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Abstract

In most works in the current literature about liquid/solid adsorption kinetics, the respec-
tive abilities of pseudo-first order and pseudo-second kinetics for describing the data are
compared. In nearly all cases, it is concluded that the latter surpasses the former. The
aim of this work is to point out that more caution should be exercised in this comparison.
Indeed, it appears that the method generally used is flawed and that it unfairly favors
pseudo-second order kinetics. A different method is proposed to analyze experimental
results. It is employed here to reexamine experimental data taken from the literature.
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1. Introduction

Adsorption by various materials is often studied as a potential tool for the purification
of water and industrial effluents. In general, works in this field report experimental
results about the adsorption capacity of solutes at equilibrium, and about the kinetics of
adsorption. The data are then described using various models or empirical formulas.

In the literature, two types of equations have been commonly used to represent the
kinetics. The first one, which corresponds to a diffusion-controlled process, is the intra-
particle diffusion equation [1, 2, 3, 4, 5], together with more elaborate treatments proposed
recently [6]. The second one assumes that the process is controlled by the adsorption re-
action at the liquid/solid interface in the adsorbent. An excellent review about slow
adsorption (and desorption) is available in the literature [7].

Two types of kinetics are generally used and compared, namely the pseudo-first order
and pseudo-second order rate laws. Pseudo-first order kinetics (hereafter denoted by K11)
was first proposed at the end of the 19th century by Lagergren [8]. Pseudo-second order
kinetics (denoted by K22) was introduced in the middle of the 80’s [9, 10]. However it was
not very popular until 1999 when Ho and McKay [11] analyzed a number of experimental
results taken from the literature, and arrived at the conclusion that, “for all of the systems
studied, [...] the pseudo-second order reaction kinetics provide the best correlation of the
experimental data”. After publication of this work, K2 has become increasingly popular
because, in the vast majority of studies in which comparison has been done, superiority of
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K2 over K1 has been found [12]. The original article [11] now totalizes ca. 6000 citations,
with a citation frequency that has been increasing exponentially with time.

The purpose of the present work is to point out the fact that more caution should
be exercised in the analysis of kinetic data. It is shown below that there are two main
issues in the statistical treatment generally used in the literature, and that this method
systematically tends to favor the pseudo-second order rate law.

The remainder of this paper is divided into three main sections. In the next section,
the basic formulas for the statistical analysis of experimental data and model comparison
are presented. The third section is dedicated to the presentation of results and to their
discussion. The two issues met in analyses used in the literature are exposed and they are
illustrated in the case of data obeying first order kinetics. Then a reexamination of the
experimental data treated in the original paper by Ho and McKay [11] is carried out, a
sample of data reported in the current literature is analyzed, and a few diffusion-controlled
processes are examined. Finally a conclusion summarizes the main results of this work
and presents some prospects.

2. Theoretical background

2.1. Pseudo-first order rate law, K1

The equation for pseudo-first order kinetics was introduced initially by Lagergren [8].
In the literature (e.g., in refs [13, 14, 15, 16, 17, 18]), it is generally used in the form
proposed by Ho and McKay [11],

ln[qe − q(t)] = ln qe − k1t (1)

with q the amount of adsorbed solute, qe its value at equilibrium, k1 the pseudo-first order
rate constant and t the time.

This equation may also be written in the following alternative way,

q(t) = qe [1− exp(−k1t)] (2)

If qe is determined from experiment, the fractional uptake (with respect to equilibrium)

F (t) ≡ q(t)/qe (3)

may be computed. Then one would have in the case of K1,

F (t) = 1− exp(−k1t) (4)

2.2. Pseudo-second order rate law, K2

The formula for pseudo-second order kinetics [9, 10] is generally employed (e.g., in
refs. [15, 16, 17, 18]) in the form proposed by Ho and McKay [11] as,

t

q(t)
=

t

qe
+

1

k2q2e
(5)

in which k2 is the pseudo-second order kinetic rate constant.
Eq. 5 may be rewritten as,

q(t) = qe
k∗
2t

1 + k∗
2t

(6)

with k∗
2 ≡ k2qe, or,

F (t) =
k∗
2t

1 + k∗
2t

(7)
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2.3. Rate law of arbitrary order

If we suppose that the rate law is of arbitrary order n, then q obeys the equation,

dq(t)

dt
= kn [qe − q(t)]n (8)

This rate law will be used below for a discussion in section 3.3.4.
For n ̸= 1, the solution to this equation with q(t = 0) = 0 is,

q(t) = qe −
[
qe

1−n + (n− 1)knt
] 1

1−n (9)

or
F (t) = 1− (1 + k∗

n t)
1

1−n (10)

with k∗
n ≡ (n− 1)qe

n−1kn.

2.4. Assessment of data correlation quality

In the literature about adsorption kinetics, the relations for K1 and K2, Eqs. 1 and 5,
have been used extensively to describe experimental data. These two formulas are linear,
of the form,

ŷ(t) = at+ b (11)

in which a and b are parameters. They have been employed to fit transformed experimental
data, y, obtained at times ti for i = 1, ..., N (N being the number of data). Thus one has
from Eq. 1: y(1)(t) = ln[qe − q(t)] and ŷ(1)(t) = ln qe − k1t, in the case of K1; and from
Eq. 5: y(2)(t) = t/q(t) and ŷ(2)(t) = t/qe + 1/k2q

2
e , in the case of K2.

