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Abstract 

The variability of stratospheric chemical composition occurs on a broad spectrum of timescales, 

ranging from day to decades. A large part of the variability appears to be driven by external 

forcings such as volcanic aerosols, solar activity, halogen loading, levels of greenhouse gases 

(GHG), and modes of climate variability (quasi-biennial oscillation (QBO), El Niño-Southern 

Oscillation (ENSO)). We estimate the contributions of different external forcings to the 

interannual variability of stratospheric chemical composition and evaluate how well 3-D 

chemistry-climate models (CCMs) can reproduce the observed response-forcing relationships. 

We carry out multivariate regression analyses on long time series of observed and simulated time 

series of several traces gases in order to estimate the contributions of individual forcings and 

unforced variability to their internannual variability. The observations are typically decadal time 

series of ground-based data from the international Network for the Detection of Atmospheric 

Composition Change (NDACC) and the CCM simulations are taken from the CCMVal-2 REF-

B1 simulations database. The chemical species considered are column O3, HCl, NO2, and N2O. 

We check the consistency between observations and model simulations in terms of the forced and 

internal components of the total interannual variability (externally forced variability and internal 

variability) and identify the driving factors in the interannual variations of stratospheric chemical 

composition over NDACC measurement sites. Overall, there is a reasonably good agreement 

between regression results from models and observations regarding the externally forced 

interannual variability. A much larger fraction of the observed and modelled interannual 

variability is explained by external forcings in the tropics than in the extratropics, notably in polar 

regions. CCMs are able to reproduce the amplitudes of responses in chemical composition to 

specific external forcings. However, CCMs tend to underestimate very substantially the internal 

variability and hence the total interannual variability for almost all species considered. This lack 

of internal variability in CCMs might partly originate from the surface forcing of these CCMs by 

analysed SSTs. The results illustrate the potential of NDACC ground-based observations for 

evaluating CCMs. 

 



1 Introduction 

The variability of stratospheric chemical composition occurs on a broad spectrum of time scales, 

ranging from hours to decades. Some of this variability involves couplings between chemistry 

and dynamics and, more generally, chemistry-climate interactions and is driven by external 

forcings (e.g. volcanic aerosols, solar activity, halogen loading (e.g. CFCs and halons), levels of 

greenhouse gases (GHG)) and modes of climate variability (e.g. QBO, ENSO).  These forcings 

are thought to be responsible for most of the interannual variability in stratospheric chemical 

composition. Many observational studies have attempted to link variations in stratospheric 

chemical composition, in particular ozone, to these forcings. Although several studies have 

considered vertically resolved ozone datasets (e.g. Zawodny et al., 1991; Brunner et al., 2006; 

Randel et al., 2011), the most commonly analysed datasets are satellite column ozone data. 

Studies of global satellite data records such as TOMS (Total Ozone Mapping Spectrometer) or 

SAGE (Stratospheric Aerosol and Gas Experiment) have documented the impact of the QBO on 

column ozone (Bowman et al., 1989; Zawodny et al., 1991; Randel et al., 1994; Yang et al., 

1994; Baldwin et al., 2001; Randel et al., 2007). Tropical column ozone variations were found to 

be approximately in phase with equatorial zonal wind near 30 hPa, an indicator of the QBO, 

whereas the extra-tropical column ozone anomalies tended to be out of phase with the tropical 

signal. Linear regressions showed that the mean amplitude of the QBO signal is about 2-4% of 

the mean column ozone (WMO, 1999). The ENSO is also known to influence column ozone 

(Shiotani et al., 1992; Randel et al., 1994; Steinbrecht et al., 2006). However, unlike the QBO, 

the effects of ENSO on column ozone are mostly visible in the zonal distribution. Another 

significant source of variability in ozone is the variations in stratospheric aerosol loading which 

are predominantly controlled by volcanic eruptions (Thomason et al., 1997; McCormack et al., 

1997; Vernier et al., 2011). The strongest global ozone anomaly was observed just after the 

volcanic eruption of Mount Pinatubo in 1991 with a decrease of about 3-4% over a 2-year period 

following the eruption (Randel et al., 1995); larger decreases in column ozone, of order 5-10%, 

were observed locally in northern hemisphere middle and high latitudes (Bojkov et al., 1993; 

Randel et al., 1995; Coffey et al., 1996; Zerefos et al., 1997; Robock et al., 2000). Studies of 

ground-based ozone records extending over three decades have indicated the existence of a 

decadal variation in column ozone that is approximately in phase with the solar cycle (Angell et 

al., 1988; Zerefos et al., 1997; Austin et al., 2008). This is supported by analyses of global 



satellite ozone records since 1979 showing evidence for a decadal oscillation of column ozone 

with maximum amplitude (~2-4%) at low latitudes (Chandra et al., 1994; McCormack et al., 

1997; Hood et al., 1997; WMO, 2007; Randel et al., 2007). As noted by Solomon et al. (1996), 

the occurrence of two major volcanic eruptions nine years apart during each of the last two 

declining phases in solar activity could lead to some confusion in separating volcanic and solar 

effects on ozone. This should not strongly influence trend estimates for the long time records, but 

may have implications for isolation of the solar cycle in short observational records. Chandra et 

al. (1991) also showed the possible importance of the phase of the QBO in the ozone response to 

solar variability. 

The effects of forcings on the stratospheric variability of other chemical species have also been 

studied. Although the main focus was on the trends, other components of the variability were also 

analysed in some of these observational studies. For example, variations in NO2 column have 

already been decomposed and attributed to a range of forcings (QBO, ENSO, aerosols and solar 

activity) (Zawodny et al., 1991; Liley et al., 2000; Struthers et al., 2004; Gruzdev et al., 2008; 

Cook and Roscoe, 2009; Dirksen et al., 2011). 

The links between stratospheric chemical composition and forcings have also been investigated 

using coupled chemistry-climate models (CCMs) (e.g. WMO, 2003). Obviously, the ability of a 

model to reproduce theses links depends on its ability to simulate correctly the processes 

involved in the relationship between forcing and response. For example, the effects of solar 

variability on stratospheric composition involve photochemical processes such as the photolysis 

of molecular oxygen, radiative heating and the associated dynamical response (Wohltmann et al., 

2007; Gray et al., 2010). Also, the effects of varying stratospheric aerosol loading involve 

heterogeneous chemical processes and radiative heating (Robock et al., 2000; Wohltmann et al., 

2007). 

Within the framework of the international CCMVal/SPARC (Chemistry-Climate Model 

Validation activity/Stratospheric Processes And their Role in Climate) programme, state-of-the-

art CCMs forced by natural and anthropogenic external forcings have been used to simulate past 

changes in stratospheric chemical composition. Ozone CCM simulations have been evaluated 

against a range of satellite observations with respect to climatologies (i.e. zonal mean 

distribution) and long-term trends (Eyring et al., 2006; CCMVal, 2010). Model-calculated 



column ozone responses to external forcing were also evaluated using multi linear regression 

analysis (Austin et al., 2008; CCMVal, 2010;). The evaluation was mostly carried out over large 

latitudinal bands representative of the tropics, mid-latitudes and polar regions. Regarding the 

QBO, models with forced or internally generated QBO were generally able to reproduce the 

latitudinal variations of the QBO signal in column ozone. Nonetheless, CCMs forced with 

observed QBO tended to overestimate the amplitude of the column ozone response. Some of the 

models with internally generated QBO had problems reproducing the periodicity of the QBO and 

hence of the QBO-induced ozone signal (CCMVal, 2010). For the ENSO, the column ozone 

signal was comparable in most CCMs but could not be assessed against observations because of 

the large interannual variability and the weakness of the ozone column signal in observations 

(CCMVal, 2010). Regarding the aerosol loading, CCMs showed a considerable spread in their 

response to volcanic eruptions although most models were forced by a common dataset for the 

time-varying stratospheric aerosol surface area density (SAD) distribution. The models displayed 

differing degrees of sensitivity to aerosol levels, leading to different ozone losses. None of the 

models reproduced the observed hemispheric asymmetry in post-Pinatubo ozone losses, for either 

full hemispheric means or for mid-latitudes (CCMVal, 2010). Finally, regarding solar variability, 

the column ozone signal was reasonably well represented in models. Most CCMs reproduced 70-

80% of the observed solar signal in global column ozone (averaged between 60°S and 60°N) 

(CCMVal, 2010). However, the vertical structure of the tropical solar signal in ozone did not 

seem to be correctly reproduced in models (Austin et al., 2008). 

The purpose of the present study is to assess how well CCMs are able to reproduce the effects of 

specific forcings on stratospheric chemical composition at NDAAC (Network for the Detection 

of Atmospheric Composition Change, http://www.ndsc.ncep.noaa.gov/) measurement sites. The 

model performance in simulating the links between forcings and stratospheric composition is 

critical for the level of confidence in future model projections. Although the CCMVal 

programme (Eyring et al., 2006, CCMVal, 2010) did assess the performances of the models with 

respect to a range of chemical species, the evaluation was carried out with zonal mean data and 

the focus was on long-term trends and on the effects of external forcing on stratospheric ozone. 

