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Léo Morin1, Jean-Baptiste Leblond1 ∗, Viggo Tvergaard2

1Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond
d’Alembert, F-75005, Paris, France

2Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark

Abstract

An extension of Gurson’s famous model (Gurson, 1977) of porous plastic solids, incorporating
void shape effects, has recently been proposed by Madou and Leblond (Madou and Leblond,
2012a,b, 2013; Madou et al., 2013). In this extension the voids are no longer modelled as spherical
but ellipsoidal with three different axes, and changes of the magnitude and orientation of these
axes are accounted for. The aim of this paper is to show that the new model is able to predict
softening due essentially to such changes, in the absence of significant void growth. This is done
in two steps. First, a numerical implementation of the model is proposed and incorporated into
the SYSTUS� and ABAQUS� finite element programmes (through some freely available UMAT
(Leblond, 2015) in the second case). Second, the implementation in SYSTUS� is used to simulate
previous “numerical experiments” of Tvergaard and coworkers (Tvergaard, 2008, 2009; Dahl et
al., 2012; Nielsen et al., 2012; Tvergaard, 2012, 2015a) involving the shear loading of elementary
porous cells, where softening due to changes of the void shape and orientation was very apparent.
It is found that with a simple, heuristic modelling of the phenomenon of mesoscopic strain
localization, the model is indeed able to reproduce the results of these numerical experiments,
in contrast to Gurson’s model disregarding void shape effects.

Key words: Porous ductile materials, shear loadings, void shape effects, theoretical model,
numerical simulations

1 Introduction

For many years the study of ductile failure of metals essentially concentrated on the case
of high values of the triaxiality (ratio of the mean and von Mises equivalent stresses).
Reviews of works in the field were provided by Tvergaard (1990) and more recently by
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Benzerga and Leblond (2010). Most of these works found their origin in two seminal
contributions: (i) that of Rice and Tracey (1969) who studied the growth of a single
spherical void in an infinite plastic matrix using methods of limit-analysis, and evidenced
the very strong, exponential dependence of the void growth rate upon the triaxiality; 1 (ii)
that of Gurson (1977) who extended Rice and Tracey (1969)’s limit-analysis to the case
of a hollow sphere of finite radius, thus defining a model applicable to arbitrary, nonzero
porosities.

In more recent years, increasing attention has been paid to the case of low triaxialities.
Many experimental works (Bao and Wierzbicki, 2004; Barsoum and Faleskog, 2007; Beese
et al., 2010; Dunand and Mohr, 2011a,b; Ghahremaninezhad and Ravi-Chandar, 2013;
Haltom et al., 2013) have been devoted to the study of ductile failure under combined
tension and shear, with the conclusion that it may occur even in conditions of dominant
shear. Such loadings do not induce important void growth. Therefore the only possible
conclusion of these observations is that changes of the shape and orientation of the voids,
and especially flattening of voids subjected to shear, must induce some macroscopic soft-
ening ultimately leading to failure.

Important efforts have also been made to study ductile failure in conditions of low triaxial-
ity via finite element micromechanical simulations of elementary porous cells subjected to
loadings incorporating a shear component (Leblond and Mottet, 2008; Tvergaard, 2008,
2009; Barsoum and Faleskog, 2011; Scheyvaerts et al., 2011; Dahl et al., 2012; Nielsen et
al., 2012; Tvergaard, 2012, 2015a). Among these works, those of Tvergaard and coworkers
(Tvergaard, 2008, 2009; Dahl et al., 2012; Nielsen et al., 2012; Tvergaard, 2012, 2015a)
appear especially significant insofar as they contained very detailed studies of the behav-
ior of voids subjected to combined tensile and shear loadings, in conditions of possibly
very low or even vanishing triaxiality, including the effect of very large deformations,
possible autocontact between the voids’ faces, initial void shape, etc. All these studies
have shown that in conditions of dominant shear, the voids completely flatten and close
up, but a mechanism of mesoscopic strain localization between voids may nevertheless
occur and induce failure. When this occurs, the strain rate essentially concentrates within
thin bands joining voids, whence the wording localization. However the thickness of these
bands is neither zero (which would imply microscopic localization), nor of the order of the
void spacing (which would imply macroscopic localization), but of the order of the void
diameter, whence the wording mesoscopic localization. This mechanism may, but does not
necessarily entail internal necking of intervoid ligaments leading to ultimate coalescence
of voids, as commonly observed (starting with the seminal work of Koplik and Needleman
(1988)) in micromechanical simulations in conditions of high triaxiality. However when
the triaxiality gradually increases, there is a continuous transition between mesoscopic
localization at the scale of the void diameter and internal necking of intervoid ligaments
leading to coalescence.

At least for a zero triaxiality, Gurson (1977)’s model is unable to reproduce these results,
even in the improved version proposed by Tvergaard and Needleman (1984) where a
heuristic criterion of coalescence is introduced via some “critical” value of the porosity

1 Rice and Tracey (1969)’s limit-analysis was revisited by Huang (1991), who evidenced its
qualitative correctness and quantitative inaccuracy, and improved it.
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marking the onset of this phenomenon. Indeed for such a triaxiality, this model predicts
no void growth; therefore the critical value of the porosity, if not reached initially, can
never be reached. The origin of this failure of course lies in the fact that the model,
having been developed for spherical voids only, disregards the effect of changes of the void
shape and orientation. A phenomenological remedy to this situation has been proposed
by Nahshon and Hutchinson (2008) in the form of a modified evolution equation of the
porosity. This equation then includes an extra heuristic term depending on the three
invariants of the stress tensor, which does not vanish when the triaxiality is zero and thus
generates the desired softening. This very simple and effective proposal has received wide
attention. It has notably been successfully applied to a DH36 steel by Xue et al. (2010),
who calibrated the material parameters so as to reproduce the results of three different
experiments covering a wide range of values of the triaxiality. It has also been shown
by Tvergaard and Nielsen (2010) to permit satisfactory reproduction of many, if not all,
results of Tvergaard and coworkers’ micromechanical simulations quoted above.

