M. Mcfall-ngai, M. Hadfield, T. Bosch, H. Carey, T. Domazet-loso et al., Animals in a bacterial world, a new imperative for the life sciences, Proceedings of the National Academy of Sciences, vol.110, issue.9, pp.3229-3236
DOI : 10.1073/pnas.1218525110

URL : https://hal.archives-ouvertes.fr/hal-00972300

S. Gilbert, J. Sapp, and A. Tauber, A Symbiotic View of Life: We Have Never Been Individuals, The Quarterly Review of Biology, vol.87, issue.4, pp.325-341, 2012.
DOI : 10.1086/668166

D. Clayton and J. Moore, Host-Parasite Evolution: General Principles and Avian Models, 1997.

C. Stevens and I. Hume, Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients, Physiol Rev, vol.78, pp.393-427, 1998.

M. Davis, D. Brown, A. Baker, K. Bos, M. Dirain et al., Effect of direct-fed microbial and antibiotic supplementation on gastrointestinal microflora, mucin histochemical characterization, and immune populations of weanling pigs, Livestock Science, vol.108, issue.1-3, pp.249-253, 2007.
DOI : 10.1016/j.livsci.2007.01.063

C. Kuehl, H. Wood, and T. Marsh, Colonization of the Cecal Mucosa by Helicobacter hepaticus Impacts the Diversity of the Indigenous Microbiota, Infection and Immunity, vol.73, issue.10, pp.6952-6961, 2005.
DOI : 10.1128/IAI.73.10.6852-6961.2005

R. Dillon, C. Vennard, A. Buckling, and A. Charnley, Diversity of locust gut bacteria protects against pathogen invasion, Ecology Letters, vol.105, issue.12, pp.1291-1298, 2005.
DOI : 10.1073/pnas.082461999

X. Morgan, N. Segata, and C. Huttenhower, Biodiversity and functional genomics in the human microbiome, Trends in Genetics, vol.29, issue.1, pp.51-58, 2013.
DOI : 10.1016/j.tig.2012.09.005

A. Macpherson and N. Harris, Opinion: Interactions between commensal intestinal bacteria and the immune system, Nature Reviews Immunology, vol.169, issue.6, pp.478-485, 2004.
DOI : 10.1038/nm0602-625

R. Ley, C. Lozupone, M. Hamady, R. Knight, and I. Jeffrey, Worlds within worlds: evolution of the vertebrate gut microbiota, Nature Reviews Microbiology, vol.9, issue.10, pp.776-788, 2009.
DOI : 10.1074/mcp.T600022-MCP200

G. Sharon, D. Segal, J. Ringo, A. Hefetz, I. Zilber-rosenberg et al., Commensal bacteria play a role in mating preference of Drosophila melanogaster, Proceedings of the National Academy of Sciences, vol.107, issue.46, pp.20051-20056, 2010.
DOI : 10.1073/pnas.1009906107

V. Ezenwa, N. Gerardo, D. Inouye, M. Medina, and J. Xavier, Animal Behavior and the Microbiome, Science, vol.338, issue.6104, pp.198-199, 2012.
DOI : 10.1126/science.1227412

Z. Hubalek, AN ANNOTATED CHECKLIST OF PATHOGENIC MICROORGANISMS ASSOCIATED WITH MIGRATORY BIRDS, Journal of Wildlife Diseases, vol.40, issue.4, pp.639-659, 2004.
DOI : 10.7589/0090-3558-40.4.639

J. Burtt and J. Ichida, Occurrence of Feather-Degrading Bacilli in the Plumage of Birds, The Auk, vol.116, issue.2, pp.364-372, 1999.
DOI : 10.2307/4089371

G. Goldstein, K. Flory, B. Browne, and S. Majid, BACTERIAL DEGRADATION OF BLACK AND WHITE FEATHERS, The Auk, vol.121, issue.3, pp.656-659, 2004.
DOI : 10.1642/0004-8038(2004)121[0656:BDOBAW]2.0.CO;2

M. Shawkey, S. Pillai, G. Hill, L. Siefferman, and S. Roberts, Bacteria as an Agent for Change in Structural Plumage Color: Correlational and Experimental Evidence, The American Naturalist, vol.169, issue.S1, pp.112-121, 2007.
DOI : 10.1086/510100

A. Gunderson, FEATHER-DEGRADING BACTERIA: A NEW FRONTIER IN AVIAN AND HOST???PARASITE RESEARCH?, The Auk, vol.125, issue.4, pp.972-979, 2008.
DOI : 10.1525/auk.2008.91008