Here, instead of using composite satellite data and a zonal mean representation, the evaluation 

uses long time series of quality-controlled ground-based observations from the NDACC. An 

evaluation of zonal means only is too limited because the concentration fluctuations along 

http://www.ndsc.ncep.noaa.gov/


latitude circles (i.e. deviations from the zonal mean) may play a very significant role in the 

variability of gas concentrations above certain sites. In addition, our evaluation of stratospheric 

composition response to forcings does not focus solely on ozone, as done previously, but also 

covers the species relevant to the ozone chemistry (e.g. nitrogen oxides, chlorine reservoirs and 

stratospheric source gases). The major limitation in NDACC data is the spatial sampling which is 

extremely sparse compared to satellite data. On the other hand, the NDACC database offers long 

time series of homogeneous data, a relatively global distribution of sites (with tens of stations 

covering over the globe) and simultaneous measurements of whole range of chemical species. To 

quantify the links between forcings (e.g. aerosol loading, solar irradiance, stratospheric halogen 

loading or a linear trend term, QBO, ENSO) and variations in chemical composition, we perform 

a multi linear regression (MLR) analysis. Both CCM and observational data records are 

processed in exactly the same way. The response of a chemical species to an external forcing can 

involve complex and multi-step mechanisms and might depend on responses of other variables, 

for instance temperature. However, the aim here is not to explore how well models perform with 

respect to intermediate steps in the forcing-response links but simply to assess the overall links in 

model simulations and their consistency with the links derived from observations. Therefore, the 

only explanatory variables in the MLR are external forcings and not model variables such as 

atmospheric temperature, strength of the general circulation or heat flux. Another consequence is 

that most of the internally generated variability in stratospheric chemical composition is not 

expected to be accounted for in our MLR. Finally, it is also worth pointing out that, to our best 

knowledge, this study is the first attempt to analyse simultaneously large NDACC multi-species 

datasets in the evaluation of CCMs.  

The paper is divided into 5 sections. Section 2 describes the NDACC observations and the 

CCMs. The methodology and forcing proxies are presented in Section 3. The results are 

described and discussed in Section 4. First, seasonal cycles are studied, followed by an analysis 

of the variance and of the MLR results. Section 5 is devoted to summary and concluding remarks. 

 



2 Observations and model simulations  

2.1 Observations 

We evaluate CCM responses to external forcings using different ground-based observational 

datasets without zonal averaging. The NDACC network is composed of monitoring and research 

stations providing high-quality observations of atmospheric chemical composition which are well 

distributed over the globe. NDACC instruments are designed to provide consistent, standardized, 

long-term measurements of atmospheric trace gases, particles, UV radiation reaching the Earth's 

surface, and physical parameters. NDACC data are also used as reference data in the calibration 

of satellite data. Here we use O3 and NO2 columns measured with Systeme d'Analyse par 

Observations Zenithales (SAOZ) instruments (Pommereau et al., 1988) and HCl, ClONO2, CH4, 

O3, N2O and HNO3 columns from Fourier Transform Infra-Red (FT-IR) spectrometers (Zander et 

al., 2008). The quality of SAOZ data has been evaluated during several instrument 

intercomparisons (Hofmann et al., 1994; Roscoe et al., 1999; Hendrick et al., 2011). The FT-IR 

measurements have also been validated by many instrument intercomparisons and by comparison 

with satellite observations (Lambert et al., 2003; Griffith et al., 2003; Hauchecorne et al., 2005; 

Dils et al., 2006; Griesfeller et al., 2006; Vigouroux et al., 2008).  The periods of observation 

vary for different species and stations, and are summarized in Table 1. For example, the longest 

time series used is SAOZ measurement of NO2 and O3 columns during 17 years at Dumont 

d'Urville, whereas the shortest time series used is FT-IR measurement of column CH4 during 2 

years at Wollongong. On average, the length of the time series is 10 years. As the periods 

considered and the length of the time series can have an impact on our results, the model-

calculated and observational data are analysed in the same way over the same periods as the 

observations (including data gaps) in order to make the results from models and observations as 

comparable as possible. The comparisons are carried out on monthly means. In contrast to other 

species, due to a strong diurnal cycle, the SAOZ sunset and sunrise NO2 data are not averaged 

together, but treated as two distinct datasets; like the other species, their data are averaged 

monthly. As no sunset or sunrise NO2 data over specific sites are provided in the CCMVal model 

database, adjusted sunset/sunrise CCM values are calculated using the time-varying global daily 

meanNO2 fields from CCMs and time series of monthly mean ratios of sunset and sunrise NO2 



over daily mean NO2 for each site provided by the SLIMCAT chemical transport model 

SLIMCAT (Chipperfield, 2006).  

2.2 Model simulations 

The primary data used in this study are CCM output from the SPARC CCMVal-2 programme 

(Eyring et al., 2008; Morgenstern et al., 2010). The CCMVal-2 models are state-of-art chemistry-

climate models designed to describe all the required stratospheric photochemistry, radiative and 

dynamical processes and their interactions. Since CCMVal-2 models and their forcings are 

already described elsewhere (Eyring et al., 2008; Morgenstern et al., 2010), only some aspects are 

briefly summarised here. Based on the availability of model output required for the analysis, 

seven models are considered here. The list of models and their references are given in Table 2, 

along with their horizontal and vertical resolutions, the pressure of top level, and some main 

parameterizations. Each individual model simulation is analysed but the discussion is rather 

centred on the multi-model mean (MMM) because we are interested here in systematic model 

biases. For the needs of specific analyses, models are sometimes divided into 3 subgroups 

according to the QBO description: models that internally generate the QBO, models with an 

externally forced QBO by nudging of equatorial stratospheric zonal winds towards observed 

wind profiles, and models that do not simulate a QBO. The type of simulation analysed here is 

the so-called REF-B1 reference simulation that covers the 1960-2006 period (Eyring et al., 2008). 

The CCMVal-2 REF-B1 simulations generally include all known anthropogenic and natural 

forcings. The temporal evolution of the surface mixing ratios of greenhouse gases (CO2, CH4 and 

N2O) in the models follows the scenario A1B of the Intergovernmental Panel on Climate Change 

(McCarthy et al., 2001). The evolution of halogen Ozone-Depleting Substances (ODS) (i.e. 

CFCs, HCFCs and halons) surface mixing ratios follows the 2007 WMO standard scenario 

(WMO, 2007). The sea surface temperature (SSTs) are prescribed as monthly means following 

the global sea ice and sea surface temperature (HADISST1) dataset provided by the UK Met 

Office Hadley Center (Rayner et al., 2006) except for the CCM LMDz-reprobus that uses AMIP 

II sea surface data (Taylor et al., 2000). The influence of the solar variability on photolysis and 

heating rates is parameterized according to the intensity of the 10.7 cm solar radiations (Lean et 

al., 2005). All models except ULAQ have implemented a spectrally resolved solar forcing in the 

simulation, both for radiation and for photolysis calculations. The three major volcanic eruptions 



(Agung in 1963, El Chichon in 1982 and Mount Pinatubo in 1991) are taken into account by 

prescribing observed global distributions of aerosol surface area densities (SADs). Chapter 2 of 

WMO (2011) summarizes the various ways in which the set-up of some models may deviate 

from the REF-B1 scenario (Eyring et al., 2008). The CCM outputs uploaded from the CCMVal 

database are monthly mean fields. The analysis is focused on T3M model outputs that correspond 

to the 3-D monthly mean fields. The modelled values at the different observation sites are 

obtained by simple linear interpolation of T3M fields. Few results for T2M outputs (zonally 

averaged monthly mean fields) are also presented for illustrating the importance of zonal 

deviations. Some modelling groups did not provide T3M outputs for all the species considered 

here (see Table 2). As a result, instead of 7 models, only 4 models are analysed for HCl and 3 

models for NO2. In the figures, model results are shown for the CCM and the corresponding 

individual model simulations. The model dispersion (i.e. model-to-model-variations) is simply 

calculated as standard deviations on the MMM calculation, and MMM inter-annual variations are 

calculated from the mean of the individual model variances (i.e. the mean of individual model 

inter-annual variability). It is worth keeping in mind that the model simulations are sampled in 

exactly the way as the observations in order to consider a model time series of the same length 

with the same gaps as in the observational time series. 

 

3 Multiple regression model  

Multiple regression models have long been standard tools in atmospheric science. For the 

stratosphere, they have been used to quantify the amount of ozone losses of anthropogenic origin 

(e.g. WMO, 1999; 2007; 2011). There have been several studies exploring the use of multiple 

regression models in analysing column ozone time series (Hood and McCormack, 1992; Bodeker 

et al., 2001; Reinsel et al., 2002; Randel et al. 2007). A “standard” MLR model for ozone 

monthly-mean time series would include explanatory variables such as QBO, solar cycle and 

halogen loading. In the last years, the number of explanatory variable (i.e. forcing proxies) has 

tended to increase to include model prognostic variables such as temperature in order for the 

regression model to account for as much as possible of temporal variations in column ozone, 

called the explained or dependent variable. The idea is to have a picture of ozone variability as 

complete as possible in order to identify the physical mechanisms driving this variability and 



estimate trends of anthropogenic origin accurately, albeit within the limitations of linear 

regression approaches. However, as the focus of our study is the externally driven variability, we 

limit the external variables of the MLR to well-known external forcings such as solar cycle, 

aerosol and halogen loadings, ENSO, QBO. As a result, a large part of the interannually 

generated variability, at least the internal component, cannot in any way be accounted for by our 

MLR analysis. Note that, in some studies of polar ozone variability, the MLR also includes 

atmospheric parameters such as temperature or heat fluxes into the stratosphere as explanatory 

variables (Svendby et al., 2004; Brunner et al., 2006; Dhomse et al, 2006; Wohltmann et al., 

2007; Harris et al., 2008). In that way, some internal variability can be accounted for in the MLR. 

However, the use of both external forcings and of atmospheric variables that are partly driven by 

both external forcings and internal variability as explanatory variables makes it very difficult to 

disentangle forced and internal variability. For this reason, we do not use model prognostic 

variables as forcing proxies in the MLR.  