The very simplicity of Nahshon and Hutchinson (2008)’s proposal however entails some
inevitable shortcomings. One of these shortcomings is apparent in some very recent nu-
merical results of Tvergaard (2015b), who compared the evolutions of elementary porous
cells subjected to simple and pure shear. (Only the former type of loading had been consid-
ered in previous micromechanical simulations). These loadings generate identical overall
(shear) stress states but are kinematically different. In simple shear, the principal axes of
the void rotate with respect to the principal axes of the loading, and mesoscopic strain
localization leading to failure is observed. In pure shear, however, there is no such rota-
tion, and no mesoscopic strain localization occurs. 2 Nahshon and Hutchinson (2008)’s
proposed evolution equation of the porosity cannot account for this difference since the
added term in the porosity rate depends only on the instantaneous macroscopic stress
tensor, which is the same in both cases. It is thus clear that the only way to fully account
for possible mesoscopic strain localization in conditions of low triaxiality is to develop a
model accounting in a detailed way for the evolution of the shape and orientation of the
voids.

Thus the recent interest in ductile failure at low triaxialities acts as a strong incentive
to develop extensions of Gurson (1977)’s model including void shape effects. However
this development in fact predates this new motivation. An extension of Gurson (1977)’s
model to prolate or oblate spheroidal voids (with two distinct axes), the GLD model, 3 was
proposed in successive steps by Gologanu et al. (1993, 1994, 1997); Gologanu (1997). The
derivation of this model was based on a generalization of Gurson (1977)’s limit-analysis
of a hollow sphere to a spheroidal volume containing a confocal spheroidal void; use was
made in this limit-analysis of trial velocity fields satisfying conditions of homogeneous
strain rate on all spheroids confocal with the void’s surface and the external boundary. 4

The GLD model has notably been used by Pardoen and Hutchinson (2000) to define a
refined model of void coalescence. It was recently extended to voids of arbitrary ellipsoidal

2 This difference between simple and pure shear has also been noted, on completely different
premises, by Song et al. (2015).
3 GLD: Gologanu-Leblond-Devaux.
4 A variant involving a velocity field orthogonal to each such spheroid was proposed by Garajeu
et al. (2000).
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shape (with three different axes) by Madou and Leblond (2012a,b, 2013); Madou et al.
(2013) using trial velocity fields discovered by Leblond and Gologanu (2008), satisfying
conditions of homogeneous strain rate on an arbitrary family of confocal ellipsoids. The
model included evolution equations of the shape and orientation of the voids borrowed,
with some adaptations, from the works of Ponte-Castaneda and Zaidman (1994) and
Kailasam and Ponte-Castaneda (1998), based on nonlinear homogenization theory.

The aim of this paper is to show that Madou and Leblond’s model (hereafter named
the ML model for shortness) represents a viable, more rigorous albeit more complex,
alternative to Nahshon and Hutchinson (2008)’s proposed modification of Gurson (1977)’s
model, for the reproduction of the results of the micromechanical simulations of Tvergaard
and coworkers of ductile failure under conditions of low triaxiality. This will serve as a
first proof of the ability of the model to deal with problems of ductile rupture involving
important changes of the void shape and orientation. Of course it will be necessary, as a
prerequisite, to numerically implement the model into some finite element programme.

The paper is organized as follows:

• Section 2 first recapitulates the ML model. The original form of this model defined by
Madou and Leblond (2012a,b, 2013); Madou et al. (2013) is envisaged first, prior to
describing some heuristic extensions aimed at incorporating a few extra features, like
strain hardening.

• Section 3 then proposes a finite element implementation of the model. 5 This proposal
makes a heavy use of Halphen and Nguyen (1975)’s and Nguyen (1977)’s definition and
study of models of generalized standard materials, which possess remarkable mathemat-
ical properties bearing appealing consequences upon their numerical implementation.

• In Section 4, the proposed numerical implementation of the ML model is finally used to
show that the results of the micromechanical simulations of Tvergaard and coworkers
can be satisfactorily reproduced by schematizing the elementary cells considered as
homogeneous volume elements obeying this model.

2 The ML model

2.1 Original form

2.1.1 Geometrical elements

The ML model considers, within an elastic-plastic material obeying von Mises’s criterion
and Prandtl-Reuss’s flow rule, ellipsoidal voids of identical shape and orientation. The
semi-axes a, b, c (a > b > c) of these voids are oriented along unit vectors ex, ey, ez. The

5 A simpler numerical algorithm could be proposed for the homogeneous stress and strain states
considered in this paper; but the finite element implementation will be compulsory for numerical
simulations of full specimens and structures presented in future papers.
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quadratic form

P(u) =
(u.ex)

2

a2
+

(u.ey)
2

b2
+

(u.ez)
2

c2
, (1)

where u denotes an arbitrary vector, provides the equation of the voids’ surface in the
form P(OM) = 1 where OM denotes the separation vector between the centre O of a
void and a current point M on its surface. The symmetric 3 × 3 matrix P ≡ (Pij)1≤i,j≤3

of this quadratic form in the fixed observer’s basis (e1, e2, e3) contains, in an implicit
and indissociable way, all relevant information on the magnitude and orientation of the
semi-axes, since its eigenvalues are a−2, b−2, c−2 and the corresponding eigenvectors ex,
ey, ez. This matrix may therefore be conveniently used in place of a, b, c, ex, ey, ez to
characterize the shape and orientation of the voids at every instant. 6

The porosity (ratio of the volume of the voids over the total volume of the matter plus
the voids) is classically denoted f .