The AARD for the function y is defined by,

AARDy ≡
1

N

N∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (12)

where yi ≡ y(t = ti) and ŷi ≡ ŷ(t = ti) are the values of y and ŷ, respectively, at time ti.
The coefficient of determination (for any model, linear or not) may be defined as

[19, 20],

R2 ≡ 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ⟨y⟩)2
(13)

in which ⟨y⟩ stands for the average value of the yi’s (i = 1, ..., N), that is ⟨y⟩ ≡ (1/N)
∑N

i=1 yi.
Note that one may get the result, R2 < 0, in the case of a very bad fit using a nonlinear
regression [20, 21].

If a and b in Eq. 11 are adjustable parameters, then R2 coincides with Pearson’s
correlation coefficient r2 for linear regression (R2 = r2). On the other hand, if a or b has
a fixed value (e.g., b = 0) or if the model is non-linear, this is no longer true, but R2 may
be used to assess the goodness of fit of the data by the function ŷ(t) [19, 20].

In what follows we will suppose that qe is known from experiment, which is generally
the case.
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3. Results and discussion

3.1. Issues in data analysis

In the majority of studies about adsorption kinetics, the experimental values for y(1) =
ln[qe − q] or log10[qe − q], and y(2) = t/q, are plotted at times t1, t2,...,tN by using, in the
case of y(1), the experimental result for qe, denoted by qe,exp. Next, the two sets of points
are refined by performing a linear two-parameter fit of the functions ŷ(1)(t) = ln qe − k1t
for K1 and ŷ(2)(t) = t/qe+1/k2q

2
e for K2. In these adjustments, the slopes and intercepts

of the fitting line with the vertical axis t = 0 are determined, which provides a ‘calculated’
value for qe (denoted by qe,cal), and regressed values for k1 and k2, and the accuracies of
fit (correlation coefficient r2) are computed. In each case, the value of qe,cal is compared
with the experimental one, qe,exp. The results obtained for r2, together with those for qe,cal
(close or not to qe,exp ?), are the criteria employed to estimate the respective accuracies
and reliabilities of K1 and K2 to fit the data. In the vast majority of works published in
the literature, K2 has been found to provide better correlation with experiment than K1
(which will be hereafter denoted symbolically as K2>K1).

The first issue that should be pointed out about this procedure is as follows. In
most studies, a significant number of experimental data (sometimes half of the data or
more) used in K2 plots are at, or close to, equilibrium, as may be noted, e.g., in refs.
[11, 22, 23, 24, 25, 26, 27]. The fact of taking into account data at equilibrium in a
kinetic study is not coherent. This pitfall constitutes the first methodological issue of
these statistical treatments. It has the first consequence that, in the K2 plots of t/q(t)
vs. t, the points at equilibrium are naturally well aligned because t/q ≃ t/qe when q ≃ qe.
Hence, incorporation of many data at equilibrium produces a fitting straight line of slope
close to 1/qe,exp, with a correlation coefficient r2 close to 1 and a qe,cal value close to that
of qe,exp. This phenomenon may be observed for instance in Figure 4 of ref. [22] in which
equilibrium was reached in less than 40 min and the data were plotted for times up to
180 min. In the extreme case, all data are at equilibrium, as in Figures 18 and 19 of ref.
[11] for the data concerning Cu. A a result, the fit is of course excellent (r2 = 1) and
the fitting line for t/q data passes through the origin in Figure 19 because in this case
t/q = t/qe.

On the other hand, in the case of K1, when q approaches qe, the value of (qe − q)
becomes smaller and smaller. Hence, ln(qe−q) takes very large and uncertain values (due
to the uncertainty on the value of q) when q gets close to its equilibrium value. This
phenomenon reduces the accuracy of fit with K1.

The outcome of this methodology is that it tends to systematically favor K2 over K1.
This point is illustrated in the next subsection.

There is another issue in this usual treatment, which is connected with the statistical
method itself. As pointed out by statisticians, two fitting models must be compared on
the original scale [21, 28], not on the transformed scales. In the present context, this
principle means that it is irrelevant to compare R2 values for the two different functions,
y(1) = ln(qe − q) for K1, and y(2) = t/q for K2. Instead, the determination coefficient R2

should be computed using Eq. 13 for the same function y = q in both cases K1 and K2 so
as to get a reliable estimator for the comparison of these two models [21, 28]. Moreover,
in contrast with the above mentioned procedure commonly employed in the literature,
leading to qe,cal values, the value of qe,exp will be used here once for all to compute the
values of F from Eq. 3, and non-linear fits using Eqs. 4 and 7 will be performed. Then
the latter equations each involve only one unknown parameter: the rate constant k1 or
k∗
2.
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3.2. Illustration

In this part we first construct a function q(t) mimicking experimental data by com-
puting the function,

q(t) ≡ [1 + ε(t)] q0(t) (14)

in which q0 obeys first order kinetics

q0(t) ≡ 1− e−t (15)

which has a rate constant k = 1 and equilibrium capacity q0,e = 1 (in arbitrary units), and
ε(t) represents the uncertainty on the measurement of q0. The function ε(t) was taken
to be a random function with values in the range -0.015 to 0.015, which corresponds to a
maximum uncertainty of ±1.5%. The values of q0 and ε were generated for 20 time values
uniformly distributed in the range 0 to 8 by using a FORTRAN program.

