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Abstract Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower
stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded
every minute along SPB flights allow the whole gravity wave spectrum to be described and provide
unprecedented information on both the intrinsic frequency spectrum and the probability distribution
function of wave fluctuations. The data set has been collected during two campaigns coordinated by the
French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both
regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on
such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories.
We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical
velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

1. Introduction

Microphysical processes in the tropical upper troposphere control the characteristics of ice clouds in the trop-
ical tropopause layer (TTL) and the amount of water vapor that enters the stratosphere, which has significant
implications on global climate, circulation response to climate change, and stratospheric ozone chemistry
[Solomon et al., 2010; Randel and Jensen, 2013; Voigt and Shaw, 2015]. At high latitudes, the formation of polar
stratospheric clouds (PSCs) and the nature of nucleated particles is a crucial step in the chain of processes
that contribute to ozone depletion [Solomon et al., 1986]. In both cases, modeling of microphysical processes
along air parcel trajectories computed with reanalyzed winds and temperatures has allowed estimations of
key quantities, e.g., water vapor transport across the tropical tropopause and ozone loss [Fueglistaler and
Haynes, 2005; Grooß and Müller, 2007; James et al., 2008]. Yet several studies have highlighted that mesoscale
wave motions, which are unresolved in the large-scale fields used for these simulations, actually have a strong
influence on cloud characteristics, such as ice crystal number and particle size distribution for instance [see,
e.g., Murphy and Gary, 1995; Tabazadeh et al., 1996; Haag and Kärcher, 2004; Hoyle et al., 2005; Jensen et al.,
2012; Spichtinger and Krämer, 2013; Kärcher et al., 2014]. Microphysical processes indeed strongly depend on
temperature, generally in a highly nonlinear way (with thresholds) so that relatively small temperature fluctu-
ations may have a strong impact on particle nucleation [e.g., Jensen et al., 2010; Murphy, 2014; Dinh et al., 2016].
In Lagrangian microphysical simulations, it is therefore required to parameterize the unresolved small-scale
high-frequency temperature and heating/cooling rate (or vertical velocity) fluctuations [Bacmeister et al., 1999;
Jensen and Pfister, 2004; Haag and Kärcher, 2004; Jensen et al., 2012]. However, there are few observational
constraints on these Lagrangian disturbances.

In fact, among meteorological variables, vertical velocities are certainly the least known. This is not only
due to their small-scale structure, tied to gravity waves and convection, but also mainly due to a lack of
observations. Only a few observing platforms are actually able to provide reliable estimates of vertical motions
in the upper troposphere-lower stratosphere: Doppler lidar and radar [Gage et al., 1986], inertial navigation
systems on board scientific aircraft (e.g., Meteorological Measurement System) [Muhlbauer et al., 2014] and
superpressure balloons (SPBs). While vertical profiles of vertical velocity are inferred from remote-sensing
measurements (lidar and radar), in situ platforms (aircrafts and balloons) generally provide local observa-
tions at higher space/time resolution. Among all the systems, superpressure balloons are unique because
they are advected by the winds like air parcels. This quasi-Lagrangian behavior provides direct estimates of
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wave-induced temperature and cooling/heating rate disturbances. Another attractive feature of SPBs is that as
they are passively advected in the lower stratosphere, their sampling is a priori unbiased so that the collected
data set is representative of day/night, land/ocean, and convective/clear sky conditions.

In this study, we take advantage of measurements performed during such SPB flights to describe the statistical
and spectral properties of gravity wave disturbances in the lower stratosphere. Our main focus is to provide
details on the vertical displacement and vertical velocity perturbations, which are respectively associated with
temperature and heating/cooling rate fluctuations felt by air parcels in the atmosphere. The analyzed data set
was collected during two SPB campaigns in 2010: the first one took place in the deep tropics in February–May
and involved the flight of three superpressure balloons [Podglajen et al., 2014], while 19 balloon flights were
performed during the second campaign that took place over Antarctica and the Austral ocean in September
2010 to January 2011 [Rabier et al., 2010].

