAD with a unique unite call.

Second, for all strategies we can distinguish two

groups of models. For adding.4, bridge.3, exit.3, and

leader-election.3, the speedups are quasi-linear. How-

6 For owcty and our algorithms, the run time include the
cost of generating the state-space, and of making the prod-
uct with the property automaton; while cndfs is exploring a
precomputed product. Although this sounds advantageous
to cndfs in term of absolute execution time, it may actually
not be the case when measuring the scalability of parallel
algorithms: it is easier to obtain a good speedup if the cost
of exploring the product automaton is high.

http://fmt.cs.utwente.nl/tools/ltsmin/#divine

16 Renault et al.

Fig. 8 Speedup of emptiness checks over the benchmark. The dashed line is the identity function, to compare our practical
speedups to an imaginary algorithm whose speedup would be actual to the number of threads used.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●
● ●

●
●

● ● ●

●
●

● ●
●

●
●

● ● ●

adding.4.dve bridge.3.dve

leader−election.3.dve exit.3.dve

collision.4.dve brp.4.dve

cyclic_scheduler.3.dve elevator2.3.dve

elevator.4.dve production−cell.3.dve

2

4

6

2.5

5.0

7.5

2.5

5.0

7.5

10.0

2.5

5.0

7.5

1.0

1.5

2.0

2.5

3.0

1

2

3

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

em
pt

y
pr

od
uc

ts

● ●
●

●

●

● ●
●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

adding.4.dve bridge.3.dve

leader−election.3.dve exit.3.dve

collision.4.dve brp.4.dve

cyclic_scheduler.3.dve elevator2.3.dve

elevator.4.dve production−cell.3.dve

0

25

50

75

0

30

60

90

120

0

10

20

30

40

0

25

50

75

100

125

0

5

10

15

1

2

3

2.5

5.0

7.5

10.0

1

2

3

4

1

2

3

4

5

2

4

6

8

2 4 6 8 10 12 2 4 6 8 10 12
Number of threads

S
pe

ed
up

 fo
r

no
n−

em
pt

y
pr

od
uc

ts

Algorithms
● dijkstra (spot)

tarjan (spot)

mixed (spot)

owcty (divine)

cndfs (ltsmin)

Variations on Parallel Explicit Emptiness Checks for Generalized Büchi Automata 17

Table 3 Run times for single-threaded emptiness checks
in seconds, and run times of their 12-thread version as a
percentage of the single-threaded configuration. All 2475
formulas (violated and verified) were used. Note that the
runtime of cndfs does not include the cost of generating the
state-space6.

dijkstra owcty cndfs
threads 1 12 1 12 1 12

adding.4 22 225s 8.6% 18 841s 47.9% 12 536s 24.4%
bridge.3 11 446s 6.4% 7 352s 58.6% 4 753s 16.6%

brp.4 18 179s 49.2% 15 425s 48.1% 3 711s 27.6%
collision.4 21 026s 24.6% 5 203s 54.7% 3 773s 40.2%
cy sched 10 831s 40.5% 17 574s 62.6% 3 146s 28.9%
elevator.4 25 501s 54.3% 32 954s 53.4% 10 124s 27.1%
elevator2.3 26 725s 55.7% 19 032s 93.6% 4 786s 28.5%

exit.3 17 557s 6.8% 6 346s 52.4% 5 325s 15.7%
lead-el 2 031s 7.6% 1 999s 132.4% 549s 17.3%

prod-cel 21 249s 44.9% 37 831s 52.9% 8 939s 20.4%

ever for the other six models, the speedups are much

more modest: it seems that adding new threads quickly

yield no benefits. A look to absolute time (for the first

group) shows that the Dijkstra strategy is 25% faster

than cndfs using 12 threads where it was two time

slower with only one thread.

A more detailed analysis reveals that products of

the first group have many small SCC (organized in a

tree shape) while products of the second group have

a few big SCC. These big SCC have more closing

edges: the union-find data structure is stressed at ev-

ery unite. This confirms what we observed for the

Tarjan strategy about the impact of unite operations.