In the MLR approach, the column variations are assumed to be described as a sum of independent 

contributions following a linear model of the form:  

Y(t) = µi + α0 + α1 T(t) + α2 A(t) + α3 S(t) + α4 QBO(t) + α5 QBO'(t) + α6 ENSO(t) + Є(t)  (1) 

Where Y(t) is the stratospheric column monthly mean at time t (in months), µi is the monthly 

average of the i
th

 month of the year (i = 1, 2, ..., 12) calculated over all the years of the time 

series. α0 to α6 are the model coefficients calculated using a standard linear least squares 

regression. The coefficient α0 is constant term. Є(t) are the residuals. The regression equation 

includes a so-called trend term T(t) that depends on the species considered. T(t) is constructed 

using EESC (Equivalent Effective Stratospheric Chlorine) time series (Chapter 5 of WMO 

(2011)) for ozone, inorganic chlorine loading time series for HCl and ClONO2 or simply time for 

N2O, CH4, HNO3 and NO2 as trend explanatory variables. The formulation of EESC, a proxy for 

the combined total inorganic chlorine (Cly) and bromine (Bry) loading, is taken from  WMO 

(2011) so that it accounts for the age-of-air spectrum and age-of-air dependent fractional release 

values (Newman et al., 2007). Note that EESC peaked in 1997 at mid-latitudes and 2002 at high 

latitudes (WMO, 2011). A(t) is the global mean surface area density (SAD) column calculated 

using the 1979-2004 monthly time series of zonal mean aerosol SAD which has been constructed 

within the CCMVal project from SAGE (Stratospheric Aerosol and Gas Experiment) I, SAGE II, 



SAM (Stratospheric Aerosol Measurement) II, and SME (Solar Mesophere Explorer) instruments 

(Thomason and Peter, 2006). S(t) is the solar flux at 10.7 cm and is a common proxy for UV 

irradiance changes 

 (ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/DAILYPLT.OBS). 

QBO(t) is the equatorial zonal wind at 30 hPa and the QBO'(t) term has been constructed normal 

to the QBO proxy QBO(t) by duplicating and shifting it by one month increments until the time 

integral of QBO'(t)×QBO(t) is close to zero. The use of two orthogonal QBO proxy terms allows 

a phase lag between the evolutions of the dependent variable and of the QBO (Austin et al., 

2008). Note that the temporal shift used to construct the two orthogonal QBO proxies and 

estimate QBO'(t) is such in some models (e.g. LMDz-REPROBUS) that the last 2 years have to 

be discarded. Since all the modelled time series have to be of same length for calculating the 

MMM, the analysis of the time series stops at 2004 instead of 2006. In the case of model 

simulations, QBO indexes, QBO(t) and QBO'(t), are calculated from the modelled winds. 

ENSO(t) is the southern oscillation index for the El Niño-Southern Oscillation (ENSO) mode of 

climate variability taken as the global SST ENSO index. It is defined as the difference between 

the mean sea surface temperatures anomaly equatorward of 20° latitude (north and south) and the 

mean sea surface temperature poleward of 20° and it captures the low-frequency part of the 

ENSO phenomenon (http://jisao.washington.edu/data/globalsstenso/).  

Uncertainties (σn) in regression coefficients, αn (with n being the index of a specific forcing in 

Eq. (1), are calculated with a bootstrapping method (Efron and Tibshirani, 1994; Bodeker and 

Kremser, 2015). In our approach, we start by calculating a first set of regression coefficients by 

least squares fitting of the observational or model time series with the function of equation (1). 

The residuals (i.e. differences between the series and the fit) are then randomly added to the fit in 

order to create new artificial time series. In order to make sure that the results do not depend on 

the number of the artificial time series, 10,000 new time series are created. Finally, mean values 

and standard deviations can then be calculated from these 10,000 sets of regression coefficients.  

In order to check that residuals are normally distributed with zero mean and constant standard 

deviation, adequacy chi-squared tests are performed with the null hypothesis being that there is 

no significant difference between the residuals’ distribution and a normal distribution with zero 

mean and constant standard deviation. The significance level of the test is set to 5%. The 

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/DAILYPLT.OBS
http://jisao.washington.edu/data/globalsstenso/


residuals from the regression model calculated by bootstrap are normally distributed with zero 

mean and constant standard deviation for all the cases at the 5% significance level. In the 

exploratory phase of this work, the time series were also analysed without bootstrapping. A first-

order autogressive model AR1 was applied in order to take into account autocorrelation. The data 

were regressed against the model after a Cochrane-Orcutt transformation; the method is described 

in appendix A of Tiao et al. (1990) (see also Bodeker and Kremser, 2015). The Cochrane-Orcutt 

transformation does not change significantly the values of the regression coefficients but, as 

expected, the associated errors increase. Overall, this approach was providing satisfactory results 

in most cases. However, it was found not to be robust for short time series when errors could be 

vastly underestimated (Tiao et al., 1990). As a result, we tested the bootstrapping approach; we 

found that it provided results (regression coefficients, associated errors) results that were close to 

the results obtained with the Cochrane-Orcutt approach for most cases. However, the results were 

much more robust and reasonable for short time series. In order to test further the effect of 

autocorrelation in the time series, we tried to conserve some of the autocorrelation characteristics 

of the initial time series in the artificial time series generated by bootstrap by picking up and 

adding groups of successive residuals to the fit instead of picking up single residuals randomly. 

The length (i.e. number of successive residuals) of the groups was related to the autocorrelation 

length of the series. We tested the effect of varying lengths of the groups and found no significant 

difference in the regression results when the number of successive residuals per group was varied 

from 1 (no autocorrelation) to 10. The bootstrapping method appears to be able to generate 

residuals that are normally distributed with no significant autocorrelation (at the 95% confidence 

level). We have compared errors (i.e. standard deviations) in regression coefficients derived using 

this bootstrap method with standard MLR errors calculated using an autocorrelation model of 

type AR1 (Tiao et al., 1990). For our long time series, typically more than a decade, standard 

deviations derived with the bootstrap method are found to be in excellent agreement with MLR 

standard errors. However, for short time series, MLR standard errors are found to be 

unrealistically small in some cases because of the too-limited size of the sample whereas errors 

calculated with the bootstrap method remain reasonable, possibly because this Monte Carlo 

approach is better at estimating coefficient uncertainties using the residual distribution. This 

suggests that the bootstrap method can provide robust and reasonable estimations of errors on 

regression coefficients for the column time series. 



The MLR approach relies on a number of assumptions that may not be valid in all cases. The 

main limitation is the correlation between forcings, implying that the contributions from forcings 

in equation Eq. (1) are not independent. For example, the aliasing between the solar and aerosol 

terms is related to the fact that the last 2 major eruptions occurred at the end of 11-year solar 

cycles. In addition, it is also possible that the relationship between the column abundance 

(explained variable) and a forcing is not linear. As a result, the relationship would not be properly 

represented in the MLR model or, at least, it would be approximated by a linear relationship. 

These possible deficiencies should be kept in mind when analysing the results. There is a final 

check to do once MLR analyses are performed. One needs to verify that a relationship exists to 

some degree between the explained variable (stratospheric chemical composition parameters) and 

the explanatory variables (external forcings). Here we use an F-test to test whether the likelihood 

of such a relationship at a 99% confidence level; the F test can be designed to test whether the 

hypothesis of an association between two variables can be due to chance (including here the null 

hypothesis of no relationship between explained and explanatory variables). The MLR analysis is 

carried out on each individual model result. Only means of all the individual model regression 

coefficients are presented in the figures along with error bars calculated as means of the 

individual model bootstrap errors. 

 

4 Results 

We assess the relative importance of different sources of variability in stratospheric chemical 

composition here. We first analyse the seasonal cycle, then the total versus deseasonalized 

variability and finally the forced variability estimated with the MLR method. 

4.1 Annual cycle in stratospheric chemical composition 

4.1.1 Annual cycle in ozone 

Annual variations in stratospheric ozone are caused by seasonal variations in transport and 

photochemistry. As total ozone is largely determined by the lower stratospheric partial column, 

its annual cycle is mainly affected by the ozone evolution in this altitude range. Variations in 

transport, driven by dynamical processes, can affect ozone either directly or also indirectly 

through changes in the transport of ozone-depleting substances. Photochemical production of 



ozone depends on annual variations in the solar irradiance. The resulting annual cycle in total 

column ozone is characterized by low amounts in tropics year-round, maxima in the spring of 

Northern Hemisphere (NH) high latitudes and Southern Hemisphere (SH) middle latitudes. 

Globally, the hemispheric mean total ozone is larger in the NH than in the SH. Figure 1 shows 

the mean seasonal cycle of total ozone measured at 6 stations grouped into three latitude bands 

(Figure 1a and 1b at 67°N, Figure 1c and 1d at 44°N and Figure 1e and 1f at 21-22°S). Grey areas 

around the NDACC mean seasonal cycle (black line) represent the inter-annual variability. 

Dashed red bold lines around the MMM (red thick line) represent the model dispersion (i.e. 

model-to-model variations) estimated as standard deviation in the MMM calculation. Naturally, 

NDACC inter-annual variations should not be compared to model dispersion on this Figure.  

These 6 stations have been selected because they correspond to pairs of stations located within 

very narrow latitude bands, allowing to illustrate the importance of zonal deviations. As the 

results are also representative of results obtained at other stations, there is no need to overload 

readers with many figures. The MMM reproduces the broad features of the observed annual cycle 

in column ozone in the northern hemisphere and in the tropics. Models also appear to be able to 

reproduce correctly the strong deviations from the zonal mean as revealed by NDACC 

observations. For example, consider stations at the same latitude band (OHP at 44°N-6°E and 

Moshiri 44°N-142°E or Sodankyla at 67°N-27°E and Zhigansk at 67°N-123°E) in Figure 1. The 

maximum observed at OHP is about 350 DU whereas it reaches 430 DU at Moshiri and the 

timings of the maxima and minima of the annual cycle are shifted at OHP compared to Moshiri. 