The paper is organized as follows. In section 2, the balloon observations and their relationship to air parcel
disturbances are introduced. Section 3 presents a spectral analysis of the time series, and section 4 describes
the probability distributions of vertical wind disturbances and Lagrangian displacement inferred from the
observations. Section 5 discusses different methods to parameterize wave-induced temperature and cooling
rate fluctuations in Lagrangian models and describes a new one. The last section summarizes our findings.

2. Long-Duration Balloon Observations
2.1. Superpressure Balloon Campaigns
During the 2010 equatorial and polar campaigns, respectively named PreConcordiasi and Concordiasi, the
French Space Agency (Centre National d’Etudes Spatiales, CNES) deployed closed, spherical, 12 m diameter
SPBs. They drifted for durations close to 3 months on nearly constant density (∼0.1 kg/m3) surfaces in the
lower stratosphere, at about 19 km (PreConcordiasi) or 17 km (Concordiasi). Two of the three PreConcordiasi
flights achieved circumterrestrial trajectories within 15∘ of the equator from February to May 2010 [Podglajen
et al., 2014], while the Concordiasi balloons flew from September to January and remained poleward of 60∘S,
within the decaying Southern Hemisphere stratospheric polar vortex.

The SPBs carried various instruments of interest for this study. All balloons were equipped with a GPS receiver,
and the in situ horizontal winds were evaluated by finite differentiating the successive GPS positions, as in Vial
et al. [2001]. In contrast to previous campaigns, positions were recorded every minute, giving access for the
first time to the whole spectrum of gravity waves. The pressure measurements were performed every 30 s by
the Thermodynamical SENsors meteorological package on board every balloon [Hertzog et al., 2007]. Hence,
as these measurements are performed in the frame of reference that moves with the wind (so-called intrinsic
frame of reference), observations gathered during the 2010 SPB flights uniquely resolve the entire gravity
wave spectrum, from the inertial (f ) to the Brunt-Väisälä frequency (N). Regarding instrument performances,
the estimated 1𝜎 precisions of the GPS horizontal positions and pressure measurements, respectively, are
0.7 m and 0.1 Pa, and both measurement noises are assumed to behave as white noise processes.

2.2. Balloon Response to Air Motion
In order to correctly interpret the measured fluctuations, to understand their advantages and limitations, it is
necessary to briefly discuss the response of the balloons to the surrounding air motions. Regarding horizontal
motions, SPBs are advected by the horizontal wind, and their displacements therefore closely follow those
of air parcels [Massman, 1978; Vincent and Hertzog, 2014]. Departures from the Lagrangian behavior in the
horizontal are estimated to be within the uncertainty of GPS-derived winds [see, e.g., Podglajen et al., 2014;
Vial et al., 2001].

The situation is different for the vertical motion of SPBs [e.g., Massman, 1978; Nastrom, 1980; Vincent and
Hertzog, 2014]. While air parcels follow isentropes on timescales less than a few days in the lower stratosphere,
superpressure balloons drift instead on isopycnic (constant density) surfaces as long as the wave-induced dis-
turbances have intrinsic periods longer than twice the Brunt-Väisälä period (2𝜋∕N), i.e., longer than ∼10 min
at the balloon flight level. In this “low-frequency” range, the balloon vertical displacement 𝜁 ′b and that of an
isentropic air parcel 𝜁 ′

𝜃
are linearly related:

𝜁 ′b = 𝛼𝜁 ′
𝜃

(1)

with 𝛼 of the order of 0.3 [see, e.g., Vincent and Hertzog, 2014; Podglajen et al., 2014] so that the vertical
displacement and velocity of air parcels can be easily inferred from SPB motions. At higher frequencies
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(i.e., gravity waves with intrinsic frequencies close to N and turbulence), the accuracy of this linear relationship
becomes more questionable for two reasons: the main limitation results from the neutral oscillations of the
balloons around their equilibrium level which happen at a frequency 𝜔b >N (the associated period, 2𝜋∕𝜔b, is
typically 3 min). The second cause for departures from isopycnic behavior is the inertia of the balloon, which
needs to be taken into account for frequencies close to N [Vincent and Hertzog, 2014]. Finally, there is also a
deviation from isopycnic behavior associated with the diurnal cycle in the balloon density, which is due to the
slight expansion of the balloon envelope when heated by the Sun and has a typical peak-to-peak amplitude
of 100–150 m.