A plot of q(t) is shown in Figure 1. It is seen that q is equilibrated for t & 4. The
equilibrium value of q computed from the data between t = 4.4 and t = 8 is qe,exp = 1.0005,
which is very close to the equilibrium value of q0 (q0,e = 1) in Eq. 15.

Figure 1: Simulated experimental results for q(t) (first order kinetics). Horizontal dashed line: equilibrium
value of q. Vertical dotted line indicates the first point for which q is (slightly) above qe at t = 4.4.

Now one may ask the following question: does one find that these data are indeed
better described by K1 if one follows the usual procedure depicted in section 3.1 ?

If one proceeds in this way one obtains the results presented in the first two lines of
Table 1. They are plotted in Figure 2 for K1 and in Figure 3 for K2. In the case of K1,
the adjustment was limited to t = 4 because the next experimental point (for t = 4.4) is
greater than qe and the value of ln[qe − q(t)] cannot be computed for this point. On the
other hand, in the case of K2, all data points up to t = 8 could be used in the fit.

Table 1: Results of two-parameter fits using Eqs. 1 and 5.

Rate law Equation tmax
a kb qe,cal r2

K1 1 4 1.101 1.114 0.9817
K2 5 8 1.820 1.100 0.9961

aMaximum time of fit; bRate constant (k1 or k2).

One notices in Table 1 that optimum adjustment is obtained with K2 because it gives
the best coefficient of correlation (higher r2 value) and a value for qe,cal that is in slightly

5



Figure 2: Two-parameter fit of ln[qe − q(t)] with K1 using Eq. 1 for t ≤ 4. Insert: Fit for t < 3. (•)=
data; solid lines = results of fit.

Figure 3: Two-parameter fit of t/q(t) with K2 using Eq. 5 for t ≤ 8. Insert: Fit for t < 3. (•)= data;
solid lines = results of fit.

better agreement with qe,exp ∼ 1. With K1, the deviation of ln[qe − q(t)] from linear
behavior when q approaches qe is observed on the last 3 points in Figure 2 (for t > 3),
which makes qe,cal deviate from unity and reduces the value of r2. Better fit is obtained
with K2 at the cost of a k value that deviates much from its actual value (1.82 vs. 1,
respectively). However, it is clear that this flaw would get unnoticed by an experimentalist
analyzing the data with K2.

An experimentalist using this procedure would therefore conclude (erroneously) that
the data are better correlated with K2. This example illustrates the first issue in the
common analysis of kinetic results.

However, as mentioned at the end of section 3.1 (the second issue in the comparison of
K1 and K2), the two models K1 and K2 should be compared for their ability to describe
the same quantity, q or the fractional uptake F .

Similar non-linear fits have been used in a few rare cases in the literature [26, 29].
In this work a FORTRAN program based on a classic Marquardt least-squares algorithm
was used to regress the values of k1 and k∗

2 in Eqs. 4 and 7 (with qe = 1). The fits were
done on the time interval, 0 < t < 3 in order to eliminate data too close to equilibrium.
Otherwise, this type of non-linear fit may be performed with many free or commercial
softwares (Gnuplot plotting program was also used in this work). Model comparison was
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done by computing the values of the coefficient of determination R2 [28] and the AARD
for q for the two rate laws. Let us note that least-squares fit maximizes the value of R2

because it minimizes the sum
∑N

i=1(yi − ŷi)
2 (see Eq. 13). This is not the case of AARD,

which provides additional information about the quality of fit.
The results for these non-linear fits are summarized in Table 2 and in Figure 4. It is

noticed that R2 is close to 1 for K1 and significantly lower for K2. Note that it would have
been possible to include data at equilibrium in these non-linear fits, but this would have
increased the value of the coefficient of determination for both K1 and K2 and it would
have reduced the ‘contrast’ between them, which is not desirable. This metrics therefore
correctly identifies the rate law and it clearly discriminates between the two formulas.
Figure 4 shows that K1 indeed describes the data much better than K2, as expected from
Eq. 15. This result is confirmed by the AARD values for q given in Table 2.

Table 2: Results of one-parameter fits using Eqs. 4 and 7 for t < 3.

Rate law Equation k R2 AARDF

K1 2 0.9949 0.9992 0.7 %
K2 6 1.952 0.8700 11.1 %

Figure 4: Non-linear fits of F (t) data for t < 3 (with qe = 1). (•)= data for F ; solid line = result of fit
with K1 (Eq. 4); dashed line = result of fit with K2 (Eq. 7).