The right-hand side of Figure 8 shows speedups for

violated formulas. In these cases, the speedup can ex-

ceed the number of threads since the different threads

explore the product in different orders, thus increas-

ing the probability to report an accepting cycle earlier.

The three different strategies have similar speedup for

all models, however their profiles differ from cndfs on

some models: they have better speedups on bridge.3,

exit.3, and leader-election.3, but are worse on colli-
sion.4, elevator.4 and production-cell.3. The Mixed strat-

egy exhibits speedups between those of Tarjan and Di-

jkstra strategies. Table 3 provides absolute run times

for 1 thread, and the relative run times for 12 threads.

6.2 Impact of the variations

This section evaluates performances of the asynchro-

nous emptiness check presented in Section 4.1 using

our benchmark. We opted to implement the asyn-

chronous variant for Dijsktra algorithm, and there-

fore, we compare it against the Dijkstra strategy of

Section 3.3. The choice of Dijkstra over Tarjan is mo-

tivated by the better results obtained by the former

strategy in Section 6.1. Moreover, basing the asyn-

chronous check on Dijkstra allows it to stop earlier

(as discussed in Section 4.1).

Figure 9 evaluates this approach with a varying

number of consumer. The curves labeled by “x con-

sumers” plot the a speedup of the asynchronous Di-

jkstra approach over the sequential Dijkstra strategy

obtained using n threads (x consumers and n−x pro-

ducers). The curve labeled by “Dijkstra” plots the

speedup of the parallel Dijkstra strategy for reference.

The asynchronous approach appears clearly infe-

rior. We believe these poor results are due to more

than just the overhead of handling the queues. The

separation of producers and consumers can have two

different consequences depending on whether the queues

are mostly empty (too many consumers) or mostly

full (too many producers). If there are too many con-

sumers, most of them sit idle, waiting to empty the

queue as soon as some information is produced: these

idle consumers therefore lower the overall speedup.

If on the other hand, there are too many producers,

the delay between the time an information is pro-

duced and an information is consumed (i.e., stored

in the union-find) causes more threads to produce in-

formation already present in some queue: this, in turn,

yields even greater delays and overhead.

Even if our implementation of this approach is un-

successful, it shows that the union-find data structure

can be adapted to different types of architectures. We

believe it might inspire the development of more suc-

cessful variants.

Figures 10 and 11 evaluate the decomposition ap-

proach of Section 4.2. Among the 3268 formulas in

our benchmark, 2406 generate automata with mul-

tiple SCC strengths (997 where the language of the

product is empty, and 1409 where the language is

non-empty). For these figures the experiments are re-

stricted to these particular formulas.

Figure 10 shows the impact of the decomposition

approaches on the speedup of parallel emptiness checks.

There, we only use the 1822 formulas that all tools

were able to compute. Strategies S1 and S2 outper-

form the speedup of Dijsktra and are competitive to

cndfs.

For the variation S1, we observe a real improve-

ment for both verified and violated formulas. On empty

products, variation S1 is on average 33% faster than

the Dijkstra strategy, while variation S2 is 23% faster.

The superiority of S1 and S2 can be attributed to sev-

eral factors.

Firstly, two thirds of the threads use specialized

emptiness checks to explore weak and terminal auto-

18 Renault et al.

Fig. 9 Impact of the number of consumers on the speedup of the asynchronous Dijkstra compared to the Dijkstra strategy
with one thread.

●

●

●

●

●

1.0

1.5

2.0

2 4 6 8 10 12 14 16
Number of threads

Sp
ee

du
p

fo
r e

m
pt

y
pr

od
uc

ts

●

●

●

●

●

1

2

3

4

5

6

2 4 6 8 10 12 14 16
Number of threads

Sp
ee

du
p

fo
r n

on
−e

m
pt

y
pr

od
uc

ts

Algorithm
● 1 consumer 2 consumers 3 consumers 4 consumers Dijkstra

Fig. 10 Comparison of the decomposition approaches with state-of-the-art algorithms. The speedups of S1 and S2 are relative
to the sequential version of Dijkstra, while the speedups of other tools are obtained by comparison to their corresponding
versions with one thread.