These differences between stations in the same latitude band also exist between Sodankyla and 

Zhigansk stations at 67°N and again models do reproduce them though they tend to 

underestimate the amplitude of these deviations from the zonal mean when compared to 

observations. As shown in Figures 1a and 1b, the interannual variability (characterised by the 

standard deviation) at NH high latitudes is larger during winter. This is due to the strong 

dynamical variability such as the rapidly changing position of the polar vortex brought about by 

the effect of wave activity that tends to deform the zonal flow. In contrast to high and middle 

latitudes, the seasonal cycles are very similar at the two tropical stations confirming that 

deviations from the zonal mean are small in the tropics (see Figure 1e and 1f). The large 

deviations from the zonal mean at middle and high latitudes impose the use of 3-D fields in 



evaluating CCMs against site observations. Overall, the results confirm that models perform well 

for the ozone column.  

4.1.2 Annual cycle in long-lived source gases N2O 

Information on the global transport in the stratosphere can be obtained from analyses of 

stratospheric chemical tracers, namely long-lived chemical constituents, whose spatial 

distributions and annual cycle are largely controlled by transport. Two such constituents are 

methane (CH4) and nitrous oxide (N2O). Generally, the amplitudes of the CH4 and N2O column 

annual cycles are rather small (see Figure 2) due to the large contribution from the troposphere. 

Nonetheless, minima are observed in fall and winter, especially at NH high latitude stations (for 

example Kiruna) followed by an increase in spring due to the cumulated effect of the downward 

transport inside polar vortex during the winter, and its breakup in spring with the mixing-in of 

mid-latitudes air. Models are generally better at simulting the seasonal cycle in N2O column than 

the seasonal cycle in CH4 column whose amplitude is underestimated in model simulations. 

There are no other salient model deficiencies in terms of seasonal variability apart from this too 

flat seasonal cycle in CH4 column. Note that CCMs have a systematic bias in terms of absolute 

column abundance, they overestimate both columns by about 5%. It seems to be partly due to a 

small overestimation of tropospheric columns in models as pointed in the last SPARC CCMVal 

report (CCMVal, 2010), Indeed, in the REF-B1 scenario used by all CCMs, the same surface 

mixing ratios of CH4 and N2O are prescribed all over the globe, without taking into account the 

heterogeneities of the surface emissions distribution and hence of surface concentrations which 

are particularly significant for CH4. 

4.1.3 Annual cycle in NO2  

Nitrogen oxides are of primary importance in controlling stratospheric O3 levels. We analyse 

NO2 at sunset and sunrise, separately instead of daily means, due to the strong diurnal cycle of 

NO2. Figure 3 shows examples of mean seasonal cycles of sunrise column NO2 for 3 CCMs 

(CCSRNIES, CMAM, LMDZrepro) at six NDACC stations, grouped in 3 different latitudes 

bands (the same stations as in Figure 1). Results at sunset (not shown) are very similar. CCMs 

reproduce the general features of the seasonal cycles. As for ozone, observations indicate 

longitudinal differences between summer maxima at two stations on the same latitude band. 



CCMs are able to reproduce these deviations from zonal mean. CCMs, or more precisely the 

MMM, appear to reproduce the amplitude of the NO2 column maxima observed at Sodankyla, 

Moshiri and Bauru but overestimate it by about 10-20% at Zhigansk, OHP and Reunion. When 

individual model simulations are considered in Figure 3, one can see that the MMM 

overestimation at OHP and Reunion is mostly due to a very large systematic bias in one of the 

models (CCSRNIES).   

4.1.4 Annual cycle in chlorine reservoir species 

The accumulation of halogenated compounds in the stratosphere over the last half-century has 

been the primary driver of stratospheric ozone depletion. HCl is the two major stratospheric 

chlorine species. As a result, the seasonal cycle is expected to exhibit its largest amplitude at 

polar sites. Figure 4 shows the seasonal cycle of HCl column for 4 models (CCSRNIES, CMAM, 

LMDZrepro, SOCOL) at 7 stations located in NH and SH mid-latitudes. HCl is the dominant 

species in the chlorine family except in polar regions during the winter when chlorine activation 

on PSCs modify radically the chlorine partitioning. As shown in Figure 4, the general shape of 

the seasonal cycle of HCl column is well reproduced by CCMs. However, CCMs, or more 

precisely the MMM, tend to overestimate HCl columns. A careful analysis of Figure 4 shows that 

the CCM overestimation is mostly due to a large overestimation of about 15 to 50% (depending 

on the station) by one of the models (CCSRNIES). An analysis of T2M model outputs (zonally 

averaged fields) indicates that the sum of HCl and ClONO2 columns, a good proxy for total 

chlorine, appears to be similar in all the models. It is not surprising because total chlorine levels 

are largely determined by ODS boundary conditions that are the same for all the models. 

However, according to the T2M outputs, this model vastly overestimates the HCl/ClONO2 ratio 

compared to other models, pointing towards a major deficiency in its chlorine chemical scheme.  

 

4.2 Total and interannual variability of the stratospheric chemical composition 

While the total variance of most columns is dominated by the seasonal cycle, there is also a very 

substantial interannual variability in column time series. Our main aim here is to assess the ability 

of CCMs to reproduce the interannual variability, notably the externally forced component, 

observed at NDACC stations. We first start by comparing the variability in the observed and 



MMM raw time series. We plot the standard deviations for the observed column time series as a 

function of the corresponding standard deviations from CCM simulations at different stations in 

Figures 5 to 8. Each figure corresponds to a chemical species and is composed of 3 model-versus-

observation correlation plots where linear regression lines, 1-1 lines and correlation coefficient 

are also indicated. On each figure, the left-hand plot refers to the raw data time series (total 

variance) and the middle plot refers to the deseasonalized time series. In order to deseasonalize 

the time series, the mean seasonal cycle, defined as monthly means averaged over the 

corresponding months of the time series, is subtracted from the raw time series (Ziemke et al., 

1997, Staehelin et al. 2001, Dhomse et al., 2006). The robustness of this deseasonalisation 

method has been tested by comparing the results with another widely applied deseasonalisation 

method using multiple harmonics as a functional for the seasonal cycle (Stolarski et al., 1991, 

Brunner et al., 2006, CCMVal, 2010). These two methods give very similar results. We favour 

the “monthly mean” method because χ
2
 tests for distributional adequacy indicate that the 

distributions of the raw and deseasonalized time series are found to be distinct with slightly 

higher confidence levels (exceeding of 99.9%) in the case of the “monthly mean” 

deseasonalization than in the case of the “multiple harmonics” deseasonalization. The results for 

the deseasonalized time series provide a good estimate of the interannual variability component 

because, on intra-annual timescales, the overwhelmingly significant component is the seasonal 

one. Finally, the right-hand correlation plot in Figures 5 to 8 refers to the deseasonalized times 

series extracted from modelled zonal mean fields instead of modelled 3-D fields as in the middle 

plot. The idea is to see whether the interannual variability is fully resolved in zonal mean fields or 

whether the longitudinal dependency is significant. Note that the variability in zonal mean fields 

from CCMs has been extensively evaluated against zonally averaged satellite observations 

(CCMVal, 2010).  

4.2.1 Ozone  

Figure 5a shows a very good agreement between column O3 total (i.e. raw data) standard 

deviations from observations and CCMs with values from the different stations lying around the 

1-1 line (regression slope=1.07 ± 0.07) and a very high correlation coefficient between the 

modelled and observed time series (r=0.96). We can distinguish three groups of stations 

depending on latitude and amplitude of the standard deviation. The stations at high latitudes 



exhibit a stronger variability than tropical stations except for the DDU (Antarctic) station where 

standard deviations are more typical of stations at mid-latitudes and, inversely, for the MOS 

(mid-latitude) station where standard deviations are more typical of high latitudes. After 

deseasonalisation (see Figure 5b), the standard deviations are strongly reduced at all stations for 

both observations and CCMs, reflecting the importance of the seasonal cycle contribution to the 

total ozone variability. Standard deviations after deseasonalisation remain grouped by latitudinal 

regions (tropics, mid-latitudes, high latitudes) indicating that the column ozone interannual 

variability generally increases with latitude. One can also note that, in contrast to the raw data, 

the standard deviation of the deseasonalized time series at MOS is of the same order of 

magnitude as at the other mid-latitude stations. Overall, after deseasonalization, column ozone 

variances in observations and models remain similar and relatively well correlated (r=0.88), even 

if the models tend to underestimate slightly the interannual variability (slope of 1.26 +/- 0.15), 

particularly at high latitudes. Modelled standard deviations for deseasonalized zonally averaged 

data (Figure 5c) are smaller than for the 3-D data (Figure 5b) and hence have stronger negative 

biases (regression slope=1.72 +/- 0.26) and a lower correlation (r=0.80) with the corresponding 

observational data. A very large fraction of the interannual variability in column ozone originates 

from interannual variations around zonal means, especially at mid- and high latitudes.  

4.2.2 N2O  

The comparison between observed and modelled standard deviations for raw time series is worse 

for long-lived tracers such as CH4 (not shown) and N2O (Figure 6a) than for ozone. CCMs 

underestimate the total variance of the long-lived tracer columns by about 70% (regression 

slope=1.69). It is not possible to group the data points according to values of standard deviation 

and latitude. The effect of deseasonalisation on the N2O column variance is small due to the very 

weak amplitude of the N2O column seasonal cycle, especially in the CCMs (see section 4.1.2). 

After seasonal adjustment (see Figure 6b), the results show that CCMs generally underestimate 

the interannual variability in N2O column.  There is little difference between the results for zonal 

means (Figure 6c) and 3-D fields (Figure 6b). Therefore, the analysis of the long-lived tracers 

interannual variability can be restricted to the zonal component. Results for CH4 are very similar 

to those for N2O (not shown). 

