
HAL Id: hal-01310534
https://hal.sorbonne-universite.fr/hal-01310534

Submitted on 2 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dendritic cell–derived exosomes for cancer therapy
Jonathan M. Pitt, Fabrice André, Sebastian Amigorena, Jean-Charles Soria,

Alexander Eggermont, Guido Kroemer, Laurence Zitvogel

To cite this version:
Jonathan M. Pitt, Fabrice André, Sebastian Amigorena, Jean-Charles Soria, Alexander Eggermont,
et al.. Dendritic cell–derived exosomes for cancer therapy. Journal of Clinical Investigation, 2016, 126
(4), pp.1224-1232. �10.1172/JCI81137�. �hal-01310534�

https://hal.sorbonne-universite.fr/hal-01310534
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


The Journal of Clinical Investigation   

1 2 2 4 jci.org   Volume 126   Number 4   April 2016

R e v i e w  S e R i e S :  e x t R a c e l l u l a R  v e S i c l e S 
Series Editor: Laurence Zitvogel

Introduction
As the sentinel antigen-presenting cells (APCs) of the immune sys-
tem, DCs play a central role in initiating antigen-specific immu-
nity and tolerance (1). In cancer, DCs act as the initial link between 
oncogenesis and the host immune system, the first step of a can-
cer/immunity cycle that aims to eliminate cancer cells through the 
activation of T cells (2). Tumor-proximal DCs can capture neoan-
tigens created and released during oncogenesis, which the DCs 
subsequently process and present to cognate T cells to generate 
antitumor T cell responses. However, such T cell responses can 
only be generated if certain additional conditions are met in the 
local environment (2). These conditions consist of locally pres-
ent immunogenic signals, such as proinflammatory cytokines, 
danger-associated molecular patterns (DAMPs), or pathogen- 
associated molecular patterns (PAMPs). Such signals trigger DCs 
to present captured tumor-associated antigens (TAAs) via MHC 
class I (MHC-I) and MHC-II molecules to T cells in cooperation 
with costimulatory molecules such as CD80 and CD86, resulting 
in the priming and activation of TAA-specific effector T cells.

Therapies harnessing these properties of DCs to generate 
immune responses against tumors have great potential, though 
clinical progress of this application remains in its infancy. One nota-
ble exception is the success of the immunotherapy sipuleucel-T 
for early-stage, hormone-refractory prostate cancer. Sipuleucel-T 
is composed of autologous peripheral blood mononuclear cells 
(PBMCs) including APCs (such as DCs and their precursors) that 
have been stimulated ex vivo with a fusion protein consisting of 
the cytokine granulocyte macrophage colony-stimulating factor 

(GM-CSF), which drives DC differentiation and activation, com-
bined with a prostate antigen (3). Nonetheless, DC-based immuno-
therapy is challenging to practice in clinical settings. Implementing 
such therapies across large populations is costly, requires dedicated 
expertise, and requires monitoring of well-defined quality control 
parameters. Furthermore, it is difficult to store DCs over long peri-
ods of time while maintaining their efficacy (4).

The use of DC-derived exosomes (Dex) has been heralded 
as a solution to many of the technical challenges associated with 
DC-based immunotherapy (see Table 1) because they maintain 
the essential immunostimulatory faculties of DCs (e.g., sharing 
the ability to present antigens to T cells), while the stable nature 
of exosomal membranes allows their frozen storage for at least  
6 months (5). As biologics, Dex are also more amenable to a strictly 
regulated and monitored manufacturing process (e.g., their com-
position and MHC-I and MHC-II content can be easily defined), 
and they lack the risks associated with viable cellular or viral ther-
apies such as the risk of in vivo replication (6). Finally, treatment 
with cell-free Dex may be more resistant to immunomodulatory 
events that occur in tumors than other anticancer vaccines; such 
events can downregulate costimulatory molecules on DCs and 
impede stimulation of T cell responses (7).

As discussed in detail in other sections of this review series, 
DCs are one of the many cell types able to secrete membrane ves-
icles, such as exosomes, into the extracellular environment. This 
manner of signaling can modulate recipient cells, such as immune 
cells or cancer cells, to a level beyond classical ligand/receptor 
signaling pathways and can create complex cellular modifica-
tions that may play a substantial role in how tumor development 
or immune responses proceed. Moreover, detection of circulating, 
cancer cell–derived exosomes can serve as a noninvasive diagnos-
tic and screening tool to detect early stages of cancer, facilitating 

DC-derived exosomes (Dex) are nanometer-sized membrane vesicles that are secreted by the sentinel antigen-presenting 
cells of the immune system: DCs. Like DCs, the molecular composition of Dex includes surface expression of functional 
MHC-peptide complexes, costimulatory molecules, and other components that interact with immune cells. Dex have the 
potential to facilitate immune cell–dependent tumor rejection and have distinct advantages over cell-based immunotherapies 
involving DCs. Accordingly, Dex-based phase I and II clinical trials have been conducted in advanced malignancies, showing 
the feasibility and safety of the approach, as well as the propensity of these nanovesicles to mediate T and NK cell–based 
immune responses in patients. This Review will evaluate the interactions of Dex with immune cells, their clinical progress, and 
the future of Dex immunotherapy for cancer.
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