●

●

●

●

●

1

2

3

2 4 6 8 10 12
Number of threads

Sp
ee

du
p

fo
r e

m
pt

y
pr

od
uc

ts

●

●

●

●

●

5

10

15

2 4 6 8 10 12
Number of threads

Sp
ee

du
p

fo
r n

on
−e

m
pt

y
pr

od
uc

ts

Algorithm
● cndfs Dijkstra owcty Strategy S1 Strategy S2

mata. These checks are more efficient than emptiness

checks that can handle the general case.

Secondly, each decomposed automaton is on the

average half as big as the original one [36, Table 1],

reducing both the time and memory usage of each

thread.

Finally, in the case of strategy S1, the decompo-

sition of the automaton constrains different groups of

threads to explore different parts of the product. This

can be seen as an improvement of the swarming, favor-

ing a more uniform distribution of the paths covered

by the different threads.

The scatter plot of Figure 11, compares S1 runtime

against S2 over the 2406 formulas that generate au-

tomata with multiple SCC strengths (for 12 threads).

It shows that neither S1 nor S2 provide globally bet-

ter results, even if the speedup of S1 is better on the

overall benchmark. A more detailed analysis would be

necessary to understand the favorable cases for each

strategy.

6.3 Implementation details

Besides the different algorithms and strategies that

can be implemented, we have found two implemen-

tation choices having an important influence on the

performance: the memory allocator, and the locking

scheme used by the union-find.

Variations on Parallel Explicit Emptiness Checks for Generalized Büchi Automata 19

Results shown in previous sections all use the na-

tive memory allocator (from the GNU Libc), and a

lock-free implementation of the union-find. Table 4

evaluates the impact of two other options.

Firstly, when replacing the memory allocator by

HOARD [8], an open source, multi-platform, and ef-

ficient memory allocator designed for multi-threaded

programs, we observe an overall gain of 36% (up to

40% for some models like elevator2.3). Part of our ob-

served gain is probably due to the fact that HOARD

deals better with parallel allocations: in our imple-

mentation they are numerous because each thread al-

locate its own copy of each live state.

Secondly, while our union-find uses a lock-free im-

plementation, Berman [9, Fig. 4.6] suggested that a

fine grain locking scheme may remain efficient. Our

results of using such a union-find are also reported

Table 4. In our experiments, the union-find with fine-

grain locking scheme performs slightly better than its

lock-free implementation. Also, the implementation

with fine-grain locking is much simpler and makes op-

timizations such as link-by-rank easier to implement.

In Figure 12, we evaluate these different setups in

a setting very close to that of Bloemen [10, Fig. 6.9],

where the Dijkstra strategy is used with different union-

find implementations. The model at.4 consists in a

large, unique SCC, and the property automaton has

been chosen so that the emptiness check will explore

the entire model. In this scenario, the Dijkstra strat-

egy can only terminate once one thread has fully ex-

plored the SCC, so the ideal run time should be in-

dependent on the number of threads. The cost of ad-

ditional threads exhibited by Figure 12 is therefore

caused by contention on the shared union-find, and

on the memory allocation. In this example, the im-

provement achieved by using hoard is amplified when

the fine-grain locking scheme is used. The link-by-rank

optimization, although easier to implement, has little

influence.

Note that these results about the locking scheme

of the union-find differ from those of Bloemen [10,

Fig. 6.9], where the lock-free implementation does not

exhibit such an overhead, but the strategy with locks

does have some overhead. A more detailed investiga-

tion would be necessary to explain these differences.