2.1.2 Yield criterion

The ML macroscopic yield criterion reads

Φ(σ,P, f, σ) =
Q(σ)

σ2
+ 2(1 + g)(f + g) cosh

[L(σ)
σ

]
− (1 + g)2 − (f + g)2 ≤ 0. (2)

In this equation:

• Q(σ) is a quadratic form of the (Cauchy) stress tensor σ given by

Q(σ) = σ : Q : σ (3)

where Q is a fourth-order tensor, whose components in the principal basis (ex, ey, ez)
of the voids are given in (Madou and Leblond, 2012b).

• L(σ) is a linear form of σ given by

L(σ) = κH : σ (4)

where κ is a scalar and H a second-order tensor diagonal in the voids’ principal basis
(ex, ey, ez), of unit trace; again, the value of κ and the components of H in this basis
are provided in (Madou and Leblond, 2012b).

• g is the “second porosity” defined in the following way: (i) consider the completely
flat ellipsoids (elliptic cracks) confocal with the ellipsoidal voids, of semi-axes

√
a2 − c2,√

b2 − c2, 0, instead of a, b, c; (ii) rotate these flat ellipsoids about their major axis, so
as to obtain prolate spheroids of semi-axes

√
a2 − c2,

√
b2 − c2,

√
b2 − c2; (iii) consider

the fictitious porosity defined by these spheroids, considered as voids. For instance, for
penny-shaped cracks of semi-axes a, a, 0, g is the porosity defined by fictitious spherical
voids of radius a, often called the crack density in the relevant literature.

6 The model does not contain any characteristic lengthscale so that what in fact matters is only
the ratios of two semi-axes over the third one, not their absolute values; this means that one
semi-axis may conventionally be set to unity initially.
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• σ is the yield stress of the sound matrix, assumed to be constant (ideal-plasticity) in
the primitive version of the model considered in this subsection.

The major novelty in the yield function defined by equation (2) with respect to that of
Gurson (1977) is the appearance of the second porosity, g, which contributes together
with the usual one, f , to the softening of the material. To understand why such an extra
softening parameter must necessarily appear in the yield criterion, it suffices to consider
the case of penny-shaped cracks. In such a case f is zero, so that this parameter obviously
cannot characterize the detrimental effect of the voids; the job is done instead by the
crack density g.

It is worth noting that the yield criterion (2) has been extensively and successfully assessed
by Madou and Leblond (2013), by comparing its predictions to the results of full finite-
element limit-analyses of elementary ellipsoidal cells of various shapes, including penny-
shaped and elliptic cracks.

2.1.3 Plastic flow rule

It has been shown by Gurson (1977) that the normality of the plastic flow rule is preserved
in the homogenization process used to define the models considered. Hence the flow rule
reads classically

Dp = η
∂Φ

∂σ
(σ,P, f, σ) , η

⎧⎪⎨
⎪⎩
= 0 if Φ(σ,P, f, σ) < 0

≥ 0 if Φ(σ,P, f, σ) = 0
(5)

where Dp denotes the (Eulerian) plastic strain rate and η the plastic multiplier. In this
expression the derivative ∂Φ/∂σ reads, by equation (2),

∂Φ

∂σ
(σ,P, f, σ) =

2

σ2
Q : σ +

2

σ
(1 + g)(f + g)κH sinh

(
κH : σ

σ

)
. (6)

2.1.4 Evolution equations of the internal parameters

It has been shown by Madou et al. (2013) that the voids being assumed to remain ellip-
soidal, 7 the evolution of the matrix P of the quadratic form P(u) characterizing their
shape and orientation is governed by the equation

Ṗ = −P. (Dv +Ωv)− (Dv +Ωv)T .P (7)

where Dv and Ωv denote the strain and rotation rate tensors of the void, respectively. The
expressions of these tensors proposed by Madou et al. (2013) are basically similar to those
derived by Ponte-Castaneda and Zaidman (1994) and Kailasam and Ponte-Castaneda

7 This property holds rigorously for a single void in an infinite elastic matrix, as a consequence
of Eshelby (1957)’s celebrated result on homogeneity of the strain in an ellipsoidal inclusion. In
more complex cases it is only approximately true.
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(1998) from nonlinear homogenization theory:

⎧⎪⎨
⎪⎩
Dv = L : Dp

Ωv = Ω+R : Dp
(8)

where Ω is the rotation rate tensor of the material (antisymmetric part of the velocity
gradient), and L and R fourth-order “localization tensors”. Madou et al. (2013) how-
ever found it necessary, on the basis of numerical micromechanical simulations, to modify
the expressions of these localization tensors proposed by Ponte-Castaneda and Zaidman
(1994) and Kailasam and Ponte-Castaneda (1998) through introduction of heuristic cor-
rective factors; the resulting expressions of the components of L and R in the voids’
principal basis (ex, ey, ez) are provided in (Madou et al., 2013).

The evolution equation of the porosity is classically deduced from the plastic incompress-
ibility of the sound matrix, neglecting the small variations of this quantity arising from
elasticity:

ḟ = (1− f) trDp. (9)

2.2 Extensions

The version of the model just presented is the original one proposed by Madou and
Leblond (2012a,b, 2013); Madou et al. (2013). This version disregards a few phenomena
which must be incorporated into the model in order to make it applicable to actual
materials and situations. This is done here in a more less heuristic way, depending on the
phenomenon in question.