3.3. Analysis of literature experimental data.

3.3.1. Criteria for determination of best rate equation

The capability of K1 and K2 equations to describe experimental kinetic data has been
assessed by fitting these rate laws to experimental data. Unless otherwise indicated, the
values for the latter were obtained by digitalizing figures in the articles with the use of
Engauge Digitizer 4.1 (free) software.

Data at and near equilibrium were not included in the treatment. Hence, in the fits,
it was chosen to consider data corresponding to a maximum fractional uptake of 85%
(F ≤ 0.85). This value was thought to be a good compromise between taking data too
close to equilibrium and taking too low a value which would have led to reject too many
data points. After application of this condition, only data sets containing at least 3
experimental points were retained for analysis.
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Then, the respective merits of rate laws K1 and K2 were examined by using statistical
analysis and by following recommendations from NIST [30]. In consequence, the coeffi-
cients of determination (R2) (Eq. 13) and the residues (≡ Fi,exp − Fi,cal, for i = 1...N)
were examined for fits with K1 and K2. Moreover, additional information was provided
by computing the average absolute relative deviation (AARD) of fit.

Hereafter, a rate equation (K1 or K2) will be declared to fit the data well if it provides
the higher R2 value. Following the recommendation from a statistician [19], the R2 value
will also have to satisfy the condition: R2 > 0.8. Furthermore, because sometimes the
latter condition is not sufficient [19, 30], the residues will have to be distributed sufficiently
randomly around zero when considered as a function of the number i (=1,...,N) of the
data point [30]. If for instance, in a plot of F vs. time, the first experimental points
are located above the fitting curve and if the last points are located below, then the
corresponding equation should be rejected.

3.3.2. Data considered in ref. [11].

In this part, the experimental data [13, 14, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] analyzed
by Ho and McKay in 1999 [11] are examined in the light of the preceding section.

Data values were generally found by digitalizing the figures published in the articles,
or numerical values were found directly in refs. [39, 40]. Besides, the experimental data
used in ref. [31] could not be found in this reference. Those reported in refs. [32] and [33]
could not be analyzed because all of them were too close to equilibrium (see also Figure
18 of ref. [11]). The data of ref. [34] did not attain equilibrium. Only those at 323 K
could be obtained in ref. [35] because the equilibrium value of q was not reported at other
temperatures.

The results of the fits using Eqs. 4 and 7 are summarized in Table 3, by following the
order the figures of ref. [11] were presented. The coefficients of determination R2

1 and R2
2,

and the average relative deviations AARDF1 and AARDF2, were computed for K1 and
K2, respectively. As mentioned in the previous subsection 3.3.1, the best equation had to
satisfy the conditions: higher R2 value, R2 > 0.8, and good pattern for the residues.

Examples of plots illustrating the results of Table 3 are presented in Figures 5, 6 and 7,
in cases where K1 > K2, K2 > K1, and both K1 and K2 being unsatisfactory, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80
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t (min)

Figure 5: Example of case K1 > K2: data from ref. [37] at 15 mg/L of PHC. (
⊙

)= experimental data;
solid line = fit with K1; dashed line = fit with K2.

These results call for some comments as follows.
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Table 3: Results of non-linear one-parameter fits, using Eqs. 4 and 7, of data analyzed in Ref. [11]. In
the latter reference, all systems were marked as obeying to K2.

Reference Conditions Na R2
1 R2

2 AARDF1 AARDF2 K1b K2c

[13] 10−4 M 3 -1.72 0.735 9.9 % 2.9 % 0d 0
[36] 50 mg/L 5 -1.98 0.643 12.8 % 4.6 % 0 0

75 mg/L 6 0.361 0.922 10.8 % 4.1 % X
100 mg/L 4 0.789 0.920 11.0 % 6.8 % X
125 mg/L 6 0.888 0.963 7.5 % 3.5 % X

[35] 323 K 5 0.640 0.995 10.6 % 1.1 % X
[37] 10 mg/L - PHC 8 0.996 0.944 4.8 % 18.9 % X

15 mg/L - PHC 8 0.995 0.935 4.3 % 12.6 % X
20 mg/L - PHC 8 0.980 0.964 8.3 % 6.2 % X
10 mg/L - GAC 5 0.906 0.976 15.8 % 7.1 % X
15 mg/L - GAC 5 0.943 0.976 13.7 % 9.3 % X
20 mg/L - GAC 5 0.952 0.975 13.3 % 9.1 % X

[38] 2 ppm 3 0.991 0.899 3.3 % 17.3 % X
5 ppm 3 0.998 0.932 4.1 % 19.7 % X
20 ppm 3 0.999 0.931 1.2 % 7.5 % X
30 ppm 5 0.978 0.962 6.2 % 8.5 % 0d 0

[14] 5 mg/L - 30◦C 4 0.404 0.956 15.1 % 4.0 % X
10 mg/L - 30◦C 4 0.306 0.928 15.8 % 4.8 % X
20 mg/L - 30◦C 5 0.953 0.975 13.3 % 9.1 % 0d 0
10 mg/L - 40◦C 4 0.594 0.969 14.6 % 3.7 % X
10 mg/L - 50◦C 4 0.552 0.976 15.2 % 3.4 % X

[39] Rinsed 12 -0.249 0.596 29.6 % 17.1 % 0d 0
Unrinsed 9 -5.28 -1.88 22.8 % 16.4 % 0 0

[40] 1 mg/L 3 0.767 0.892 26.5 % 23.8 % 0 0
2 mg/L 4 -0.430 0.751 18.7 % 7.8 % 0 0
4 mg/L 5 -0.726 0.609 20.2 % 8.5 % 0 0
6 mg/L 6 -4.61 -2.24 47.7 % 35.3 % 0 0

aNumber of data; bK1 > K2; cK2 > K1; dK1 and K2 both giving bad fits.