7 Conclusion

We have presented some new parallel emptiness checks

based on an SCC enumeration. Our approach departs

from state-of-the-art emptiness checks since it is nei-

ther BFS-based nor NDFS-based. Instead it paral-

lelizes SCC-based emptiness checks that are built over

Fig. 11 Comparison of S1 and S2 for the decomposition

S2 better in 396 empty cases and 473 non−empty cases

S1 better in 359 empty cases and 449 non−empty cases

1e+01

1e+03

1e+05

1e+02 1e+04 1e+06
Strategy S1 with 12 threads

St
ra

te
gy

 S
2

wi
th

 1
2

th
re

ad
s

Product
Empty Non−empty

Table 4 Evaluation of implementation choices. The values
give the total running time (in seconds) taken by the Di-
jkstra strategy for 12 threads, to process the 1706 verified
formulas. (FG=Fine-grain)

Model Dijkstra + FG + hoard + hoard
(sec) + FG

adding.4 5 101 -7% -31% -29%
bridge.3 187 -2% -22% -29%

brp.4 6 697 +1% -35% -29%
collision.4 2 719 -15% -36% -28%
cy sched.3 3 996 -4% -38% -34%
elevator.4 9 040 -4% -33% -32%
elevator2.3 9 637 -2% -40% -33%

exit.3 1 142 -3% -24% -31%
leader-el.3 929 -2% -38% -37%
prod-cell.3 4 664 -7% -42% -40%

Total 44 117 -4% -36% -32%

Fig. 12 Evaluation of various union-find implementations
on the execution time of the Dijkstra strategy for the empti-
ness check of at.4.

●
●

●

●

●

●

●

1e+05

1e+06

1 2 4 8 16 32 48
Number of threads

To
ta

l r
un

tim
e

(m
s)

Algorithm
● fine−grain, no−rank

fine−grain, no−rank, hoard

fine−grain, rank

fine−grain, rank, hoard

lock−free, no−rank

lock−free, no−rank, hoard

20 Renault et al.

a single DFS. Our approach supports generalized Büchi

acceptance, and requires no synchronization points

nor repair procedures. We therefore answer positively

to the question raised by Evangelista et al. [21]: “Is

the design of a scalable linear-time algorithm without

repair procedures or synchronization points feasible?”.

The core of our algorithms relies on a union-find

data structure (possibly lock-free) to share structural

information between multiple threads. The use of a

union-find seems adapted to this problem, and yet it

had never been used for parallel emptiness checks until

the publication of the previous version of this paper

at TACAS’15 [37]. Since then, Bloemen [10] explored

a variation of these algorithms.

As suggested in our previous work [37], we have

now investigated two variations. In the first one, we

isolated threads writing in the union-find with the

hope that it would reduce the contention on the shared

union-find data structure. While our implementation

was not successful, it shows that the versatile union-

find can be easily adapted into various different ar-

chitectures: this might inspire future variations us-

ing for instance job stealing or in a distributed setup.

The second variant mixes these new parallel emptiness

checks with the decomposition of property automaton

according to its SCC strengths as suggested in a pre-

vious paper [36]. This decomposition can be seen as

an improvement of the swarming technique: the de-

composition favors a more uniform distribution of the

paths covered by the different threads. This decom-

position technique could easily be applied to other

emptiness checks. Experiments showed a significant

increase of performances.

In some future work, we would like to investigate

more variations of our algorithms. For instance could

the information shared in the union-find be used to

better direct the DFS performed by the Dijkstra or

Tarjan strategies and helps to balance the exploration

of the automaton by the various threads? We would

also like to implement Gabow’s algorithm that we pre-

sented in a sequential context [35] in this same parallel

setup.

References

1. R. J. Anderson and H. Woll. Wait-free parallel algo-
rithms for the union-find problem. In STC’94, pp. 370–
380, 1994.

2. J. Barnat, L. Brim, and J. Chaloupka. Parallel breadth-
first search LTL model-checking. In ASE’03, pp. 106–
115. IEEE Computer Society, 2003.