 



4.2.3 NO2 

There is a rather good agreement between modelled and observed standard deviations for the raw 

sunrise (sr) NO2 column (Figure 7a) with a correlation coefficient of 0.97. As for ozone column, 

the amplitude of the total variance increases with latitude and allows us to group together stations 

from the same regions. In contrast to most other species analysed here, CCMs tend to 

overestimate the total variance of the NO2 column, notably at high latitudes. This bias is much 

more pronounced in the case of the deseasonalized time series for both 3-D fields (Figure 7b) and 

zonal mean fields (Figure 7c). This particular behaviour at high latitudes is certainly related to the 

use of the SLIMCAT CTM NO2sr/NO2 ratio in estimating sunrise values from daily mean for the 

CCMs. The introduction of NO2sr/NO2 ratios calculated offline by a model forced by 

meteorological analyses into other models calculating their own dynamics and chemistry is 

bound to generate some spurious variability, particularly in polar regions where, due to the 

specific polar winter chemistry, NO2 columns are low. For instance, the interannual variability in 

dynamics is strong at NH high latitudes with very variable winter conditions that partly drive the 

reactive nitrogen partitioning including the NO2sr/NO2 ratio. Even if CCMs are able to reproduce 

the magnitude of this interannual variability, their year-to-year variations are not expected to be 

in phase with the CTM interannual variations. As a result of this inconsistency, the derivation of 

NO2sr in CCMs from the CTM NO2sr/NO2 ratio generates some unrealistic interannual variations 

in NO2sr. The results for sunset NO2 column are almost identical to those for the sunrise NO2 

column and hence are not shown. 

4.2.4 HCl  

The correlation coefficient between observed and modelled standard deviations for HCl column 

raw data is high (r=0.9) but the regression slope (1.56 +/- 0.30) shows that, on average, CCMs 

substantially underestimate the total variability (see Figure 8a). As found for the other species, 

the variability generally increases from tropics to polar regions with a peak at NH stations. The 

seasonal adjustment tends to reduce the variances but with a more pronounced impact on the 

modelled variability compared to the observational time series; the correlation coefficient 

decreases to reach 0.62 with a regression slope of 2.21 indicating a strong underestimation of the 

interannual variability by CCMs, especially at NH stations (see Figure 8b). The use of zonally 



averaged CCM fields tends to degrade further the correlation with the observational time series 

(r=0.44) (see Figure 8c). 

 

4.3 Interannual variability explained by external forcings 

Results presented in Section 4.2 show that CCMs tend to underestimate the interannual 

variability seen in ground-based observations. The magnitude of the model bias varies with the 

species and latitude considered. It is usually most pronounced for long-lived species including 

total chlorine and at mid-latitude and polar stations. The only exception is NO2, probably because 

of the spurious variability generated by the use of NO2sr/NO2 ratios from a CTM. The 

interannual variability can be decomposed in two main parts: externally forced variability and 

internal variability. The aim of this section is to assess the ability of CCMs to reproduce the 

different components of the interannual variability and, in particular, the contribution of 

individual external forcings to this variability. In order to estimate the forced variability and the 

different contributions of external forcing, we apply the MLR method described in detail in 

Section 3 with five explanatory variables (trend, aerosol, solar, QBO and ENSO) to the 

deseasonalized time series for both observations and CCMs at all stations and species. Figures 9 

to 12 present the results. Panel (a) of each figure is a model-versus-observation correlation plot of 

the R² parameter of the MLR; R² represents the ratio of the variance accounted for by the 

regression model to the total variance (here, variance associated with interannual variability). The 

higher the value of R² is, the higher the fraction of variance explained by the MLR model is, with 

R²=1 meaning that the regression model can explain all the variance. The other part of the 

variance, the non-explained fraction, is thought to represent mostly the internal variability. It is 

unlikely that some of this unexplained variance could be some forced variability driven by 

external factors that are not taken into account in the MLR because the keys external forcing for 

the stratosphere are already well identified. The fact that some hypotheses of the linear regression 

model (i.e. linear relationship between forcings and atmospheric composition responses, 

uncorrelated individual forcings,…) may not be entirely valid can also affect the value of the R² 

ratio. Panels (b) and (c) in Figures 9 to 12 are bar charts of the fraction of the variance explained 

by individual forcings in observations and in CCMs at different stations for different species; the 

contributions of the different explanatory variables to this fraction are indicated with different 



colours (trend in yellow, solar in red, QBO in light blue, aerosol in dark blue, ENSO in green). 

To facilitate the reading, the contributions of individual external forcings to column variance are 

represented as absolute values but negative contributions are hatched in the bar charts. 

4.3.1 Ozone  

In the case of O3 column (see Figure 9a), the highest fractions of explained interannual variability 

(i.e. highest R²) for both observations (R² values ranging 50 to 80%) and CCMs (R² values 

ranging 35 to 68%) are found at the tropical stations. At the other stations, the fractions are fairly 

similar in observations and CCM time series with R² values around 20 to 40%. The R² correlation 

plot indicates a relatively high correlation coefficient (0.78) but with a regression slope of 1.4 

suggesting that CCMs tend to underestimate slightly the fraction explained by external forcings. 

As shown by Figures 9b and 9c, the fraction of variability explained by the EESC forcing is 

dominant at DDU (SH polar regions) for both observations and CCMs due to the high 

dependency of the polar ozone loss to halogen loading. At the other stations, the EESC forcing 

represents only 10% of the interannual variability in CCMs which is in good agreement with 

observations. The solar forcing explains a substantial part of the variability at tropical stations, 

around 15%, except at REU where it reaches 30%. In the tropics, UV radiation is intense all year 

around and its fluctuations can strongly influence O3 photochemistry (Haigh et al., 1994). In 

addition, the solar forcing appears to be very significant at NH polar stations (about 15-20% at 

ZHI, SCO and NYA) where dynamical feedbacks are expected to play a role in driving the 

stratospheric response to solar forcing (Marchand et al., 2011). As expected, the QBO forcing 

explains a larger part (10-50%) of the interannual variability in tropics than in other regions (5-

15%) in both observations and CCMs. The proportion of the interannual variability explained by 

the aerosol and ENSO forcings are relatively similar whatever the stations, except at JUN where 

the fraction explained by the aerosol forcing exceeds 40%. The time series of this station has the 

issue of starting in 1991 during the Mount Pinatubo eruption. For both observations and CCMs, 

the fraction of variance explained by the aerosol forcing strongly depends on the period covered 

by the time series, whether it is a background (non-volcanic) or volcanically active periods. The 

injection of sulphur from this volcanic eruption in June 1991 affected O3 columns for a period of 

several years. The aerosol forcing also plays a very significant role at OHP because the time 

series starts just two years after the eruption, while, at stations like ZUG and MOS, aerosol 



fractions are much smaller with the series beginning 4 years after the eruption (WMO, 1999). 

Models generally tend to underestimate the contribution of aerosol forcing compared to 

observations. 

4.3.2 N2O  

In the case of tracer species like N2O, the R² results suggest that, wherever the station, the 

interannual variability in CCMs is almost entirely explained by external forcings with R² values 

ranging from 75% to 96% (see Figure 10a). In contrast, R² for most observational time series 

ranges from 20 to 45% except in one station where it reaches 67% of the variance (see Figure 

10a). The correlation between modelled and observed R² is very poor. Recall that CCMs 

generally underestimate the interannual variability in long-lived tracers (see Figure 6b). The 

results here show it is mostly due to the fact that they strongly underestimate the internal 

variability (i.e. externally unforced variability) for long-lived tracers As expected for N2O 

column, the fraction of interannual variance explained by the trend forcing is the dominant 

contribution in CCMs whatever the stations. It is driven by the steady increase in N2O emissions 

at the surface since early 20th century (see Figure 10b). The most salient differences in the trend 

contribution between CCMs and observations are observed at NH mid and high latitudes where 

almost all the variability is forced in CCMs whereas the forced variability is not the dominant in 

the observations. The solar contribution is almost negligible everywhere both in observations and 

CCMs except at mid-latitudes stations though it is still fairly low (see Figure 10b). The QBO 

contribution is generally higher in observations than in CCMs except at mid-latitudes stations. 

The aerosol and ENSO contributions are broadly similar in observations and CCMs whatever the 

stations. As the results are the same for methane, they are not shown here. 

4.3.3 NO2  

In the case of sunrise NO2 column, the R² parameter ranges from 20% to 80% in CCMs and from 

20% to 70% in the observations (see Figure 11a); the correlation coefficient between modelled 

and observed R² is relatively low (0.61) with a regression slope of 0.78. CCMs tend to 

overestimate the contribution of external forcing to the total interannual variability compared to 

the observations, especially at NH stations, and it is generally due to a model overestimation of 

the NO2 column response to the aerosol forcing (see Figure 11b and 11c). For most stations, the 



dominant contributor to the forced interannual variability is the aerosol forcing, except at TAR 

station where the dominant contributor is the trend. Indeed, the sulphate aerosol influences NO2 

column due to well-known denoxification processes via heterogeneous chemistry. The large 

eruption of Mount Pinatubo in 1991 led to an increase of the aerosol loading by 2 orders of 

magnitude resulting in highly enhanced aerosol surface areas and hence in heterogeneous 

chemical processing in the stratosphere until at least the mid-1990s (Fish et al., 2000). The 

aerosol contribution varies with the period covered by the time series, notably covering the Mt 

Pinatubo period. The aerosol contribution is smaller at HAR, MAU, REU, BAU and KER station 

where time series start after 1991. It may be noted that the same results and behaviour have been 

found in the analysis of NO2 column at sunset (not shown). The trend contribution represents 5 to 

60% of the variance of the NO2 column at SH stations with generally higher proportions in 

observations than in CCMs whereas the trend contribution reaches only 10% only at NH stations. 