3. Intrinsic Frequency Spectra of Atmospheric Motions

A unique characteristic of SPB measurements is that they directly record the intrinsic frequency (𝜔̂) of atmo-
spheric disturbances, i.e., the frequency felt by air parcels, in contrast with ground-based instruments that
measure frequencies affected by Doppler shift [see, e.g., Vincent and Eckermann, 1990; Fritts and Wang, 1991].
This is used below to obtain intrinsic frequency spectra of horizontal kinetic energy (Ekh

) and potential
energy (Ep) and to quantify the contributions from low-frequency (planetary) and gravity waves. The spec-
tra of temperature and vertical velocity fluctuations are then derived, as these are the relevant quantities for
microphysical modeling.

3.1. Kinetic and Potential Energy Spectra
The wave potential and kinetic energy per unit mass, Ep and Ekh

, are

Ep = 1
2

N2𝜁 ′
𝜃

2
, Ekh

= 1
2
(u′2 + v′2) , (2)

with 𝜁 ′
𝜃

the (isentropic) wave-induced vertical displacement and u′ and v′ the wave-induced disturbances in
zonal and meridional velocities.

In this study, Ekh
(𝜔̂) and Ep(𝜔̂) are obtained from independent sensors: Ekh

is directly deduced from the bal-
loon horizontal velocities, whereas Ep is estimated from the balloon vertical displacements with the help of
equation (1). In the latter equation, we use the high-precision pressure measurements to estimate the balloon
vertical displacements; i.e., we assume that the variance in the measured pressure perturbations is essentially
due to the Lagrangian component 𝜁 ′bdp∕dz (where dp∕dz is the vertical gradient of the background pres-
sure). We thus neglect the variance induced by the Eulerian pressure perturbations, which is smaller than its
Lagrangian counterpart by a factor of 3 at the very least (and generally a factor of 10) in the gravity wave
frequency range.

Although estimated from independent measurements, these two spectra should nonetheless be closely
linked if the observed disturbances are caused by gravity waves. Namely, using gravity wave polarization
relations [e.g., Fritts and Alexander, 2003], one obtains

Ep =
(

N2

N2 − 𝜔̂2

)(
𝜔̂2 − f 2

𝜔̂2 + f 2

)
Ekh

(3)

where f and 𝜔̂ are, respectively, the inertial and wave intrinsic frequencies. This relation holds in the gravity
wave frequency range (f < 𝜔̂ < N).

Figure 1 presents the one-dimensional intrinsic frequency spectra, for both the polar and equatorial cam-
paigns. They were estimated as the average of several periodograms calculated from sequences of consec-
utive 8 day observations with 4 day overlaps. In the equatorial flights, balloon depressurizations (occurring
when the balloons fly over cold, deep convective systems at night) were discarded because of the complex
balloon response to air motion during these brief episodes.
3.1.1. Low-Frequency and Midfrequency Range
In the midfrequency regime (i.e., f ≪ 𝜔̂ ≪ N), the observed spectra of Ep and Ekh

have similar magnitudes
within the uncertainty associated with spectral estimation. This is in agreement with equation (3) and confirms
the gravity wave nature of the disturbances observed in that frequency range. Moreover, the spectra exhibit
a robust power law behavior of gravity wave energy over a large range of frequencies and geographical loca-
tions. Yet the spectral slopes seem slightly different between the tropical and polar regions (see Table 1): the
tropical spectra suggest a 𝜔̂−2 power law, whereas the polar flights exhibit a slightly shallower 𝜔̂−1.8 slope.
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Figure 1. Spectra of potential (red), horizontal (blue), and vertical (green) kinetic energy, estimated from superpressure balloon observations collected during the
2010 (left) polar and (right) equatorial campaigns. On the right panel, the grey curve corresponds to the synthetic Ep signal described in section 5. The error bar
indicates the confidence interval of the spectral estimates. The red and blue dashed lines correspond to the instrumental noise levels for potential and kinetic
energy, respectively. The vertical black lines show the Coriolis frequency f for the polar flight and the Brünt-Väisälä frequency N (estimated from the European
Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis), the dashed line corresponds to the frequency of the balloon neutral oscillations 𝜔b
(also estimated from the ECMWF operational analysis). The larger spectral uncertainty in the equatorial spectra is associated with a smaller number of flights
during the PreConcordiasi campaign (3) than during the polar Concordiasi campaign (19).