The data of ref. [37] are better represented by K1 in the case of PHC activated carbon
(see also Figure 5), and by K2 in the case of GAC.

The data of ref. [38] at 30 ppm and those of ref. [14] at 20 mg/L give high values
for R2

1 and R2
2, respectively. Those of ref. [40] at 1 mg/L yield a satisfactory value for

R2
2. However, in these 3 cases, it was observed that the residues exhibited non-random

variation with time. Consequently the respective kinetics (K1 in the first case and K2
and in the last two cases) were rejected and it was concluded that neither rate equation
described the data well. These were the only cases of rejection in this second step of
statistical analysis for data of Table 3. An example is shown in Figure 7 for the data of
ref. [38] at 30 ppm, for which R2 has the higher value out of the 3 cases (R2

1 = 0.978). It
is seen in this plot that the residues for K1 are positive for the first 2 points and negative
for the last 3 points, which is not satisfactory.

All data of ref. [40] were better described with K2 than with K1, but the fits were not
very good, because K2 and even more so K1 cannot capture the short time, and the long
time, behaviors (fast initial rise followed by a leveling off) at the same time.

It is seen in Table 3 that K1 gives significantly better fits than K2 in 6 cases (K1 >

9
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Figure 6: Example of case K2 > K1: data from ref. [35] at 323 K. (
⊙

)= experimental data; solid line =
fit with K1; dashed line = fit with K2.
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Figure 7: Example of case where K1 and K2 do not fit the data well: data from ref. [38] at 30 ppm.
(
⊙

)= experimental data; solid line = fit with K1; dashed line = fit with K2. Here K1 is rejected although
R2

1 = 0.978 because of unsatisfactory behavior of residues (see text).

K2), and the reverse situation (K2 > K1) occurs in 11 cases. Neither is satisfactory in 10
cases.

The overall trend in the results of this section is that K2 gives a better fit more
frequently than K1, for the systems that were examined in ref. [11]. However the situation
is much less contrasted than suggested in this latter reference and subsequent literature
dealing with adsorption kinetics, in which K2 was nearly always the best rate equation.
Now K1 performs better than K2 in a significant number of cases. Moreover, the coefficient
of determination for K2 (R2

2) is not as high as found before in the literature where it was
generally very close to 1. Lastly, in 9 out of the 10 cases where neither rate equation fits
the data well, it is observed that K2 gives better results than K1.

3.3.3. Data reported in 2015

The current literature was also examined by picking randomly 10 papers in the nearly
thousand published (sometimes online) in 2015, that quoted the paper by Ho and McKay
[11].

All of these works [41, 42, 43, 44, 45, 46, 47, 48, 49, 50] concluded that K2 better
described the experimental kinetic data, except in ref. [49] in which K1 gave a better fit
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in the case of As(V) adsorption (while K2 was more satisfactory in the case of Cr(III)
and Cr(VI)).

Among these publications 4 could not be used because all of the data were at equi-
librium [41, 42, 43, 44]. As a consequence, these studies unsurprisingly reported better
performance of K2 over K1 as noted in section 3.1. In other works [45, 46] experimental
data were not reported.

The data of the remaining 4 papers were reexamined in the light of the present work.
The results are collected in Table 4. Examples of fits in which K1 > K2, K2 > K1 and
neither formula is successful are presented in Figures 8, 9 and 10, respectively.
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Figure 8: Example of case K1 > K2: data from ref. [47] at 200 mg/L. (
⊙

)= experimental data; solid
line = fit with K1; dashed line = fit with K2.
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Figure 9: Example of case K2 > K1: data from ref. [48] at 40◦C. (
⊙

)= experimental data; solid line =
fit with K1; dashed line = fit with K2.

A few remarks should be made about these results.
The data of ref. [47] at 300 mg/L are fitted with K1 with a high R2

1 value of 0.992 but
AARDF1 is a bit large (∼ 11.1%). This is due to a discrepancy at short times where the
fitting line is above the data points (not shown). The other points are well described by
K1.

In the case of ref. [48] at 50◦C and that of ref. [50] at 44.7 mg/L, the criterion R2 > 0.8
is satisfied, but the residues have a rather unsatisfactory behavior (not shown), which led
to reject K2 for both systems. These were the only such cases of rejection in this table.
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Figure 10: Example of case where K1 and K2 both unsuccessful: data from ref. [50] at 178.8 mg/L.
(
⊙

)= experimental data; solid line = fit with K1; dashed line = fit with K2.