The solar contribution is extremely low in both observations and CCMs. The QBO contribution is 

small and similar at most stations in both observations and CCMs and, as expected, is maximum 

at tropical stations.  

4.3.4 HCl 

For both HCl column, as found for most species, the proportion of interannual variability 

explained by external forcing (i.e. forced variability) is generally overestimated in CCMs 

compared to observations (see Figure 12); on average, modelled R² fractions are 0.12 higher for 

HCl, the most abundant chlorine species. Generally, the R² values are lower at high latitude 

stations compared to middle and low latitude stations both in observations and CCMs. The trend 

contribution originating from the chlorine loading change clearly dominates the variance, except 

at polar stations where the QBO contribution becomes dominant. The solar contribution is 

relatively small (around 5%) for all stations both in observations and CCMs. The solar 

contribution to HCl column variance is about 2 to 5% for CCMs and lower than 2% for 

observations.  

 



4.4 Absolute contributions of external forcings to interannual variability 

In this section, instead of looking at the relative contributions of individual forcing to the forced 

variability, we now analyse them in absolute terms by converting the fraction of variance 

explained by a specific forcing into a percentage change in a chemical species column per unit 

change of a forcing indicator. This allows us to compare directly all the forcing contributions 

whatever the amount of total (i.e. externally forced and unforced) variance in the time series or 

the amount of variance explained by the MLR model (i.e. forced variability). We attempt here to 

assess the ability of CCMs to reproduce the magnitude of the response of stratospheric chemical 

composition to given individual external forcings. Figures 13, 15 and 16 show the magnitudes of 

responses to the main external forcings at the different stations for O3, N2O, NO2sr and HCl total 

columns. The sensitivity (i.e. response) to the external forcings is derived from the results of the 

MLR as described in Section 3 over the period covered by the observational time series. In these 

figures, the response is calculated by multiplying the regression coefficient corresponding to a 

specific external forcing by the typical amplitude of the forcing over the considered period. These 

values are then normalised by the average column of the chemical species over the period in 

order to express the so-called sensitivity (or response) to a specific forcing as a column 

percentage change per a typical variation in a specific external forcing (expressed in the forcing 

units).  

 

4.4.1 Total ozone sensitivity  

In the Figures 13a and 13b, the total ozone sensitivities are expressed as a percentage of total 

ozone change for 0.5 ppbv EESC (i.e. combined chlorine and bromine loading) change. Red bar 

charts indicate statistically significant results according to a Student test whereas grey bar charts 

indicate results that are not statistically significant. Errors are indicated with the vertical bars and 

are derived from the errors on regression coefficients that are estimated with a bootstrapping 

method (see section 3). CCMs reproduce generally well the latitude dependency of the total 

ozone column sensitivity derived from the observed ozone time series. The sensitivity is negative 

at middle (-5 to -10% per 0.5 ppbv EESC) and high latitudes (-10 to -15% per 0.5 ppbv EESC), 

peaking at the Antarctic station DDU. Trends in Arctic ozone are much more difficult to estimate 

due to the strong year-to-year variability in meteorological conditions. At Arctic stations, when 



total ozone sensitivities from CCMs differ markedly from observed sensitivities, total ozone 

sensitivities are usually found to be not statistically significant (Student test) either in the 

observations or in the CCMs or even in both. Although CCMs reproduce the broad features seen 

in the observations at mid- and high latitudes, column ozone appears to be more sensitive to 

EESC in the observations than in the CCMs. In the tropics, both CCMs and observations show 

clear positive sensitivities at some stations, possibly related to solar activity. Indeed, tropical 

ozone column is quite sensitive to solar variability, notably the 11-solar cycle. For the period of 

interest (solar cycle 23), solar activity was weak around 2006 and high in 2001-2002 

corresponding to relatively low tropical column ozone abundances in the mid-1990s and 

relatively high values at the beginning of the 2000s. Interestingly, as solar activity, EESC peaked 

in 2002 at high latitudes (WMO, 2011) making likely aliasing between EESC and solar forcing 

proxies during this period. While CCMs and observed ozone sensitivities agree at the tropical 

TAR station, the ozone column appears to be nearly twice as sensitive to EESC in observations 

than in CCMs at the MAU station. These results for tropical ozone appear to differ from the 

results obtained analysing much longer ozone time series (WMO, 2011) with negative tropical 

total ozone trends in CCMs (while EESC was increasing) and not statistically significant trend in 

observations. This confirms that the positive sensitivities found in the tropics in our analysis are 

likely to be artefacts of the MLR via aliasing between the EESC and solar forcing.  

 

The 11-year solar cycle has a clear and direct impact on tropical ozone through radiative and 

chemical processes in the upper stratosphere and through less direct and more complex 

mechanisms involving dynamics, transport and/or chemistry throughout the stratosphere (e.g. see 

review by Gray et al. (2010)). The ozone response to solar variability in a CCM depends on the 

model representations of the relevant solar-driven processes (radiative transfer and 

photochemistry parametrisation) but also of dynamics representation in the tropical lower 

stratosphere and extra-tropical stratosphere. In Figures 13c and 13d, the sensitivity of total ozone 

column to a variation of 100 units solar flux show a clear positive statistically significant 

signature in tropics in both CCMs and observations. The tropical total ozone response to solar 

variations is around +1.5-4.5% per 100 solar flux unit in the observations and +1-4% in CCMs. 

The sensitivity to solar variations is not statistically significant at almost all the middle latitudes 

stations in both CCMs and observations. In polar regions, ozone sensitivities to solar variations 



are of opposite sign in CCMs (negative sensitivity) and observations (positive sensitivity). Our 

results may be compared with other MLR results also obtained with ground based data and CCM 

simulations (Austin et al., 2008), although considering different time periods leads to differences 

in the retrieved solar signal; this point will be discussed later. Analysing both observations and 

CCMs, Austin et al. (2008) found an ozone sensitivity to solar forcing of about +1-2% of the 

annual mean column ozone per 100 F10.7 flux units in the tropics where the errors were the 

smallest and the response was statistically significant. These findings are consistent with our 

results. Away from the tropics, the errors were larger and differences between CCMs were also 

more important. In order to investigate the effect of the length of the time series and of the 

specific time period considered on the MLR results regarding the solar signal, we perform a 

sensitivity study with the long CCMs time series (about 30 years of simulations, from 1974 to 

2006). The results are presented in Figure 14. The modelled column ozone sensitivity to solar 

forcing is plotted as a function of latitude for different time intervals over the 1976-2004 period. 

As expected, when the length of the time series is reduced, solar coefficients become less 

statistically significant and with larger errors, especially in the extra-tropical regions. When 

different periods and lengths are compared, we find large differences in the solar signals. For 

instance, the sensitivity to solar variations is relatively high for the 1990-1999 period and all the 

values are positive and increasing toward the poles. In contrast, the solar signal for the 1999-2004 

period is found to be much weaker between 50°N-50°S than for the other periods and is negative 

and not statistically significant at high latitudes. The main reason for these variations in ozone 

column sensitivity is likely to be aliasing, the fact that forcing indicators that are supposed to be 

independent in MLR may be somewhat correlated over certain periods. For example, aliasing 

between the stratospheric aerosol loading and solar forcing over the recent decades has already 

been clearly established (Solomon et al., 1996). In addition, there can also be aliasing between 

the trend and solar forcing. For instance, when the periods considered covered only one or two 

11-year solar cycles, as it is the case here, the fact of starting and ending the time series at 

different phases of the 11-year solar cycle (minimum versus maximum) may result into some of 

the ozone response to solar forcing appearing as a trend in the MLR. It is likely that only MLR 

analysis on time series of at least several decades can provide robust and reliable estimates of 

ozone column sensitivities to solar variations for monthly mean data, especially at high latitudes 

(see Figure 14). If daily data have been considered, a solar signal could have been extracted from 



much shorter time series because of an important periodicity in the solar activity, the 27-day solar 

rotational cycle (Rozanov et al., 2006; Fioletov, 2009; Bossay et al., 2015).  

Volcanic aerosols impact stratospheric chemical composition through heterogeneous chemistry 

and though interactions with incoming solar radiation that result in changes in actinic fluxes 

(photolysis rates of species), temperature and transport. Total ozone sensitivity to aerosol loading 

changes is plotted in Figure 13e and 13f. The results are not statistically significant at several 

stations. We focus the analysis on the limited number of stations where the results are statistically 

significant in both observations and CCMs (tropical REU, NH mid-latitude OHP and JUN, NH 

high-latitude SOD). At these stations, as expected, column ozone responses to an increase in 

surface aerosol density column of 50 µm².cm
-2

 are negative in CCMs and range from -1 to -2%. 

These modelled values are in relatively good agreement with results for REU observations but 

are smaller than the values derived from observations at mid-latitudes stations (OHP, JUN).  

Column ozone sensitivities to the QBO forcing for observations and CCMs are presented in 

Figure 15. Model results are shown on different plots according to the QBO characteristics of the 

CCMs. Figures 15a and 15b present the results for the multi-model mean (MMM) calculated 

from the mean of the results of all the CCMs. Figures 15c and 15d provide results for CCMs with 

internally generated QBO, Figures 15e and 15f for CCMs with a forced QBO and Figures 15g 

and 15h for CCMs without a QBO. Indeed, most CCMs have problems in simulating 

spontaneously a QBO, partly because of the difficulties in representing a realistic spectrum of 

upward propagating waves in the tropics. As expected, the ozone column response to the QBO 

for all CCMs shows a statistically significant maximum in the tropics and minimum in the 

subtropics. It is somewhat consistent with previous analyses of observations and CCM 

simulations within the framework of the WMO report (WMO, 2011) and CCMVal programme 

(CCMVal, 2010). Outside the tropics, in both hemispheres, the agreement between CCMs and 

observations is generally degraded and is accompanied with an increase in MLR errors and in the 

spread in CCM results (WMO, 2011). The differences between the results of the “all CCMs” case 

and observations rare the most pronounced at SH mid-latitude and at NH high latitude stations 

(Figures 15a and 15b). However, the agreement and the quality of the result are improved when 

only CCMs with an internally generated or forced QBO are considered (Figures 15c to 15f). The 

modelled maxima and minima seem also to be in better agreement with results from observations. 