3. J. Barnat, L. Brim, and J. Chaloupka. From distributed
memory cycle detection to parallel LTL model checking.
In FMICS’05, vol. 133 of ENTCS, pp. 21–39, 2005.

4. J. Barnat, L. Brim, and P. Ročkai. DiVinE Multi-Core
— A Parallel LTL Model-Checker. In ATVA’08, vol.
5311 of LNCS, pp. 234–239. Springer, 2008.

5. J. Barnat, L. Brim, and P. Ročkai. A time-optimal on-
the-fly parallel algorithm for model checking of weak
LTL properties. In ICFEM’09, vol. 5885 of LNCS, pp.
407–425, 2009. Springer.

6. J. Barnat, L. Brim, and P. Ročkai. Scalable shared
memory LTL model checking. International Journal on
Software Tools for Technology Transfer, 12(2):139–153,
2010.

7. M. Benedikt, R. Lenhardt, and J. Worrell. LTL model
checking of interval markov chains. In TACAS’13, vol.
7795 of LNCS, pp. 32–46. Springer, 2013.

8. E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson. Hoard: A scalable memory allocator for mul-
tithreaded applications. Journal of the ACM, pp. 117–
128, Nov. 2000.

9. I. Berman. Multicore Programming in the Face of Meta-
morphosis: Union-Find as an Example. Master’s thesis,
Tel-Aviv University, School of Computer Science, 2010.

10. V. Bloemen. On-the-fly parallel decomposition of
strongly connected components. Master’s thesis, Uni-
versity of Twente, June 2015.

11. V. Bloemen, A. Laarman, and J. van de Pol. Multi-core
On-the-fly SCC Decomposition. In PPoPP’16. ACM,
2016.

12. L. Brim, I. Černá, P. Krcal, and R. Pelánek. Distributed
LTL model checking based on negative cycle detection.
In FSTTCS’01, pp. 96–107. Springer, 2001.

13. L. Brim, I. Černá, P. Moravec, and J. Šimša. Ac-
cepting predecessors are better than back edges in dis-
tributed LTL model-checking. In FMCAD’04, vol. 3312
of LNCS, pp. 352–366. Springer, November 2004.

14. I. Černá and R. Pelánek. Relating hierarchy of temporal
properties to model checking. In MFCS’03, vol. 2747 of
LNCS, pp. 318–327, Aug. 2003. Springer.

15. I. Černá and R. Pelánek. Distributed explicit fair cycle
detection (set based approach). In SPIN’03, vol. 2648
of LNCS, pp. 49–73. Springer, May 2003.

16. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yan-
nakakis. Memory-efficient algorithm for the verification
of temporal properties. In CAV’90, vol. 531 of LNCS,
pp. 233–242. Springer, 1991.

17. J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud.
On-the-fly emptiness checks for generalized Büchi au-
tomata. In SPIN’05, vol. 3639 of LNCS, pp. 143–158.
Springer, Aug. 2005.

18. E. W. Dijkstra. EWD 376: Finding the maximum
strong components in a directed graph. http://www.cs.
utexas.edu/users/EWD/ewd03xx/EWD376.PDF, May 1973.

19. A. Duret-Lutz and D. Poitrenaud. SPOT: an Extensible
Model Checking Library using Transition-based Gener-
alized Büchi Automata. In MASCOTS’04, pp. 76–83,
Oct. 2004. IEEE Computer Society Press.

20. S. Evangelista, L. Petrucci, and S. Youcef. Parallel
nested depth-first searches for LTL model checking. In
ATVA’11, vol. 6996 of LNCS, pp. 381–396. Springer,
2011.

21. S. Evangelista, A. Laarman, L. Petrucci, and J. van de
Pol. Improved multi-core nested depth-first search. In
ATVA’12, vol. 7561 of LNCS, pp. 269–283. Springer,
2012.