It is known and expected that there is variability in spectral slopes, see for instance Cho et al. [1999a, 1999b]
and Dotzek and Gierens [2008] for horizontal wave number wind and temperature spectra in the troposphere.
Given the sampling available with our SPB measurements, the difference in slopes between the two regions
appears statistically significant (see Table 1). However, at present, there is no theoretical argument to our
knowledge that could attribute this difference to specific differences in wave sources or atmospheric structure
between the polar and equatorial stratosphere.

Table 1. Major Characteristics of the Horizontal Kinetic Energy Spectra (Slope and 1𝜎 Uncertainty), Lagrangian
Temperature (or Vertical Displacements) and Vertical Velocity (or Heating/Cooling Rates) Disturbances Associated With
Gravity Waves (GW) and Planetary Waves (PW) in the Superpressure Balloon Observationsa

Flights

Spectral Characteristics Motion Frequency Range Polar Equatorial

GW 2𝜋∕(4 h)–2𝜋∕(20 min) −1.78(±0.01) −1.96(±0.03)
Ekh

slope GW 2𝜋∕(12 min)–2𝜋∕(6 min) −1.58(±0.02) −0.48(±0.06)

2𝜋∕(4 min)–2𝜋∕(2 min) −3.36(±0.02) −4.30(±0.03)

GW f b–N 66/0.64 110/1.07

𝜎𝜁 ′ (m)/𝜎T ′
l
(K) GW 2f c –N 56/0.55 80/0.78

PW 2𝜋∕(20 day)–2𝜋∕(1.5 day) 353/3.4 220/2.15

GW f b–N 67 0.4
Kurtosis 𝜁 ′

GW 2f c –N 112 0.8

GW f b–N 0.32/11.3 0.46/16.2

𝜎w′ (m s−1)/𝜎DT ′
l
∕Dt (K h−1) GW f b–N∕2 0.13/4.6 0.11/3.9

PW 2𝜋∕(20 day)–2𝜋∕(1.5 day) 5 × 10−3/0.18 3 × 10−3/0.1

GW f b–N 400 3.5
Kurtosis w′

GW f b–N∕2 1310 5.8
aNormalized kurtosis values are all significantly different from 0, except the kurtosis of vertical displacements in

equatorial flights.
bFor the equatorial flights, we use a lower frequency bound of 2𝜋∕(1 day).
cFor the equatorial flights, we use a lower frequency bound of 2𝜋∕(12 h).
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At low frequencies, the polar Ekh
spectrum shows a distinct peak located close to the inertial frequency, which,

in agreement with equation (3), has no equivalent in the potential energy spectrum. This low-frequency peak
essentially remains an observational fact that has been already reported [e.g., Hertzog et al., 2002]. The kinetic
energy enhancement near f and the spectral gap between low-frequency planetary and inertia-gravity waves
are striking characteristic of wave spectra at high latitudes. They are not seen in the equatorial spectra which,
on the other hand, display a continuum of wave motions.
3.1.2. Higher-Frequency Range
At higher frequencies, the balloon observations suggest an interesting behavior near N with a local peak in
potential energy, like a counterpart to the Ekh

peak at low frequencies in the polar flights. Caution is, however,
needed in interpreting this peak, as the frequency of the balloon neutral oscillations 𝜔b is located close to N,
and spurious (nonisopycnic) balloon vertical motions certainly contaminate the measurements at these high
frequencies [Vincent and Hertzog, 2014].