When looking at the results for Cr(VI)/p(APTMAC1) from ref. [49], one notices that
R2

1 > R2
2 and AARDF1 > AARDF2, which are contradictory indicators. As shown in

Figure 11 this peculiarity originates from the fact that the first two data points are well
described by K2, but not well fitted with K1, which produces a larger AARD with this
latter rate equation.

The data of ref. [50] at the four higher concentrations exhibit the same following pat-
tern in the fit with K2 (which performs better in every case). The first two experimental
points are placed above the fitting curve and the remaining points at larger time are
placed below the curve (not shown). These data exhibit a fast initial rise that cannot be
represented correctly by either rate law. The residues are positive for the first two points
at lower times and negative after that. This is why this rate law was rejected in the case
of 44.7 mg/L though the R2

2 value was larger than 0.8.
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Figure 11: Data from ref. [49] for Cr(VI)/p(APTMAC1). (
⊙

)= experimental data; solid line = fit with
K1; dashed line = fit with K2. For these data, R2

1 > R2
2 and AARDF 1 > AARDF 2 (see text)

The main features in the results of this section are that K1 and K2 give better fits
in 10 and 8 cases, respectively, which situation is opposite to that of Table 3. Neither
is satisfactory in 5 cases although, as in the preceding section, K2 gives markedly better
results than K1 in these cases.

12



Table 4: Results of non-linear one-parameter fits, using Eqs. 4 and 7, for data reported in 2015. All of
these references concluded that K2 was the best rate law, except in ref. [49] in the case of As(V) (see
text).

Reference Conditions Na R2
1 R2

2 AARDF1 AARDF2 K1b K2c

[47] 50 mg/L 7 0.969 0.916 4.8 % 9.8 % X
100 mg/L 8 0.986 0.924 7.6 % 18.3 % X
200 mg/L 8 0.997 0.942 2.0 % 10.4 % X
300 mg/L 9 0.992 0.933 11.1 % 27 % X
400 mg/L 8 0.986 0.964 3.6 % 7.7 % X
500 mg/L 9 0.995 0.970 4.4 % 9.7 % X

[48] 20◦C 4 0.703 0.964 9.8 % 3.6 % X
30◦C 5 0.604 0.964 11.4 % 4.1 % X
40◦C 6 0.639 0.978 13.4 % 3.8 % X
50◦C 8 0.478 0.942 16.9 % 5.4 % 0d 0

[49] As(V) / amid-p 9 0.985 0.991 13.6 % 12.5 % X
As(V) / p(APTMAC1) 7 0.957 0.921 13.7 % 16.3 % X
Cr(VI) / amid-p 10 0.989 0.984 7.4 % 13.5 % X
Cr(VI) / p(APTMAC1) 7 0.983 0.968 12.4 % 11.3 % X
Cr(III) / amid-p 7 0.985 0.953 12.8 % 16.5 % X
Cr(III) / p(APTMAC1) 6 0.880 0.966 21.4 % 7.6 % X

[50] 22.3 mg/L 3 0.690 0.990 7.3 % 1.3 % X
44.7 mg/L 6 -0.129 0.836 17.3 % 6.8 % 0d 0
89.4 mg/L 7 -0.436 0.672 21.7 % 10.3 % 0 0
178.8 mg/L 6 -0.781 0.589 21.1 % 10.4 % 0 0
223.5 mg/L 6 -0.514 0.690 21.7 % 9.8 % 0 0
aNumber of data; bK1 > K2; cK2 > K1; dK1 and K2 both bad.

3.3.4. Systems controlled by diffusion

Finally one may ask the following question: which of the two rate laws better describes
an adsorption process controlled by diffusion ?

A first difficulty to answer this question is that few systems have been marked as
being limited by diffusion without ambiguity. In this work this question was addressed
by using experimental data from Yang and Al-Duri [51] and Choy et al. [52] in which the
adsorbent was constituted of commercial active carbon (Filtrasorb 400). In a previous
study [5], these two systems were identified as being controlled by diffusion. We arrived
at this conclusion because the fractional uptake at short times was observed to vary not
only as

√
t (for F ≤ 0.4), but also to be inversely proportional to the square root of

the initial solute concentration in the batch adsorber. This non-trivial property may
be an additional key characteristic of such processes. It is in contrast with descriptions
based on the formula derived by Crank for pure diffusion into a sphere (in the absence
of adsorption) (Eq. (6.20) of ref. [53]) in which the fractional uptake is independent of
solute concentration. These descriptions include the work of Boyd et al. [1] who used this
formula for the first time, and the well-known “intra-particle diffusion” (IPD) equation
[2, 3]. We have shown that the IPD diffusion coefficient is a lumped parameter which
depends on the experimental conditions [5].

Non-linear two-parameter fits using Eq. 10 (hereafter denoted by Kn) were performed
on the data of refs. [51] and [52] (such that F ≤ 0.85) in order to determine, for every
concentration, the rate order n (and k∗

n) that gave the best adjustment.
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The results are collected in Table 5, together with those for fits with K1 and K2. They
show that adjustments can be obtained with this procedure for orders n that are in the
range of 1.9 to 2.5 for the data of ref. [51] and of 4 to 12 for those of ref. [52].