The negative ozone response found at SH mid-latitudes for the observations is well reproduced 



by CCMs with internally generated QBO (Figures 15c and 15d). As expected, column ozone 

responses in CCMs without QBO do not correlate with ozone responses in observations (Figures 

15g and 15h). 

 

4.4.2 Total N2O, HCl, and NO2 sensitivity  

The trend forcing being the dominant contributor to the forced interannual variability for N2O 

and HCl columns, their sensitivities to a trend forcing are shown in Figures 16a and 16b at 

different stations for CCMs and observations. Keep in mind that the trend forcing proxy T(t) is 

not the same for N2O and HCl (see Section 3). T(t) is constructed using linearly increasing time 

for N2O and, therefore, N2O sensitivities are equivalent to time trends. As stratospheric HCl 

levels are expected to follow the tropospheric chlorine loading with a time lag due to 

stratospheric transport time scales, T(t) is simply inorganic chlorine loading time series.  

Modelled and observational sensitivities for N2O (about +3%) are in agreement at NH high 

latitude stations. In contrast, at middle latitudes, N2O sensitivities (statistically significant for 

both observations and CCMs) are lower in observations than CCMs. CCMs underestimate N2O 

column trends at SH and tropical stations with values around 2%/decade while observed values 

are about 5-6\%/decade in the observations. HCl column sensitivities in observations and CCMs 

(Figure 16b) are somewhat consistent except at 2 stations (MOS and KIR). While the discrepancy 

at KIR station is probably due to the non-statistically significant results found in the observations, 

the negative trend in the observations at MOS which is in complete contradiction with the CCMs 

results is explained by a sharp rupture and shift found in the observational time series due to a 

change of instrument. 

Regarding the NO2sr column, Figure 16c and 16d show only its response to aerosol forcing for 

the different stations due to its dominant role in forced NO2sr variability. There is a good 

agreement between statistically significant results from models and observations at almost all 

stations at middle and high latitudes in both hemispheres with a sensitivity of about -3 or -4% for 

an aerosol column increase of 50 m².cm
-2

 (except at HAR and NYA where the results are found 

to be not statistically significant in the observations). Otherwise, at the other stations, in 



particular, at the tropical stations, there is a lot of scatter in the results. The differences between 

results from CCMs and observations are large and often results are not statistically significant. 

 

5 Summary and conclusions 

The primary aim of the paper is to assess how well CCMs are able to reproduce the effects of key 

external forcings (QBO, ENSO, aerosol loading, solar irradiance and stratospheric halogen 

loading/trend) on stratospheric chemical composition (O3, HCl, ClONO2, N2O, CH4, HNO3 and 

NO2 columns) above specific measurement sites. The measurements sites are part of the global 

NDACC network and cover most of the main latitudinal regions (tropics, midlatitudes, polar 

regions). Because of strong deviations from the zonal mean at mid and high latitude sites, 

modelled chemical composition time series above measurements sites are reconstructed from 3-D 

CCM fields instead of the usual zonal mean fields. Observational and modelled times series are 

processed in exactly the same way in order to make the CCMs and observational results as 

comparable as possible. The relative importance of different sources of variability in stratospheric 

chemical composition is estimated.  

First, we analysed seasonal cycles and variances of the raw and deseasonalized time series. Then, 

by means of multiple linear regressions on deseasonalized time series, the forced and interannual 

components of the variability were estimated. As seasonal variations vastly dominate the intra-

annual variability, we consider that the variability left in the deseasonalized time series is the 

interannual variability. The contributions of individual external forcings to the forced interannual 

variability in modelled and observational time series are also compared.  

CCMs are able to reproduce the broad features of the observed annual cycle in column ozone, 

including deviations from the zonal mean. Because of strong deviations from the zonal mean at 

mid and high latitude sites, modelled chemical composition time series above measurements sites 

are reconstructed from CCMs 3-D fields instead of the usual zonal mean fields. Total variances in 

observational and CCMs ozone column time series are very well correlated and exhibit a clear 

latitudinal dependency with increasing variability with latitude. The interannual variability (after 

seasonal adjustment) in total ozone follows the same behaviour but with reduced amplitudes 

reflecting the major contribution of the seasonal cycle to the total variability. Overall, CCMs tend 

to underestimate slightly the ozone column interannual variability. This model bias is much more 



pronounced when the modelled fields are zonally averaged. The most important external forcings 

for the tropical interannual variability are the QBO and solar variability that are responsible for 

around 20-40% of the interannual variability at the extratropical measurement stations. CCMs 

generally reproduce correctly the latitude dependency of the total column ozone trend derived 

from NDACC observations. As expected, trends are found to be negative at mid and high 

latitudes with a peak at SH high latitudes. In the tropics, O3 trends are found to be positive in both 

observations and CCMs with a varying degree of agreement depending on the station. A 

statistically significant solar signature is found in tropics in both CCMs and observations but the 

solar signature is generally underestimated in CCMs. Note that the solar component results are 

found to be strongly dependent on the length of the data series (Bossay et al., 2015). For both 

observations and CCMs, the amount of variance explained by the aerosol forcing is very variable 

and strongly depends on the period covered by the time series, whether it is background (non-

volcanic) or volcanically active periods. The QBO forcing explains a larger part (10-50%) of the 

interannual variability in tropics than in other regions (5-15%) in both observations and CCMs. 

Regarding long-lived species (chemical tracers), the seasonal cycle in N2O column is better 

reproduced by CCMs than the seasonal cycle of CH4 column which is found to be too flat in 

CCMs compared to observations. CCMs underestimate the total variability as well as the 

interannual variability of long-lived species. The interannual variability in CCMs is almost 

entirely explained by external forcings (mainly trend terms) while the forced variability 

represents only around 20-45% of the interannual variability in observations. This very 

significant underestimation of the internal variability of long-lived species suggests that the 

amount of internal variability in transport and hence stratospheric general circulation is not 

entirely reproduced in CCMs.  

Generally, CCMs reproduce reasonably well the features of the seasonal cycle in total NO2 

column even if they tend to overestimate the summer maximum, especially in polar regions. In 

contrast to other species, the total variability of the NO2 column tends to be overestimated in 

CCMs, especially at high latitude, even after seasonal adjustment. It is certainly related to the use 

of NO2sr/NO2 ratio from a CTM when reconstructing sunrise NO2 (NO2sr) column from CCMs 

NO2 daily mean fields which generates some spurious variability. CCMs tend to overestimate the 

contributions of external forcing to the NO2sr interannual variability, especially at high latitudes. 

It is mostly due to an overestimation of the NO2 column response to the aerosol forcing. CCMs 



underestimate the interannual variability of HCl column, especially in the NH. Again, the fraction 

of interannual variability explained by external forcings is generally overestimated in CCMs. It is 

largely due to an underestimation of the internal variability in CCMs. The results show a clear 

dominance of the trend term in the HCl column interannual variability. 

Overall, the results of this study demonstrate that long time series of ground-based measurements 

are very useful in the evaluation of CCMs, notably the different components of the interannual 

variability of stratospheric composition. Although CCMs reproduce reasonably well seasonal 

cycles, they tend to underestimate very substantially the total interannual variability. They are 

able to simulate most of the externally forced variability and even specific responses to individual 

external forcings. However, the analysis of observational time series shows that the internally 

generated variability represents a very large fraction of the interannual variability and CCMs 

vastly underestimate this internal variability. As a result, the forcings appear to be responsible of 

much larger fractions of the total interannual variability in CCMs than in observations. This lack 

of internal variability in CCMs might partly originate from the surface forcing of CCMs by 

analysed SSTs which may be dampening the variability. It would be interesting to carry out 

similar simulations with CCMs coupled to ocean models and use the same methodology to 

analyse the different components of the interannual variability. The results show that some of the 

model evaluation within the framework of on-going joint IGAC/SPARC Chemistry-Climate 

Model Initiative (CCMI) programme (http://www.met.reading.ac.uk/ccmi/) can be carried out 

successfully using long time series of ground based observations. However, in order to take 

advantage of all the potential of NDACC data, CCM modelling groups should provide 3-D 

outputs (T3M) of more NDACC chemical species, notably ClONO2 and HNO3 in order to test the 

model chlorine and nitrogen partitioning.    
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Figure 1: Seasonal cycles of ozone column (DU) at 6 stations. The black thick line corresponds to 

the NDACC mean seasonal cycle and its 1 standard deviations, indicated as grey areas, represent 

the inter-annual variability in the NDACC time series. The red thick line corresponds to the 

MMM seasonal cycle for 7 models (AMTRAC3, CAM3.5, CCSRNIES, CMAM, LMDZrepro, 

SOCOL, ULAQ); each red thin lines corresponding to the mean seasonal cycle of a single 

individual model simulation and the two dashed red bold lines represent the model dispersion 

(i.e. model-to-model variations) estimated as standard deviation in the MMM calculation. 

Naturally, NDACC standard deviations (i.e. inter-annual variations) cannot be compared to 

model dispersion shown here.   

 



  



 

Figure 2: Same as figure 1 but for (left) CH4 (10
19

 molec.cm
-2

) and (right) N2O column (10
18

 

molec.cm
-2

) at 4 stations for 5 models (CCSRNIES, CMAM, LMDZrepro, SOCOL, ULAQ).  