2.2.1 Tvergaard’s parameter and mesoscopic strain localization

In order to improve the agreement between the predictions of Gurson (1977)’s model
and the results of some micromechanical simulations involving elementary cells of more
realistic shape than Gurson’s hollow sphere, Tvergaard (1981) proposed to modify the
criterion and the associated flow rule through multiplication of the porosity f by some
heuristic factor q slightly larger than unity. It is proposed here, for the ML model, to
apply a similar multiplicative factor q to the term (f + g) in the yield criterion (2) and
the flow rule (5).

In the case of spheroidal, prolate or oblate voids, Gologanu (1997) proposed, from various
arguments, to consider Tvergaard’s parameter q as a function of the void shape. In the
general case, an arbitrary ellipsoidal void of semi-axes a, b, c, a > b > c may be considered
as “intermediate” between a prolate spheroidal void of semi-axes a, c, c and an oblate
one of semi-axes a, a, c; hence it is reasonable to use, for the value of q, an interpolation
between Gologanu (1997)’s expressions for the “extreme”, prolate and oblate cases. The
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expression of q proposed here is of this type:

q = (1−k)qprol+kqobl , k =

√
b2 − c2

a2 − c2
,

⎧⎪⎨
⎪⎩
qprol = 1 + (qsph − 1)

[
2a/c

1+(a/c)2

]3/2
qobl = 1 + (qsph − 1) 2a/c

1+(a/c)2

(10)

where qsph represents Tvergaard (1981)’s original value of q for spherical voids, and qprol

and qobl those of Gologanu (1997) for prolate and oblate spheroidal voids.

In order to account for coalescence induced by necking of intervoid ligaments, Tvergaard
and Needleman (1984) proposed, in the case of spherical voids, to replace, in Gurson
(1977)’s criterion and associated flow rule, the true porosity f by some larger fictitious one
f ∗ once some “critical value” fc has been reached. A similar modification of the ML model
is necessary to account for the phenomenon of mesoscopic strain localization discussed
in the Introduction. However, in the ML model, the parameter governing softening is no
longer f but the sum f + g; hence it is natural to apply the modification to this sum and
thus replace it by the quantity

(f + g)∗ =

⎧⎪⎨
⎪⎩
f + g if f + g ≤ (f + g)c

(f + g)c + δ [f + g − (f + g)c] if f + g > (f + g)c
(11)

where (f + g)c and δ (> 1) are material parameters.

With these two modifications, the expressions (2) and (6) of the yield function and its
derivative become

Φ(σ,P, f, σ) =
Q(σ)

σ2
+ 2q(1 + g)(f + g)∗ cosh

[L(σ)
σ

]
− (1 + g)2 − q2(f + g)∗2; (12)

∂Φ

∂σ
(σ,P, f, σ) =

2

σ2
Q : σ +

2

σ
q(1 + g)(f + g)∗κH sinh

(
κH : σ

σ

)
. (13)

The model thus modified becomes the exact equivalent, for ellipsoidal voids, of the so-
called GTN (Gurson-Tvergaard-Needleman) model for spherical voids.

2.2.2 Strain hardening

Strain hardening is introduced in exactly the same way (independent of the void shape)
as in Gurson (1977)’s model:

• The sound material, instead of being ideal-plastic, is assumed to exhibit isotropic hard-
ening, the yield stress in simple tension becoming then a known function, σ(ε), of the
local cumulated equivalent strain ε.

• The porous material is then assumed to obey the extended criterion (12), the “yield
stress of the sound matrix”, σ, being now considered as identical to σ(ε) where ε denotes
some “average cumulated strain” of this matrix. (This means approximately replacing
the true, inhomogeneously strained matrix by a fictitious, homogeneously strained one
with cumulated strain ε).
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• The parameter ε is finally assumed to obey Gurson (1977)’s evolution equation

(1− f) σ
dε

dt
= (1− f) σ(ε)

dε

dt
= σ : Dp. (14)

(This formula approximately equates the true plastic dissipation in the porous material
to that in the fictitious homogeneously strained material).

2.2.3 Contact effects

Voids often contain quasi-rigid inclusions from which they originate; if one or several prin-
cipal stresses are negative, contact of the voids’ surface with the embedded inclusions may
occur. Another possibility, for empty voids, is autocontact between diametrically opposed
parts of the voids’ surface. These effects are incorporated heuristically into the model by
prescribing minimum values amin, bmin, cmin of the voids’ semi-axes; these minimum values
must be taken positive to simulate contact with embedded inclusions, but nil or very small
to simulate autocontact of the voids’ surface. Then if, at some stage of the calculation,
the value of some semi-axis, say c, is found to be smaller than cmin, it is replaced by cmin

and the found value of f is correspondingly enhanced by a factor cmin/c.

Note that although this procedure does account for the effect of contact or autocontact
upon the semi-axes of the voids and the porosity, it is approximate in that it disregards
its effect on the overall yield criterion and flow rule. Thus it does not represents a rigorous
solution to the problem of incorporation of contact effects into the ML model, similar to
Siruguet and Leblond (2004a,b)’s extension of the GLD model. 8

3 Finite element implementation of the ML model

We concentrate here on the sole local problem of “projection”, at a given integration point,
of the supposedly known elastic stress predictor (elastically computed stress tensor) onto
the yield locus. Other more classical aspects of the numerical implementation of such an
elastic-plastic model are left aside.