22. A. Gaiser and S. Schwoon. Comparison of algo-
rithms for checking emptiness on Büchi automata. In
MEMICS’09, vol. 13 of OASICS. Schloss Dagstuhl,

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF

Variations on Parallel Explicit Emptiness Checks for Generalized Büchi Automata 21

Leibniz-Zentrum fuer Informatik, Germany, Nov. 2009.
23. G. J. Holzmann, R. Joshi, and A. Groce. Swarm veri-

fication techniques. IEEE Transaction on Software En-
gineering, 37(6):845–857, 2011.

24. G. Kant, A. W. Laarman, J. J. G. Meijer, J. C. van
de Pol, S. C. C. Blom, and T. van Dijk. Ltsmin:
High-performance language-independent model check-
ing. In Tools and Algorithms for the Construction and
Analysis of Systems, vol. 9035 of LNCS, pp. 692–707.
Springer, London, April 2015.

25. Y. Kesten, A. Pnueli, and L. on Raviv. Algorithmic
verification of linear temporal logic specifications. In
ICALP’98, vol. 1443 of LNCS, pp. 1–16. Springer, 1998.

26. A. Laarman and J. van de Pol. Variations on multi-
core nested depth-first search. In PDMC’11, pp. 13–28,
2011.

27. A. Laarman, R. Langerak, J. van de Pol, M. Weber,
and A. Wijs. Multi-core nested depth-first search. In
ATVA’11, vol. 6996 of LNCS, pp. 321–335, October
2011. Springer.

28. G. Lowe. Concurrent depth-first search algorithms
based on Tarjan’s algorithm. pp. 1–19. Springer, 2015.

29. M. M. Michael and M. L. Scott. Simple, fast, and prac-
tical non-blocking and blocking concurrent queue algo-
rithms. In PODC’96, pp. 267–275, 1996. ACM.

30. E. Nuutila and E. Soisalon-Soininen. On finding the
strongly connected components in a directed graph. In-
formation Processing Letters, 49(1):9–14, Jan. 1994.

31. M. M. A. Patwary, J. R. S. Blair, and F. Manne. Ex-
periments on union-find algorithms for the disjoint-set
data structure. In SEA’10, vol. 6049 of LNCS, pp. 411–
423. Springer, 2010.

32. R. Pelánek. BEEM: benchmarks for explicit model
checkers. In SPIN’07, vol. 4595 of LNCS, pp. 263–267.
Springer, 2007.

33. R. Pelánek. Properties of state spaces and their ap-
plications. International Journal on Software Tools for
Technology Transfer, 10:443–454, 2008.

34. J. H. Reif. Depth-first search is inherently sequential.
Information Processing Letters, 20:229–234, 1985.

35. E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitre-
naud. Three SCC-based emptiness checks for general-
ized Büchi automata. In LPAR’13, vol. 8312 of LNCS,
pp. 668–682. Springer, Dec. 2013.

36. E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitre-
naud. Strength-based decomposition of the prop-
erty Büchi automaton for faster model checking. In
TACAS’13, vol. 7795 of LNCS, pp. 580–593. Springer,
2013.

37. E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitre-
naud. Parallel explicit model checking for generalized
Büchi automata. In TACAS’15, vol. 9035 of LNCS, pp.
613–627. Springer, Apr. 2015.

38. S. Schwoon and J. Esparza. A note on on-the-fly veri-
fication algorithms. In TACAS’05, vol. 3440 of LNCS,
Apr. 2005. Springer.

39. R. Tarjan. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing, 1(2):146–160,
1972.

40. R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. Journal of the ACM, 22(2):215–225,
Apr. 1975.

41. H. Tauriainen. Nested emptiness search for general-
ized Büchi automata. In ACSD’04, pp. 165–174. IEEE
Computer Society, June 2004.

	Introduction
	Preliminaries
	Generalized Parallel Emptiness Checks
	Variations on Emptiness Checks
	Related Work
	Implementation and Benchmarks
	Conclusion