K. Faust, J. Sathirapongsasuti, J. Izard, N. Segata, D. Gevers et al., Microbial Co-occurrence Relationships in the Human Microbiome, PLoS Computational Biology, vol.22, issue.7, p.1002606, 2012.
DOI : 10.1371/journal.pcbi.1002606.s013

J. Soler, M. Martín-vivaldi, J. Peralta-sánchez, M. Ruiz-rodríguez, and M. Ruiz, Antibiotic-Producing Bacteria as a Possible Defence of Birds against Pathogenic Microorganisms, The Open Ornithology Journal, vol.3, issue.1, pp.29-36, 2010.
DOI : 10.2174/1874453201003010093

M. Shawkey, S. Pillai, and G. Hill, Chemical warfare? Effects of uropygial oil on feather-degrading bacteria, Journal of Avian Biology, vol.33, issue.4, pp.345-349, 2003.
DOI : 10.1111/j.0908-8857.2003.03193.x

A. Møller, G. Czirjak, and P. Heeb, Feather micro-organisms and uropygial antimicrobial defences in a colonial passerine bird, Functional Ecology, vol.6, issue.6, pp.1097-1102, 2009.
DOI : 10.1111/j.1365-2435.2009.01594.x

B. Moyer, A. Rock, and D. Clayton, EXPERIMENTAL TEST OF THE IMPORTANCE OF PREEN OIL IN ROCK DOVES (COLUMBA LIVIA), The Auk, vol.120, issue.2, pp.490-496, 2003.
DOI : 10.1642/0004-8038(2003)120[0490:ETOTIO]2.0.CO;2

O. Vincze, C. Vágási, I. Kovács, I. Galván, and P. Pap, Sources of variation in uropygial gland size in European birds, Biological Journal of the Linnean Society, vol.110, issue.3, pp.543-563, 2013.
DOI : 10.1111/bij.12139

J. Soler, J. Peralta-sánchez, M. Martín-platero-a, M. Martín-vivaldi, and M. Martínez-bueno, The evolution of size of the uropygial gland: mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds, Journal of Evolutionary Biology, vol.92, issue.9, pp.1779-1791, 2012.
DOI : 10.1111/j.1420-9101.2012.02561.x

G. Czirják, P. Pap, C. Vagasi, M. Giraudeau, C. Murean et al., Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria, Naturwissenschaften, vol.13, issue.2, pp.145-151, 2013.
DOI : 10.1007/s00114-012-1005-2

M. Ruiz-rodríguez, E. Valdivia, J. Soler, M. Martín-vivaldi, M. Martín-platero-a et al., Symbiotic bacteria living in the hoopoe's uropygial gland prevent feather degradation, Journal of Experimental Biology, vol.212, issue.22, pp.2123621-3626, 2009.
DOI : 10.1242/jeb.031336

F. Lucas, B. Moureau, V. Jourdie, and P. Heeb, Brood size modifications affect plumage bacterial assemblages of European starlings, Molecular Ecology, vol.25, issue.319, pp.639-646, 2005.
DOI : 10.1111/j.1365-294X.2005.02436.x

URL : https://hal.archives-ouvertes.fr/hal-00814496

F. Lucas and P. Heeb, Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings, Journal of Avian Biology, vol.102, issue.0, pp.510-516, 2005.
DOI : 10.1080/089106001750462669

URL : https://hal.archives-ouvertes.fr/hal-00103451

P. Kilgas, P. Saag, M. Mägi, V. Tilgar, and R. Mänd, Plumage bacterial load increases during nest-building in a passerine bird, Journal of Ornithology, vol.64, issue.3, pp.833-838, 2012.
DOI : 10.1007/s10336-011-0801-3

C. Harvell, The Ecology and Evolution of Inducible Defenses, The Quarterly Review of Biology, vol.65, issue.3, pp.323-340, 1990.
DOI : 10.1086/416841

R. Piault, J. Gasparini, P. Bize, M. Paulet, and K. Mcgraw, Roulin A: Experimental support for the makeup hypothesis in nestling tawny owls

J. Reneerkens, T. Piersma, and J. Damsté, Switch to diester preen waxes may reduce avian nest predation by mammalian predators using olfactory cues, Journal of Experimental Biology, vol.208, issue.22, pp.4199-4202, 2005.
DOI : 10.1242/jeb.01872

M. Martín-vivaldi, M. Ruiz-rodríguez, J. Soler, J. Peralta-sánchez, M. Méndez et al., Seasonal, sexual and developmental differences in hoopoe Upupa epops preen gland morphology and secretions: evidence for a role of bacteria, Journal of Avian Biology, vol.121, issue.2, pp.191-205, 2009.
DOI : 10.1111/j.1600-048X.2009.04393.x