3.1 The ML model and the class of generalized standard materials

Generalized standard materials were introduced by Halphen and Nguyen (1975) in the
linearized context - small displacements and strains. This class of materials consists of

8 Including contact effects into the ML model in a rigorous way would require extending the
limit-analysis it originates from, by incorporating extra kinematic conditions expressing contact.
This was the line followed by Siruguet and Leblond (2004a,b) for the spheroidal voids and
axisymmetric loadings considered in the GLD model. The procedure was already quite involved
in this simple case, and extending it to general ellipsoidal voids subjected to general loadings
does not seem to be envisageable.
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elastic-plastic solids for which the plastic strain plus the internal parameters collectively
obey some “extended normality rule”. It is remarkable in several respects. The main point
(Nguyen, 1977) is as follows: for such materials, the local projection problem at a given
integration point, between times t and t + Δt, is equivalent to minimizing some strictly
convex function, provided that the flow rule is discretized with an implicit (backward Eu-
ler) scheme - that is, using the unknown values of the stresses and the internal parameters
at time t+Δt rather than the known ones at time t. This property guarantees existence
and uniqueness of the solution of this projection problem.

It must be stressed that this property, although appealing, pertains only to the projection
problem which represents only a small part of the global boundary-value problem. It says
nothing about existence and uniqueness of the solution of the global problem, which are
never guaranteed for softening models, such as considered in the present work.

It has been shown by Enakoutsa et al. (2007) that Gurson (1977)’s model belongs to this
class, (i) in the linearized context, and (ii) provided that the sole internal parameters
considered are the components of the plastic strain, εp, and the hardening parameter of
the sound matrix, ε; this means artificially regarding the porosity, f , as a fixed quantity
instead of another internal parameter. The proof relied on three properties of the model:

• the fact that strain hardening effects are summarized within a single parameter σ, and
that the yield criterion may be expressed in terms of some convex yield function of the
“reduced” stress tensor σ/σ;

• the normality property of the plastic flow rule;
• the evolution equation of the hardening parameter ε of the sound matrix, identical to
equation (14).

Since the ML model just presented obeys the same properties, 9 it may be concluded to
fit into the class of generalized standard materials with the same restrictions as Gurson
(1977)’s model, that is (i) in the linearized context, and (ii) artificially considering εp and
ε as the sole internal parameters, that is regarding f and the matrix P of the quadratic
form P(u) characterizing the voids’ shape and orientation as constant quantities.

In order to take advantage of the nice properties of generalized standard materials and
especially of the existence and uniqueness of the solution of the projection problem, it is
necessary to get rid of these two restrictions.

• With regard to large displacements and strains, their effect upon the numerical im-
plementation in a Eulerian setting (as adopted below) reduces to two features: the
equilibrium equations must be solved on the current configuration at time t+Δt, and
the (hypo)elasticity law must include corrections in order to respect objectivity.
· The first feature means that at the beginning of each global elastoplastic iteration,
one must update the geometry using the displacements at time t+Δt, and calculate
the derivatives of the shape functions on the updated geometry. Once this is done, the
geometry is fixed during the whole procedure of solution of the projection problem at

9 The convexity of the ML yield function with respect to the reduced stress tensor σ/σ has
been noted by Madou and Leblond (2012b).
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each integration point. This procedure is then the same as if there was no geometry
update, implying that the update has no effect upon the existence and uniqueness of
the solution.

· The second feature means that the hypoelasticity law must involve, instead of the
standard time-derivative of σ, its Jaumann derivative, differing from it through com-
binations of σ and the velocity gradient. Using an explicit scheme to discretize these
quantities, they become combinations of the value of σ at time t and the gradient of
the increment of displacement, Δu = u(t + Δt) − u(t). These combinations, being
invariable during a given elastoplastic iteration, may be accounted for in the form of
pre-corrections to the elastic predictor, added to it at the beginning of this iteration.
Again, the algorithm of solution of the projection problem at each integration point is
then the same as if these corrections did not exist, implying that they have no effect
upon the existence and uniqueness of the solution.

• With regard to the variations of f and P, assume that the projection problem is defined
with an explicit scheme with respect to these parameters, that is using their values at
time t. They are then fixed during the entire procedure of solution of the projection
problem at each integration point. Again, the projection algorithm is then the same as if
f andP were invariable in time; existence and uniqueness of the solution are guaranteed,
by the properties of generalized standard materials, provided that an implicit scheme
is used with respect to the parameters εp and ε.

The conclusion is as follows: in order to benefit from the existence and uniqueness of the
solution of the local projection problem (again, not of the global problem) guaranteed
by Halphen and Nguyen (1975)’s and Nguyen (1977)’s theory of generalized standard
materials, one must respect three conditions when defining its algorithm of solution:

• in the hypoelasticity law, discretize the additional terms arising from Jaumann’s stress
derivative by using the value of σ at time t;

• in the projection problem, use an explicit scheme with respect to the parameters f and
P;

• in the same problem, use an implicit scheme with respect to the parameters εp and ε.

3.2 Equations of the projection problem

The impact of large displacements and strains upon the projection problem and its algo-
rithm of solution having just been discussed, it suffices to present them in the linearized
context. The Eulerian strain rate D is then replaced by the time-derivative of the lin-
earized strain ε.