We nevertheless argue in the supporting information that part of this high-frequency enhancement in Ep cor-
responds to real atmospheric motions. This rests on numerical simulations of SPB response to atmospheric
motions, an alternative and independent determination of the Ep spectrum from the Ekh

one, and theoretical
considerations on the expected evolution of vertical velocity disturbances along wave propagation. It is also
worth noting that a similar peak near N has been previously reported in radar measurements in the tropo-
sphere, though with much smaller amplitudes [e.g., Ecklund et al., 1985, 1986]. In any case, since the balloons
overestimate the air parcel motions at frequencies close to N, further observations are needed to confirm the
existence and assess the magnitude of this high-frequency peak in Ep.

On the other hand, a robust feature of Ep and Ekh
spectra is the sharp transition to much steeper slopes past N.

In particular, the fact that the potential energy peak is located at N rather than at𝜔b strongly supports the idea
of weaker vertical motions at frequencies higher than N (cf. supporting information). This observed change
of regime probably corresponds to the transition from gravity waves to isotropic turbulence. It is also noticed
that this transition occurs at a slightly lower frequency than N on the equatorial Ekh

spectrum.

3.2. Vertical Velocity and Temperature Spectra
While considering energies emphasizes the agreement of balloon observations with gravity wave theory, the
quantities that actually play a role in microphysical processes are the Lagrangian temperature disturbance
and its temporal derivative along air parcel motions, the heating/cooling rate. The “Lagrangian” (adiabatic)
temperature fluctuations are related to the wave-induced vertical displacement through

T ′
l = −

g
Cp

𝜁 ′
𝜃

(4)

in the dry adiabatic limit for a hydrostatic background atmosphere, where g and Cp are the gravity acceleration
and the heat capacity of air at constant pressure, respectively. Hence, the spectrum of Lagrangian temperature
disturbances follows

T ′2
l = 2

(
g

CpN

)2

Ep. (5)

It is worth noting here that this Lagrangian temperature disturbance differs from the Eulerian value (T ′), which
is estimated at constant altitude. The Eulerian temperature disturbance is indeed related to Ep through

T ′2 = T̄ 2

(
𝜃′

𝜃̄

)2

= 2 T̄ 2

(
N
g

)2

Ep. (6)

This “Eulerian” temperature variance is the one usually evaluated from radiosonde observations or constant
altitude aircraft flights. Equations (5) and (6) show not only that both Eulerian and Lagrangian temperature
spectra have similar 𝜔̂ dependence as Ep(𝜔̂) but also that they differ by their magnitudes. In particular, for
a given vertical displacement 𝜁𝜃 , the variance of Eulerian temperature disturbances depends on the back-
ground atmospheric stability, unlike the Lagrangian disturbances (see Text S3 in the supporting information
for further details on this effect).
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Besides temperature, microphysical processes such as ice nucleation also strongly depend on cooling rates
and their intrinsic frequency distribution [e.g., Kärcher and Lohmann, 2002; Dinh et al., 2016]. For adiabatic
motions, those cooling rates are simply linked to the vertical velocity disturbance (w′):

DT ′
l

Dt
= −

g
Cp

w′, (7)

whose spectrum is itself related to the Ep spectrum through

w′2 = 2Ekv
= 2

(
𝜔̂

N

)2

Ep, (8)

with Ekv
(𝜔̂), the vertical kinetic energy. On Figure 1, the Ekv

spectra are also displayed. They show a flat
(or slightly increasing) variation with intrinsic frequency that highlights the importance of high-frequency
waves in the variance of vertical velocity or heating/cooling rates. These spectra also display a strong peak
at N. As previously discussed, the balloon measurements suggest that a fraction of this peak corresponds to
real atmospheric motions but do not allow a quantitative assessment of this enhancement (see Text S1 in the
supporting information).

4. Probability Density Functions (PDFs) and Intermittency

Beyond the frequency spectra that provide information on the temporal autocorrelation of temperatures and
heating/cooling rates, it is also worth paying attention to the statistical distribution of these signals. Indeed,
gravity wave activity is known to be intermittent [Alexander et al., 2010; Hertzog et al., 2012], and the sporadic
character of wave disturbances can impact microphysical processes because of their strong nonlinearities.