 

 

  



Figure 3: Same as figure 1 but for sunrise NO2 (NO2sr) column (10
15

 molec.cm
-2

) at 6 stations for 

3 models (CCSRNIES, CMAM, LMDZrepro). 

  



Figure 4: Same as figure 1 but for HCl column (10
15

 molec.cm
-2

)
 
at 7 stations for 4 models 

(CCSRNIES, CMAM, LMDZrepro, SOCOL).  

 

  



Figure 5: NDACC standard deviation as a 

function of MMM standard deviation for ozone 

column time series at 18 stations (see Table 1). 

NDACC and MMM standard deviations 

correspond to inter-annual variations. MMM 

standard deviations are derived from the 

average of the variances from the 7 individual 

model simulations and, as such, represent an 

estimation of the model inter-annual 

variability. (a) MMM standard deviations 

calculated from column time series taken from 

3-D CCMs outputs, (b) MMM standard 

deviations calculated from deseasonalized 

column time series taken from 3-D CCMs 

outputs and (c) standard deviation from 

deseasonalized column time series taken from 

zonally averaged CCMs outputs. Colour 

coding is red for southern hemisphere (SH) 

high latitude stations, light green for SH 

middle latitude stations, deep green for 

northern hemisphere (NH) middle latitude 

stations, purple for NH high latitude stations 

and blue for tropical stations. In contrast to 

figures 1 to 4, both NDACC and MMM 

standard deviations represent inter-annual 

variations and hence can be compared directly.   

 

  



Figure 6: Same as figure 5 but for N2O column at 4 stations. 

  



Figure 7: Same as figure 5 but for NO2sr column at 17 stations. 

  



 

Figure 8: Same as figure 5 but for HCl column at 7 stations. 

  



 Figure 9: (top) R² from NDACC data as a function of R² from model calculations for ozone 

column time series at 18 stations; R² represents the ratio of the variance accounted for by the 

MLR model to the total variance. (middle, 

bottom) Contributions of individual external 

forcings to the ozone column total variance 

explained by the MLR model for different 

stations. Colour coding is yellow for trend 

forcing, red for solar forcing, light blue for QBO 

forcing, dark blue for aerosol loading forcing and 

green for ENSO. Filled areas correspond positive 

fractions of variance explained by explanatory 

variable and hatched areas correspond to 

negative fraction of variance explained by 

explanatory variable.  

 

 

  



Figure 10: Same as figure 9 but for N2O column at 4 stations. 
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Figure 11: Same as figure 9 but for NO2sr column at 17 stations. 
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Figure 12: Same as figure 9 but for HCl 

column at 7 stations. 
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Figure 13:  (a) and (b) Ozone column sensitivity to EESC (expressed as % change in ozone 

column per 0.5 ppbv change in EESC) at 18 stations for NDACC and MMM; (c) and (d) idem 

but for ozone column sensitivity to the solar forcing (expressed as % change in ozone column 

per change of 100 units of F10.7 flux); (e) and (f) idem but for ozone column sensitivity to the 

aerosol forcing (expressed as % change in ozone column per change of 50 µm².cm
-2

 in surface 

aerosol density column). Observed (O) and MMM results are next to each other for each 

station. Red indicates statistically significant results whereas grey indicates results that are not 

statistically significant. Regression errors are indicated with thick black vertical bars. MMM 

sensitivities and errors are calculated as an average of the 7 individual model regression 

coefficients and of associated regression errors.  
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 Figure 14: O3 column sensitivity to solar forcing (expressed as O3 column % change per 100 

unit flux change) as a function of latitude for different periods. The periods of CCM 

simulations considered for MLR analysis are: 1976-2004 (black), 1990-2004 (blue), 1990-

1999 (yellow), 1995-2004 (green), and 1999-2004 (red). Vertical bars denote the errors on 

regression coefficients. Circles indicate the statistically significant coefficients and the crosses 

are for coefficients that are not statistically significant.  
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Figure 15:  O3 column sensitivity to the QBO forcing (expressed as O3 column % change per 

m.s
-1

 change in tropical zonal winds) for: (a) and (b) all the CCMs, (c) and (d) CCMs with 

internally generated QBO, (e) and (f) CCMs with a forced QBO and (g) and (h) CCMs 

without a QBO. Observed (O) and modelled (MM) results are next to each other for each 

station. Red 

indicates 

statistically 

significant 

results whereas 

grey indicates 

results that are 

not statistically 

significant. 

Errors are 

indicated with 

vertical bars. 
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Figure 16: (a) N2O column trend (expressed as % change per decade); (b) HCl column 

sensitivity to total chlorine loading (expressed as % change in HCl column per 65 pptv 

change in total chlorine loading); (c) and (d) sunrise NO2 column sensitivity to aerosol forcing 

(expressed as % change in NO2 column per change of 50 µm².cm
-2

 in surface aerosol density 

column). Observed (O) and multi-model modelled mean (MM) results are next to each other 

for each station. Red indicates statistically significant results whereas grey indicates results 

that are not statistically significant. Errors are indicated with the vertical bars. 
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Table 1: Station used here, with location, abbreviation, instrument and period. 
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Stations Location Abbreviation  Instrument Species Period 

Nyalesund 79°N-12°E NYA SAOZ O3, NO2 1991-2004 

Scoresbysund 70°N-22°W SCO SAOZ 

SAOZ 

O3 

NO2 

1994-2004 

1992-2004 

Kiruna 68°N-20°E KIR SAOZ 

FT-IR 

NO2 

O3, HCl, CH4, N2O 

1991-2004 

1996-2004 

Sodankyla 67°N-27°E SOD SAOZ O3, NO2 1990-2004 

Zhigansk 67°N-123°E ZHI SAOZ 

SAOZ 

O3 

NO2 

1994-2004 

1992-2004 

Harestua 60°N-11°E HAR SAOZ 

FT-IR 

NO2 

O3, HCl, CH4, N2O 

1995-2004 

1995-2004 

Zugspit 47°N-11°E ZUG FT-IR O3 1996-2004 

Jungfrajoch 46°N-8°E JUN SAOZ 

SAOZ 

FT-IR 

O3 

NO2 

HCl 

1991-2004 

1996-2004 

1990-2004 

Observatoire de 

Haute Provence  

44°N-6°E OHP SAOZ 

SAOZ 

O3  

NO2 

1993-2004 

1992-2004 

Moshiri 44°N-142°E MOS FT-IR 

SAOZ 

O3, HCl, 

NO2 

1996-2001 

1991-2004 

Mauna Loa 20°N-156°W MAU FT-IR 

SAOZ 

O3, HCl 

NO2 

1992-2001 

1996-2004 

Tarawa 1°N-173°E TAR SAOZ 

SAOZ 

O3 

NO2 

1992-1999 

1993-1999 

La Réunion 21°S-55°E REU SAOZ O3, NO2 1994-2004 

Bauru 22°S-49°W BAU SAOZ O3, NO2 1996-2004 

Wollongong 34°S-151°E WOL FT-IR 

FT-IR 

O3, HCl, N2O 

CH4 

1995-2004 

2003-2004 
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Lauder 45°S-170°E LAU FT-IR 

FT-IR 

FT-IR 

SAOZ 

O3 

HCl 

CH4 and N2O 

NO2 

1994-2004 

1991-2004 

2001-2004 

1982-2004 

Kerguelen 49°S-70°E KER SAOZ O3, NO2 1996-2004 

Dumont 

d'Urville 

67°S-140°E DDU SAOZ O3, NO2 1988-2004 

Arrival Heights 78S-167E ARR SAOZ NO2 1991-2004 



 61 

Table 2: Models used here, with institution, horizontal and vertical resolutions, top level 

pressure, some main parameterizations, chemical species with T3M outputs, and references. 

 

Chemistry-

Climate 

Models 

Institution Horizontal 

Resolution, 

number of 

levels, top 

level 

QBO Solar 

varia

bility 

Aerosol 

heating rate 

Species 

output in 

T3M 

References 

AMATRA

C3 

NOAA, US ~200 km, 

L48, 

0.017 hPa 

Yes Yes GISS data O3 Austin and 

Wilson 

(2006) 

CAM3.5 NCAR, US 1.9°x2.5°, 

L26, 

3.5 hPa 

Forced Yes No O3 Lamarque 

et al. 

(2008) 

CCSRNIES NIES, Japan T42,  

L34, 

0.0012 hPa 

Forced Yes GISS data O3, N2O, 

CH4, NO2 

and HCl 

Akiyoshi et 

al. (2009) 

CMAM  Environment 

Canada 

T31,  

L71, 

0.00081 

hPa 

No Yes SAD data  O3, N2O, 

CH4, NO2 

and HCl 

Scinocca et 

al. (2008) 

LMDz-

REPOBUS 

IPSL, France 2.5°x2.5°, 

L50, 

0.07 hPa 

No Yes No O3, N2O, 

CH4, NO2 

and HCl 

Jourdain et 

al. (2008) 

SOCOL PMOD/WRC, 

Switzerland 

T30,  

L39, 

0.01 hPa 

Forced Yes Mix 

sources 

O3, N2O, 

CH4 and 

HCl 

Schraner et 

al. (2008) 

ULAQ University of 

Aquila, Italy 

R6,  

L26, 

Forced No Volcanic 

injections 

of SO2 and 

O3, N2O 

and CH4 

Pitari et al. 

(2002) 
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0.04 hPa 
aerosol 

calculation 

 

 

 

Highlights 

 Variability in stratospheric composition evaluated in models and NDACC observations. 

 Models reproduce the externally forced inter-annual variability seen in NDACC data. 

 But models vastly underestimate the internal and hence total inter-annual variability. 

 