Prior to time-discretization, the equations of the “local step” (at a given integration point)
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of a given elastoplastic iteration read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε = εe + εp (decomposition of the strain)

σ = Ce : εe (elasticity law)

Φ(σ,P, f, σ) ≤ 0 (yield criterion)

ε̇p = η ∂Φ
∂σ

(σ,P, f, σ) , η ≥ 0 , ηΦ(σ,P, f, σ) = 0 (plastic flow rule)

σ = σ(ε) , (1− f) σ dε
dt

= σ : ε̇p (hardening rule)

Ṗ = −P. (Dv +Ωv)− (Dv +Ωv)T .P

⎧⎪⎨
⎪⎩
(evolution of the voids’

shape and orientation)

ḟ = (1− f) tr ε̇p (evolution of the porosity)

(15)
where εe and εp denote the elastic and plastic strains and Ce the elastic stiffness tensor.

Following the conclusions of the preceding discussion, equations (15)1−5 are discretized
between times t and t + Δt using an explicit scheme with respect to f and P and an
implicit one with respect to εp and ε. Noting quantities at time t with an upper index 0,
quantities at time t+Δt without any index, variations of quantities between times t and
t+Δt with a symbol Δ, and using Voigt notations (so that second-order tensors become
6-vectors, fourth-order tensors 6× 6 matrices, and double dots simple dots), one gets the
following equations defining the projection problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ = σ0 +Ce.Δεe = σelast −Ce.Δεp , σelast = σ0 +Ce.Δε

Φ(σ,P0, f 0, σ) ≤ 0

Δεp = Δη ∂Φ
∂σ

(σ,P0, f 0, σ) , Δη ≥ 0 , ΔηΦ(σ,P0, f 0, σ) = 0

σ = σ(ε0 +Δε) , (1− f 0) σΔε = σ.Δεp

(16)

where σelast denotes the (known) elastic stress predictor, obtained by fictitiously consid-
ering the (known) increment of strain Δε as purely elastic.

Note that these equations do not contain the “consistency condition” Φ̇ = 0, or in dis-
cretized form ΔΦ = 0, because the yield criterion is written only at time t+Δt. Thus the
derivatives of the yield function with respect to the internal parameters are not required.

3.3 Solution of the projection problem

The treatment of strain hardening, that is the determination of Δε and σ, may be achieved
by a fixed point method: starting from the estimates Δε = 0, σ = σ(ε0), one calculates
Δεp and σ from equations (16)1−3, then uses equation (16)4 to get new estimates of Δε
and σ, and iterates the process until convergence. This admittedly rustic method is in
practice sufficient, convergence being achieved very quickly because the relative variation
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of the yield stress between successive instants of calculation is small. Thus it suffices to
discuss the solution of equations (16)1−3 for fixed values of Δε and σ.

If Φ(σelast,P0, f 0, σ) < 0, the evolution between times t and t + Δt is purely elastic so
that the solution is trivial: Δεp = 0, σ = σelast. We therefore henceforward concentrate
on the sole non-trivial case where Φ(σelast,P0, f 0, σ) ≥ 0, implying that the criterion
Φ(σ,P0, f 0, σ) = 0 must be met.

Combination of equations (16)1, (16)3 and (13) then yields

σ = σelast −ΔηCe.

[
2

σ2
Q0.σ +

2

σ
q0(1 + g0)(f 0 + g0)∗κ0H0 sinh

(
κ0H0.σ

σ

)]

which implies that

σ =
[
I+

2Δη

σ2
Ce.Q0

]−1

.σaux (17)

where I is the unit second-rank tensor and σaux the “auxiliary” stress tensor given by

σaux = σelast − 2Δη

σ
q0(1 + g0)(f 0 + g0)∗κ0 sinh

(
κ0H0.σ

σ

)
Ce.H0. (18)

Equation (17) expresses the stress σ as a function of Δη but unfortunately also itself,
since by equation (18), σaux depends on σ through the quantity sinh(...). This difficulty
may be obviated by considering the scalar product H0.σ as an ancillary variable; this
leads to replacing equation (18) by the system

⎧⎪⎨
⎪⎩
σh = H0.σ

σaux = σelast − 2Δη
σ

q0(1 + g0)(f 0 + g0)∗κ0 sinh
(
κ0 σh

σ

)
Ce.H0.

(19)

We may now show that the solution of the projection problem amounts to solving a
system of two nonlinear equations on the two scalar unknowns Δη and σh. The first of
these equations is obtained by writing the criterion Φ(σ,P0, f 0, σ) = 0 using equations
(12), (3), (4) and (17):

F (Δη, σh)

= 1
σ2

{[
I+ 2Δη

σ2 Ce.Q0
]−1

.σaux(Δη, σh)
}
.Q0.

{[
I+ 2Δη

σ2 Ce.Q0
]−1

.σaux(Δη, σh)
}

+2q0(1 + g0)(f 0 + g0)∗ cosh
(
κ0σh

σ

)
− (1 + g0)2 − q0 2(f 0 + g0)∗2

= 0

(20)
where the function σaux(Δη, σh) is defined by equation (19)2. The second is obtained by
writing the definition (19)1 of σh using again equation (17):

G(Δη, σh) = σh −H0.
[
I+

2Δη

σ2
Ce.Q0

]−1

.σaux(Δη, σh) = 0. (21)
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The system of equations (20, 21) may be solved by a Newton method on the vectorial
unknown (Δη, σh), or two imbricated Newton methods on the scalar unknowns Δη and
σh. Once this is done, σ may be obtained from equations (17) and (19)2, and Δεp from
equation (16)3.

The preceding equations may also be used to calculate the constitutive tangent-matrix
∂σ/∂ε, from which the global consistent tangent-matrix of the elastoplastic iterations may
be deduced; but this line is not pursued here. Indeed numerical experience has revealed
that for the type of models envisaged here, use of the exact tangent-matrix within a
rigorous Newton method is not the best method of solution for the global elastic-plastic
problem anyway; the BFGS method is more robust, although it requires more iterations
(but no more CPU time since no inversion of the tangent-matrix is necessary at each
elastoplastic iteration).