4.1. Vertical Displacement (or Temperature) Statistics
As most of the variability in temperature (or vertical displacement) is contained in the low frequencies,
we have applied a fifth-order high-pass Butterworth filter [e.g., Oppenheim et al., 1999] to the temperature
time series to isolate the gravity wave contribution from longer planetary wave signals. Figures 2a and 2b
display the probability density function of temperature perturbations obtained with two different values for
the cutoff frequency: f and 2f for the polar flights and 1 day−1 and 2 day−1 for the equatorial flights. The polar
temperature PDF is essentially not sensitive to this choice because of the spectral gap between gravity and
planetary waves, while the variance of the equatorial temperature disturbances depends more significantly
on it (yet not the shape of the PDF).

The equatorial and polar PDFs exhibit very different shapes. The equatorial vertical displacement PDF sug-
gests a Gaussian distribution (note the log y axis in Figure 2), with normalized kurtosis close to 0. The
associated standard deviation is of the order of 100 m (1 K). On the contrary, the polar temperature PDF
exhibits long tails and a much higher normalized kurtosis (67–112). If the standard deviations are smaller in
the polar time series (66 m or 0.7 K), there is a more substantial contribution of unfrequent large displacements
[Bacmeister et al., 1999]. Gierens et al. [2007] also found non-Gaussian PDFs of temperature perturbations in
data sets gathered during commercial aircraft flights, which mainly took place in the extratropical Northern
Hemisphere upper troposphere. In a subsequent paper, Dotzek and Gierens [2008] attribute the emergence
of those shapes to intermittency in temperature disturbances, which was at least partly caused by the aircraft
crossing the tropopause. In our data set, the intermittency of gravity wave activity is the primary reason for
the non-Gaussian behavior [Hertzog et al., 2012]. A geographic screening furthermore shows that the long
tails of the polar PDFs are associated with mountain waves over the Antarctic Peninsula (see Figure S3 in the
supporting information).

In Table 1, the standard deviations of temperature fluctuations associated with both gravity and planetary
waves signals are presented. The temperature PDFs and the reported variances show that the gravity wave
contribution accounts for a significant fraction of the total wave perturbations and should therefore not be
neglected when modeling microphysical processes. In the tropics for instance, gravity wave temperature fluc-
tuations will, together with other wave motions, lower the mean cold-point tropopause temperature as well
as its minima, which has impacts on dehydration in the TTL [Kim and Alexander, 2015].

PODGLAJEN ET AL. LAGRANGIAN WAVE FLUCTUATIONS IN THE UTLS 6
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Figure 2. Probability density functions of (a, b) vertical displacements and (c, d) vertical velocities induced by gravity waves, for (Figures 2a and 2c) the polar and
(Figures 2b and 2d) the equatorial balloon flights. For the vertical displacements (Figures 2a and 2b), two estimates that correspond to two different low cutoff
frequencies (f and 2f in the polar flights, and 1 day−1 and 2 day−1 in the equatorial ones) are shown. The amplitude of the corresponding adiabatic temperature
perturbations are shown on the upper x scale. For the (Figures 2c and 2d) vertical velocities, the two estimates correspond to two different high cutoff
frequencies (N and 1

2
N) and the upper x scale shows the amplitude of the corresponding adiabatic cooling rates. The red curves in the Figures 2b and 2d

correspond to the synthetic perturbations (see section 5).

4.2. Vertical Velocity (or Cooling Rates) Statistics
Unlike temperature fluctuations, most of the vertical velocity variance is associated with high-frequency
motions. The frequencies of gravity waves extend to the Brunt-Väisälä frequency, but as previously men-
tioned the analysis of these high frequencies in the balloon measurements requires caution. In the following,
we therefore show vertical velocity PDFs that have been obtained after applying a low-pass Kaiser filter [e.g.,
Oppenheim et al., 1999] with cutoff frequencies located either at N or at N∕2. The latter is a conservative choice
(i.e., the spectral magnitude at this frequency is essentially void of any balloon-induced motions) that yields
a lower bound for the total wave variance, since part of the full wave spectrum is omitted. The former, on the
other hand, includes not only all wave motions but also some contributions associated with the balloon’s own
dynamics: it therefore corresponds to an upper bound of the wave variance.