D. Whittaker, H. Soini, N. Gerlach, A. Posto, M. Novotny et al., Role of Testosterone in Stimulating Seasonal Changes in a Potential Avian Chemosignal, Journal of Chemical Ecology, vol.64, issue.12, pp.1349-1357, 2011.
DOI : 10.1007/s10886-011-0050-1

M. Giraudeau, G. Czirják, C. Duval, V. Bretagnolle, C. Gutierrez et al., Effect of preen oil on plumage bacteria: An experimental test with the mallard, Behavioural Processes, vol.92, pp.1-5, 2012.
DOI : 10.1016/j.beproc.2012.08.001

URL : https://hal.archives-ouvertes.fr/hal-00735662

B. Tschirren, P. Fitze, and H. Richner, Sexual dimorphism in susceptibility to parasites and cell-mediated immunity in great tit nestlings, Journal of Animal Ecology, vol.179, issue.5, pp.839-845, 2003.
DOI : 10.1016/S0020-7519(96)00086-0

P. Pap, G. Czirják, C. Vágási, Z. Barta, and D. Hasselquist, Sexual dimorphism in immune function changes during the annual cycle in house sparrows, Naturwissenschaften, vol.26, issue.10, pp.891-901, 2010.
DOI : 10.1007/s00114-010-0706-7

L. Harris, H. Fleming, and T. Klaenhammer, Developments in nisin research, Food Research International, vol.25, issue.1, pp.57-66, 1992.
DOI : 10.1016/0963-9969(92)90026-2

T. Economou, N. Pournis, A. Ntzimani, and I. Savvaidis, Nisin???EDTA treatments and modified atmosphere packaging to increase fresh chicken meat shelf-life, Food Chemistry, vol.114, issue.4, pp.1470-1476, 2009.
DOI : 10.1016/j.foodchem.2008.11.036

J. Wang, M. Firestone, and S. Beissinger, Microbial and environmental effects on avian egg viability: Do tropical mechanisms act in a temperate environment?, Ecology, vol.92, issue.5, pp.1137-1145, 2011.
DOI : 10.2307/1368537

M. Cook, S. Beissinger, G. Toranzos, and W. Arendt, Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection, Ecology Letters, vol.89, issue.5, pp.532-537, 2005.
DOI : 10.1111/j.1461-0248.2005.00748.x

I. Galván and J. Sanz, Feather mite abundance increases with uropygial gland size and plumage yellowness in Great Tits Parus major, Ibis, vol.78, issue.4, pp.687-697, 1859.
DOI : 10.1111/j.1474-919X.2006.00576.x

S. Leclaire, T. Merkling, C. Raynaud, H. Mulard, J. Bessière et al., Semiochemical compounds of preen secretion reflect genetic make-up in a seabird species, Proceedings of the Royal Society B: Biological Sciences, vol.297, issue.1, pp.1185-1193, 2012.
DOI : 10.1152/ajpendo.90898.2008

G. Czirják, A. Møller, T. Mousseau, and P. Heeb, Microorganisms Associated with Feathers of Barn Swallows in Radioactively Contaminated Areas Around Chernobyl, Microbial Ecology, vol.104, issue.2, pp.373-380, 2010.
DOI : 10.1007/s00248-010-9716-4

L. Ranjard, E. Brothier, and S. Nazaret, Sequencing Bands of Ribosomal Intergenic Spacer Analysis Fingerprints for Characterization and Microscale Distribution of Soil Bacterium Populations Responding to Mercury Spiking, Applied and Environmental Microbiology, vol.66, issue.12, pp.5334-5339, 2000.
DOI : 10.1128/AEM.66.12.5334-5339.2000

A. Ramette, Quantitative Community Fingerprinting Methods for Estimating the Abundance of Operational Taxonomic Units in Natural Microbial Communities, Applied and Environmental Microbiology, vol.75, issue.8, pp.2495-2505, 2009.
DOI : 10.1128/AEM.02409-08

M. Anderson, A new method for non-parametric multivariate analysis of variance, Austral Ecology, vol.24, issue.1, pp.32-46, 2001.
DOI : 10.1016/0022-0981(93)90098-9

A. Schulte-hostedde, B. Zinner, J. Millar, and G. Hickling, RESTITUTION OF MASS???SIZE RESIDUALS: VALIDATING BODY CONDITION INDICES, Ecology, vol.86, issue.1, pp.155-163, 2005.
DOI : 10.2307/1383292