It is worth noting that in the absence of voids, the algorithm presented above is identical
to that proposed by de Borst and Feenstra (1990) and Morin et al. (2014) for Hill (1948)’s
quadratic (anisotropic) criterion.

3.4 Update of the voids’ shape and orientation and the porosity

Once the projection problem has been solved, the matrix P of the quadratic form P(u)
characterizing the voids’ shape and orientation may be updated using the following dis-
cretized version of equation (15)6:

ΔP = −P0. (Δεv +Δωv)− (Δεv +Δωv)T .P0; (22)

in this equation, Δεv and Δωv represent the increments of deformation and rotation of
the voids, given by the following equivalents of equations (8):⎧⎪⎨

⎪⎩
Δεv = L0 : Δεp

Δωv = Δω +R0 : Δεp
(23)

where Δω is the increment of rotation of the material (antisymmetric part of the gradient
of the increment of displacement). (Note that a tensorial notation is again used in equa-
tions (22, 23) since Voigt’s notation can represent neither matrix products like P0.Δεv,
etc., nor antisymmetric tensors like Δωv and Δω).

Also, the porosity f may be updated using the following discretized equivalent of equation
(15)7:

Δf = (1− f 0) trΔεp. (24)

3.5 Practical implementation

The ML model has been implemented, using the algorithm just defined, in both the
SYSTUS� programme developed by ESI-Group, and the ABAQUS� programme devel-
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oped by Dassault, with identical results. In the second case a UMAT (user-material sub-
routine) has been developed and made freely available on the Web, see the reference
(Leblond, 2015). The calculations described below have been performed using SYSTUS.

4 Application to the micromechanical simulations of Tvergaard and cowork-
ers

We shall now compare the predictions of the ML model to the results of the microme-
chanical simulations of Tvergaard and coworkers of elementary porous cells subjected to
loadings incorporating a shear component. This will be done by applying these loadings to
a mesh consisting of a single element obeying the model. We shall essentially concentrate
on the simulations described in (Nielsen et al., 2012; Tvergaard, 2015a), completing the
results available in these references with new ones deduced from the same simulations but
not presented therein.

A general remark is that all the micromechanical simulations considered were performed
using periodic, or rather quasi-periodic boundary conditions on the external surface of the
cell. This implicitly meant disregarding the possible occurrence of a bifurcation mode vi-
olating periodicity. (Mesoscopic localization between voids which are not first neighbours,
for instance, could generate such a mode; but such an occurrence is not very likely).

4.1 Initially spherical voids

*Micromechanical simulations.We consider here Nielsen et al. (2012)’s 3D simulations for
initially spherical voids. The cells considered by these authors are shown schematically in
Figure 1 in both their initial and deformed configurations. In the former one (Figure 1(a)),
they are parallelepipedic, of sides 2A0, 2B0, 2C0, and contain a spherical void of radius
R0. The relative dimensions are B0/A0 = 4, C0/A0 = 1, R0/A0 = 0.5, corresponding to
an initial porosity f0 = 0.0164.

The boundary conditions are as follows:

• periodic on the surfaces x1 = ±A0;
• prescribed displacements (u1, u2, u3) = (0, 0, 0) on the surface x2 = −B0, (u1, u2, u3) =
(U1, U2, 0) on the surface x2 = B0 - these conditions are almost equivalent to periodic
ones if B0 is large enough, which is the case here;

• plane strain conditions on the surfaces x3 = ±C0.

The value of the ratio U2/U1 is continuously adjusted so as to enforce a constant value of
the ratio

κ =
Σ22

Σ12
(25)

where Σ12 and Σ22 represent overall stress components, obtained through averaging of the
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2A0

2B0

2C0

2R0

e1

e2

e3

(a) Initial configuration

e1

e2

U1

U2

θ

(b) Deformed configuration

Fig. 1. Elementary cell containing an initially spherical void (after Nielsen et al. (2012))

corresponding local components. 10 Possible autocontact between diametrically opposed
parts of the void’s surface is accounted for through some penalty method.

The material parameters are as follows: Young’s modulus, E = 200GPa; Poisson’s ratio,
ν = 0.3; initial yield stress, σ0 = 400MPa; isotropic hardening with exponent n = 0.2.

The quantities considered include the overall shear stress Σ12, the porosity f , the inclina-
tion of the void characterized by the angle θ defined in Figure 1(b), and the semi-axes Ri

normalized by their initial value R0. These quantities are plotted versus the “shear angle”

Ψ = arctan
U1

2B0 + U2

, (26)

for various values of the ratio κ defined above.

* Simulations based on the ML model. To mimic Nielsen et al. (2012)’s simulations with the
ML model, we use the following parameters: Tvergaard’s parameter for a spherical void,
qsph = 1.47 - value recommended by Perrin and Leblond (1990) from a “self-consistent”
approach; parameters for mesoscopic strain localization, see Table 1 below.