The vertical velocity PDFs are displayed in Figures 2c and 2d for the two regions. In a more striking manner
than for the vertical displacements, both tropical and high-latitude vertical velocity PDFs exhibit non-Gaussian
shapes. The equatorial PDFs are close to a Laplace (double exponential) distribution. The polar PDFs even
have distributions similar to double stretched exponentials. These shapes underline the important intermit-
tency in the vertical velocity field, i.e., that the largest cooling rates are significantly more frequent than in a
Gaussian distribution. They are likely to influence microphysical processes in the upper troposphere or lower
stratosphere. For instance, the large tails that are primarily associated with mountain waves have a substantial
impact on wave-driven PSC formation [e.g., Carslaw et al., 1999].
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We also show on Figures 2c and 2d the vertical velocity PDF associated with planetary waves, which are
obtained by keeping only motions with intrinsic frequencies smaller than f (or 1 day−1) in the balloon time
series. Figure 2 highlights that the contribution of these low-frequency motions to the vertical velocities or
cooling rates is very small, consistently with the slope of the corresponding spectrum. Almost all of the vertical
velocity perturbations are due to gravity waves in the tropics and high latitudes, which once again supports
the need to parameterize gravity wave fluctuations when modeling microphysical processes.

5. Parameterizations of Gravity Wave Fluctuations in Lagrangian Models

Lagrangian trajectory models targeting cloud or aerosol processes generally use large-scale analysis fields
that are archived every few hours. In those models, different strategies have been used to represent shorter
gravity wave temperature fluctuations and to reproduce either their spectra or their PDFs. In section 5.2, a
new parameterization is proposed, which allows to reproduce both.

5.1. Existing Parameterizations
Aiming at simulating polar stratospheric clouds formation, Bacmeister et al. [1999] introduced a parameteriza-
tion that consists in a discrete sum of harmonics with different frequencies, where the phase of each harmonic
is attributed randomly while the amplitude is chosen to match prescribed spectral magnitudes. Jensen and
Pfister [2004] used a similar approach for TTL cirrus clouds and constrained the harmonic amplitudes with
measurements from long-duration balloon flights reported in Hertzog and Vial [2001]. This type of parame-
terization reproduces the observed slopes and magnitudes of the temperature and cooling rate spectra, but
the use of random phases generates Gaussian PDFs. Such PDFs differ from observed cooling rate PDF in the
tropics and from both temperature and cooling rate PDFs at high latitude.

Other methods to synthesize wave-induced fluctuations have included white noise [Gary, 2006] or multifractal
random noise [Murphy, 2014] . If the use of white noise for temperature fluctuations easily allows the simula-
tion of any PDF, it is in obvious contrast with the robust red spectra seen in the balloon observations. In fact, a
white noise for cooling rate disturbances would be in closer agreement with the observations. Murphy [2003]
and Murphy [2014] used multifractal random noise (using multiplicative cascades), for which one can control
the spectral slope but did not provide any details on the temperature or cooling rate fluctuations PDFs.

Another approach for specific case studies is the use of a high-resolution nonhydrostatic model with out-
put at high frequency, which can serve to compute trajectories resolving fast temperature fluctuations
[Kienast-Sjögren et al., 2015].

5.2. A New Parameterization for Temperature and Vertical Velocity Fluctuations
Based on the balloon observations, we propose an alternative way to parameterize wave-induced fluctua-
tions by using a stochastic model. The synthetic time series generated by this parameterization agree with
the balloon observations in the sense that they reproduce both the spectral shapes and the non-Gaussian
cooling rate PDF. The tropical case is an especially favorable case, because the observed spectrum of tem-
perature disturbances scales as 𝜔̂−2 and the associated PDF is nearly Gaussian. In this case, an autoregressive
model of order 1, or Markov process, is sufficient to synthesize time series that resemble the observations. The
displacement field 𝜁 ′ is thus generated iteratively:

𝜁 ′t+dt = 𝜁 ′t + W ⋅ dt , (9)

where W is a white noise process that corresponds to the vertical velocity and follows a Laplace (double expo-
nential) distribution. A 2 day−1 high-pass Butterworth filter is applied on the raw time series in order to remove
its low-frequency component that should be resolved in the large-scale analysis. To match the balloon obser-
vations, the value of the free parameters are dt=2.2 min and the standard deviation of the Laplace white noise
is 0.17 m/s. The Butterworth high-pass filter is of fifth order, and further details on the method are provided
in the supplementary materials.