Table 5: Diffusion controlled processes : Results of fits using Eq. 10 for the data of refs. [51] and [52].

Reference Conditions Fmax Na R2
1 R2

2 AARDF1 AARDF2 n R2
n AARDFn

[51] 35.4 mg/L 0.826 10 0.931 0.984 20.0 % 9.9 % 1.93 0.985 10.1 %
60.3 mg/L 0.830 12 0.934 0.987 22.6 % 11.6 % 2.03 0.987 11.5 %
87.2 mg/L 0.841 15 0.889 0.976 29.5 % 17.3 % 2.45 0.982 13.6 %
131 mg/L 0.840 16 0.903 0.985 29.3 % 15.6 % 2.34 0.988 13.0 %

[52] 50 ppm 0.530 8 0.740 0.897 31.8 % 20.5 % 4.04 0.988 6.5 %
75 ppm 0.456 10 0.773 0.872 42.7 % 34.2 % 5.30 0.973 15.3 %
100 ppm 0.383 9 0.763 0.856 39.5 % 32 % 5.98 0.979 12.0 %
150 ppm 0.313 8 0.628 0.742 37.7 % 31.9 % 7.99 0.980 7.9 %
200 ppm 0.252 10 0.630 0.701 49.3 % 45.4 % 12.3 0.961 16.2 %

aNumber of data.

It is observed that the value of n increases notably from the top to the bottom of this
table. It was found that this is due to the maximum value of F , denoted by Fmax, to
which the fit is done. For the data of ref. [51], Fmax is a little greater than 0.8 and n is
of the order of 2. In contrast, the data of ref. [52] correspond to values of Fmax that vary
from 0.53 to 0.25 when the initial solute concentration is increased from 50 ppm to 200
ppm. The hypothesis of increase of n when Fmax decreases was confirmed by considering
the data of ref. [51] at 60.3 mg/L ppm for which 12 points are available and n ≃ 2. For
this data set, successive fits were performed in which the last point was removed after
each fit, so that the number of data points was successively 12, 11, 10,.... The results from
this procedure are shown in Table 6. It is found that n increases from ∼ 2 to ∼ 4.3 when
the number of points is reduced from 12 to 5 and Fmax decreases from 0.83 to 0.38. One
may notice that different values of n are obtained for the same value of Fmax in Tables 5
and 6, e.g., for Fmax ∼ 0.38, n ∼ 6 for 100 ppm (ref. [52] in Table 5), and n ∼ 4.3 for
N = 5 (ref. [51] in Table 6). This may seem surprising because, for these 2 systems, F
varies identically as t1/2 for F . 0.4 [5], which should lead to the same value of n for a
given value of Fmax. The difference in the results for this parameter originates from the
fact that the fits were done with different numbers and values of data points.

Table 6: Results of successive fits using Eq. 10 for the data of ref. [51] at 60.3 mg/L.

Na Fmax n
12 0.830 2.03
11 0.787 2.20
10 0.694 2.53
9 0.626 2.77
8 0.558 2.98
7 0.532 3.00
6 0.481 3.34
5 0.379 4.33

aNumber of data.

Basically, the variation of n is due to the fact that, when Fmax is decreased, the very
steep initial rise of F at short times takes more and more importance in the fit, which
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causes an increase of n. Indeed, a process controlled by diffusion is characterized by a
very fast (theoretically infinitely fast) initial variation of the uptake vs. time because
F ∝ t1/2, which is described by high values of n (theoretically n → +∞) when t is small
(t → 0) in Eq. 10.

Figure 12 shows the result of fits in the case of 87.2 mg/L initial concentration in
ref. [51] for which the optimum order takes the higher value, n = 2.45. It is seen in this
figure that the fit with K2 (dashed line, R2

2 = 0.976, AARDF2= 17.3 %) is much better
than with K1 (solid line, R2

1 = 0.889, AARDF1= 29.5 %) and slightly worse than the
fit with Kn (dotted line). The coefficient of determination is only a little smaller for K2
than for Kn (0.976 vs. 0.982, respectively). This fact is confirmed in Figure 12 which
demonstrates that the fit with Kn is a bit better than with K2 except for the last two
points. K2 gives a better fit than K1 because the resulting K2 plot has a faster initial
rise and a stronger curvature. However, although R2

2 = 0.976 for these data, the fit with
K2 should be rejected because the residues are not satisfactory. It may be also noticed
in this figure that the discrepancy between the experimental data and the fits is large in
the first moments of the process. For the first experimental point, at t= 6 min, the fitting
curves with K2 and Kn are too low by ca. 70 %. The large residues at short times are
the reason for the rather large AARD’s reported in Table 5. Again, they are caused by
the very fast initial rise of the uptake.
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Figure 12: Diffusion-controlled process: data from ref. [51] at 87.2 mg/L initial concentration. (
⊙

)=
experimental data; solid line = fit with K1 (Eq. 4); dashed line = fit with K2 (Eq. 4); dotted line= fit
with Kn (Eq. 10).