P. Saag, V. Tilgar, R. Mänd, P. Kilgas, and M. Mägi, Plumage Bacterial Assemblages in a Breeding Wild Passerine: Relationships with Ecological Factors and Body Condition, Microbial Ecology, vol.69, issue.4, pp.740-749, 2011.
DOI : 10.1007/s00248-010-9789-0

I. Galván, E. Barba, R. Piculo, J. Cantó, V. Cortés et al., Feather mites and birds: an interaction mediated by uropygial gland size?, Journal of Evolutionary Biology, vol.1, issue.0, pp.133-144, 2008.
DOI : 10.1642/0004-8038(2004)121[0435:EVIFWO]2.0.CO;2

A. Martín-platero, E. Valdivia, M. Ruíz-rodríguez, J. Soler, M. Martín-vivaldi et al., Characterization of Antimicrobial Substances Produced by Enterococcus faecalis MRR 10-3, Isolated from the Uropygial Gland of the Hoopoe (Upupa epops), Applied and Environmental Microbiology, vol.72, issue.6, pp.4245-4249, 2006.
DOI : 10.1128/AEM.02940-05

M. Martín-vivaldi, A. Peña, J. Peralta-sánchez, L. Sánchez, S. Ananou et al., Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria, Proceedings of the Royal Society B: Biological Sciences, vol.143, issue.2, pp.123-130, 2010.
DOI : 10.1007/s10886-006-9210-0

J. Soler, M. Martín-vivaldi, M. Ruiz-rodríguez, E. Valdivia, M. Martín-platero-a et al., Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland, Functional Ecology, vol.18, issue.5, pp.864-871, 2008.
DOI : 10.1111/j.1365-2435.2008.01448.x

D. Whittaker, H. Soini, J. Atwell, C. Hollars, M. Novotny et al., Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations, Behavioral Ecology, vol.21, issue.3, pp.608-614, 2010.
DOI : 10.1093/beheco/arq033

J. Reneerkens, T. Piersma, S. Damsté, and J. , Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why?, Proceedings of the Royal Society B: Biological Sciences, vol.269, issue.1505, pp.2135-2139, 2002.
DOI : 10.1098/rspb.2002.2132

S. Leclaire, T. Merkling, C. Raynaud, G. Giacinti, J. Bessière et al., An individual and a sex odor signature in kittiwakes? Study of the semiochemical composition of preen secretion and preen down feathers, Naturwissenschaften, vol.34, issue.7, pp.615-624, 2011.
DOI : 10.1007/s00114-011-0809-9

W. Shelley, H. Hurly, and A. Nichols, AXILLARY ODOR, A.M.A. Archives of Dermatology and Syphilology, vol.68, issue.4, p.430, 1953.
DOI : 10.1001/archderm.1953.01540100070012

K. Ara, M. Hama, S. Akiba, K. Koike, K. Okisaka et al., Foot odor due to microbial metabolism and its control, Canadian Journal of Microbiology, vol.52, issue.4, pp.357-364, 2006.
DOI : 10.1139/w05-130

C. Currie, J. Scott, R. Summerbell, and D. Malloch, corrigendum: Fungus-growing ants use antibiotic-producing bacteria to control garden parasites, Nature, vol.423, issue.6938, pp.701-704, 1999.
DOI : 10.1038/nature01563

S. Kulkarni and P. Heeb, Social and sexual behaviours aid transmission of bacteria in birds, Behavioural Processes, vol.74, issue.1, pp.88-92, 2007.
DOI : 10.1016/j.beproc.2006.10.005

URL : https://hal.archives-ouvertes.fr/hal-00356612

A. Møller, J. Erritzøe, T. Nielsen, and J. , Predators and microorganisms of prey: goshawks prefer prey with small uropygial glands, Functional Ecology, vol.68, issue.3, pp.608-613, 2010.
DOI : 10.1111/j.1365-2435.2009.01671.x

K. Kohl, Diversity and function of the avian gut microbiota, Journal of Comparative Physiology B, vol.68, issue.Suppl, pp.591-602
DOI : 10.1007/s00360-012-0645-z

J. Potti, J. Moreno, P. Yorio, V. Briones, P. Garcia-borboroglu et al., Bacteria divert resources from growth for magellanic penguin chicks, Ecology Letters, vol.151, issue.6, pp.709-714, 2002.
DOI : 10.1046/j.1461-0248.2002.00375.x

S. Jacob, A. Immer, S. Leclaire, N. Parthuisot, C. Ducamp et al., Data from: Uropygial gland size and composition varies according to experimentally modified microbiome in Great tits