Figure 1 shows that the synthetized time series matches the slope and magnitude of the potential and kinetic
energy spectra in the midfrequency range, up to N

2
. Figures 2b and 2d illustrate that the PDFs of both temper-

ature and vertical velocity can be reproduced. It should be noted that we take advantage of the flat vertical
velocity spectrum, which easily allows us to match the observed cooling rate PDF. On the other hand, the
Gaussian shape of the resulting temperature PDF results from the central limit theorem, and more sophisti-
cated techniques would be needed to reproduce a non-Gaussian shape, as is observed over the pole (Figure 2).
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Since the tails of this polar temperature PDF are tied to mountain waves over specific regions (e.g., the
Antarctic Peninsula), we agree with the suggestion of Bacmeister et al. [1999] that a dedicated parameteriza-
tion of intermittent, intense orographic events is additionally required, as for instance done in Carslaw et al.
[1999]. When the balloon data set is considered only over oceanic regions around Antarctica, the PDF of tem-
perature fluctuations becomes more Gaussian, and our method succeeds in producing synthetic time series
that mimic this perturbation background (see supporting information).

In the above example, the free parameters have been chosen to match SPB observations in the lower strato-
sphere. They would need to be adjusted to mimic temperature and vertical velocity fluctuations at a different
time period (e.g., polar winter instead of spring) or at a different height (e.g., a few kilometers lower in the
TTL). Such adjustment is described in the supporting information. Alternatively, the parameters may also be
adjusted to reproduce the vertical velocity or Eulerian temperature statistics obtained from non-Lagrangian
observations.

6. Summary

This letter has presented measurements of Lagrangian temperature and vertical velocity fluctuations in the
tropical and polar lower stratosphere. The specificity of superpressure balloons and the high temporal reso-
lution of the measurements gives an unprecedented opportunity to describe Lagrangian fluctuations tied to
the entire wave spectrum, including gravity waves up to the Brunt-Väisälä frequency. The measurements were
collected over specific regions during ∼ 3 month time periods: southern high latitudes during austral spring
and deep tropics during boreal spring and easterly shear phase of the quasi-biennal oscillation. We note that
seasonal variations of wave activity are expected to be important at high latitudes [e.g., Geller et al., 2013]. In
the tropics, on the other hand, the representativeness of the SPB data set is probably better because of the
sampling of both clear skies and convection during the flights.

Our results confirm the 𝜔̂−2 power law behavior of potential and kinetic energy spectra in the midfrequency
range (f ≪ 𝜔̂ ≪ N) for both the tropical and polar regions. Yet the observations also suggest a local enhance-
ment of wave energy when N is approached, which may result from geophysical processes such as wave
refraction and reflection or high-frequency wave sources (e.g., convection). Unfortunately, the amplitude of
this local maximum near N cannot be assessed with current balloon observations because of the nonlinear
response of SPBs to atmospheric motions with very high frequencies. On the other hand, the wave vertical
velocity spectrum is essentially flat for 𝜔̂ < N∕2, which is a direct consequence of the potential energy spec-
tral slope and gravity wave polarization relations. Hence, high-frequency perturbations provide the major
contribution to the whole wave vertical velocity variability.

Generally, the probability distributions of vertical velocity and temperature disturbances are not Gaussian,
because of gravity wave intermittency. This is especially true in the polar flights that are affected by highly
intermittent orographic sources, like over the Antarctic peninsula [Hertzog et al., 2008]. In the tropical flights,
the temperature perturbations are normally distributed but not the vertical velocity disturbances, which
rather follow a Laplace distribution.

We propose a new parameterization of wave-induced temperature and heating/cooling rates in Lagrangian
models. Crucially, this parameterization reproduces both the observed wave spectra and PDFs. Its simplicity
makes it straightforward to implement in studies along air parcel trajectories, which address processes that
depend on wave-induced fluctuations.
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