The results for the data of ref. [51] at the other concentrations showed the same
features as at 87.2 mg/L initial concentration. As seen in Table 5 the fits with K2 at 35.4
mg/L, 60.3 mg/L and 131 mg/L are closely as good as with Kn. However, the very steep
initial variation of experimental data is not well represented by any of the rate laws (not
shown). Furthermore, the unsatisfactory variation of the residues in the fits of these data
with K2 would lead to reject this rate law (if the mechanism was unknown).

The data of ref. [52] give better fits with K2 than with K1 (higher R2 values) but
plots of the results show unsatisfactory residues for every solute concentration. Moreover,
the value of R2

2 decreases when the concentration increases, or when Fmax decreases.
The main results of this section are as follows. A diffusion controlled process cannot

be described really well by K2 when Fmax is of the order of 0.85, even though the optimum
value of the apparent rate order n is close to 2 in this case. When Fmax decreases the order
n increases strongly and the description with K2 worsens notably. The rate equations K2
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or Kn cannot capture the rapid variation of the uptake at short times.

3.3.5. Remarks about mechanism

As has been already underlined in the literature [7, 54], the ability of a formula to
fit experimental data as a function of time is not sufficient to validate the underlying
mechanism. In the present context, a good fit by any of the two chemical rate laws K1 or
K2 does not ensure that the kinetics are actually controlled by the adsorption step itself.
As a matter of fact, the many studies reporting that pseudo-second order kinetics fitted
their data well did not conclude in general that the adsorption step actually controlled
the process. Sometimes, results were observed to be described satisfactorily by this rate
law and, at the same time, diffusion (in the external layer and/or within the particle) was
found to significantly contribute [50]. In other cases, diffusion has been proposed as the
rate-controlling process [5, 6, 55, 56].

In this work, it has been found in sections 3.3.2 and 3.3.3 that K1 and K2 were not
able to describe some data well. However, at the same time, K2 gave significantly better
results than K1. It is interesting to notice that in these cases the uptake exhibited a
fast initial increase followed by a leveling off. An example of this behavior is provided by
Figure 10. It was also observed more markedly in the case of the data of ref. [40] (not
shown). This type of profile may suggest a process in which a fast initial step limited by
diffusion is followed by a slower second step (limited by diffusion in smaller pores, or by a
slow adsorption [7]). According to the preceding section, this behavior may be expected
to be better, although not quite well, described by K2 than by K1.

4. Conclusion

The comparison of pseudo-first order and pseudo-second order rate laws for the de-
scription of adsorption kinetics has been reexamined.

It appears that, in the literature, the inclusion of data close to, or at, equilibrium to
determine the best kinetic formula is not logical, and it has introduced a methodological
bias. This bias has widely and unfairly promoted pseudo-second order kinetics as the
number one model. The upper fractional uptake should be limited to a value below 1 in
order to take into account data sufficiently far from equilibrium. In this work, data for
which the fractional uptake was lower than 85% have been considered.

Moreover, it must be underlined that there is a statistical issue in the usual method
employed in the literature. Namely, the two rate laws must be compared for their abilities
to represent the same quantity, namely the capacity q or the fractional uptake F . This
condition requires the use of nonlinear regression and statistics for comparison of the
rate equations. In this study, K1 or K2 was declared the best rate law provided it gave
the higher coefficient of determination (R2), together with the condition R2 > 0.8 [19].
However, because the value of R2 is not a sufficient criterion [19, 30], the residues resulting
from a fit moreover needed to exhibit a random behavior around zero as a function of
time.

If one examines literature data the along these lines, one gets a significantly different
picture in which the pseudo-first order and pseudo-second order rate equations now per-
form nearly equally well. Overall in this study, out of a total of 48 data sets, K1 and K2
gave better fits in ∼ 33% and 35% of the cases, respectively. Neither rate equation was
satisfactory in ∼ 31% of the cases. In the latter case, K2 performed generally better than
K1.
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It has been found that a diffusion-controlled process is better described by K2 than
by K1. However it seems that K2 cannot quite well account for such a process because it
is unable to represent the steep rise of the uptake at short times.

In the present work, a difficulty met in the statistical analysis of published data was
that the number of experimental points for a given system was sometimes not large. In
this respect, it may be suggested to collect as many data as possible in order to better
characterize the transient profile of the uptake. This would allow one to get a more
statistically significant treatment of the results. Furthermore, it would be useful to have a
precise estimation of the uncertainty for every data point collected in an experiment. This
additional information would permit to quantitatively estimate the statistical significance
of a rate equation through the computation of the so-called P-value [57]. This estimator
may serve to assess how well a rate equation fits the data, and therefore to adopt or reject
this equation. Let us note that the P-value can be computed easily with various softwares,
for instance by utilizing the plotting program Gnuplot (free software).

Lastly, at the experimental level, it should not be forgotten that the simple study of
the effect of the adsorbent particle size can provide useful information about the limiting
phenomenon. Thus a clear dependence of the kinetics on the particle size points to the
influence of diffusion on the rate without ambiguity [1].

In the future, we should try to gain more insight into the kinetics of solute adsorption
at the liquid/solid interface itself. In subsequent work, it will be attempted to probe this
elementary step in typical adsorbents.
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