* Comparison of results. Figure 2 displays the comparison between the results of the
two types of simulations. 11 For the overall shear stress Σ12 (Figure 2(a)), the theoretical
predictions reproduce the numerical results very well, including the final decrease of the

10 Nielsen et al. (2012)’s original notation κ is preserved here although this symbol has already
been used in the expression (4) of the linear form L(σ); there is no risk of confusion since
expression (4) will play no role in the rest of the paper. Also, capital letters are used here
to symbolize the averaging process, but Σ12 and Σ22 simply correspond to the local stress
components σ12 and σ22 in the ML homogenized model.
11 In all figures the angle Ψ characterizing the overall transformation gradient is measured in
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κ 1.5 1.25 1 0.75 0.5 0.25

(f + g)c 0.032 0.035 0.039 0.043 0.047 0.051

δ 8 8 8 8 8 8

Table 1
Parameters of mesoscopic strain localization for an initially spherical void - f0 = 0.0164

stress due to mesoscopic strain localization. This good agreement is admittedly achieved
by allowing the parameter (f + g)c to slightly depend upon the load parameter κ, see
Table 1. But the necessity of such a dependence upon the loading has already been noted
by Koplik and Needleman (1988) and Perrin (1992) for the simpler GTN model, in the
absence of macroscopic shear, and obviously arises from the crudeness of the modelling
of mesoscopic strain localization.

The model also reproduces the evolution of the porosity f (Figure 2(b)) rather well,
including its slight decrease for small values of κ (small axial stress Σ22).

Finally the evolutions of the orientation of the void (Figure 2(c)) and its semi-axes (Figures
2(d) and 2(e)) are acceptably reproduced, although the model tends to minimize the void’s
change of shape. The quality of the model predictions is however certainly impaired here
by the fact that the “numerical void” does not remain strictly ellipsoidal when deformed,
especially for low triaxialities. Indeed in such conditions it often approximately takes the
shape of a “dumbbell”, for which contact between diametrically opposed parts of the
surface occurs earlier than for an ellipsoid - note that in Figure 2(e) for κ = 0.25, the
minor semi-axis c becomes zero (implying contact) in the micromechanical simulation at
about Ψ = 0.8, when the value predicted by the model is still positive. It is also interesting
to note that the three semi-axes take quite distinct values, which illustrates the difficulty
of applying the simpler GLD model, based on the assumption of two distinct axes only,
to the situations considered here.

4.2 Initially circular cylindrical voids

* Micromechanical simulations. Nielsen et al. (2012) have also performed 2D, plane strain
simulations analogous to the preceding 3D ones, but for initially circular cylindrical voids
instead of spherical ones. The initial cell geometry considered is shown in Figure 3. The
value of the ratio R0/A0 of the initial radius R0 of the void to the horizontal half-dimension
A0 of the cell is changed to 0.29 so as to warrant an (almost) identical initial porosity,
f0 = 0.0165.

* Simulations based on the ML model. To tentatively reproduce the numerical results with
the ML model, we use the same value of Tvergaard’s parameter for a spherical void as
before, qsph = 1.47, but slightly different parameters for mesoscopic strain localization,
see Table 2 below.

radians; but in Figure 2(c) and similar ones the angle θ characterizing the orientation of the
void is measured in degrees.
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Fig. 2. Comparison of numerical results and model predictions - Initially spherical void,
f0 = 0.0164

* Comparison of results. Figure 4 displays the comparison of micromechanical results and
model predictions. The overall shear stress Σ12 (Figure 4(a)) is again very well reproduced
by the model. The porosity f (Figure 4(b)) is somewhat less well reproduced than for
an initially spherical void (compare to Figure 2(b)), but global tendencies - notably the
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2A0

2B0

2R0

e1

e2

Fig. 3. Elementary cell containing an initially circular cylindrical void (after Nielsen et al. (2012))

κ 1.5 1.25 1 0.75 0.5 0.25

(f + g)c 0.035 0.04 0.047 0.058 0.068 0.08

δ 15 15 15 15 15 15

Table 2
Parameters of mesoscopic strain localization for an initially circular cylindrical void - f0 = 0.0165

dependence on κ - are nevertheless correctly captured.

For the orientation of the void (Figure 4(c)) and the values of its semi-axes (Figures 4(d)
and 4(e)), the model predictions are of the same overall quality as for an initially spherical
void - compare to Figures 2(c), 2(d) and 2(e). Again, the variations of the semi-axes are
somewhat underestimated by the model, and in Figure 4(e) for κ = 0.25, the value of the
minor semi-axis c predicted by the model is still positive at about Ψ = 0.4, when contact
occurs in the micromechanical simulation. The common explanation of these discrepancies
probably again lies in the fact that the cross-section of the numerical void becomes in time
more “dumbbell-shaped” than elliptic.

4.3 Initially elliptic cylindrical voids

* Micromechanical simulations. We finally consider 2D, plane strain simulations of Tver-
gaard (2015a) for initially elliptic cylindrical voids. These simulations are especially in-
teresting in that they evidence a strong effect of the initial void shape. The initial cell
geometry is the same as before, but now B0/A0 = 2 instead of 4, and the void is an elliptic
cylinder of semi-axes R10 and R20 (Figure 5(a)). Various values of the void aspect ratio

α =
R10

R20

(27)

are envisaged. The initial porosity is f0 = 0.02452 in all cases.
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Fig. 4. Comparison of numerical results and model predictions - Initially circular cylindrical
void, f0 = 0.0165

The boundary conditions are now fully periodic on all bounding surfaces of the cell,
x1 = ±A0, x2 = ±B0. The overall displacements imposed U top

1 , Ubot
1 , U2 (see Figure

5(b)) are continuously adjusted so as to enforce constant values of the ratios Σ11/Σ12 and
Σ22/Σ11; in practice Σ11/Σ12 = 0.1 and Σ22/Σ11 = 3 (so that κ = Σ22/Σ12 = 0.3).
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Fig. 5. Elementary cell containing an initially elliptic cylindrical void (after Tvergaard (2015a))

Possible autocontact between diametrically opposed parts of the void’s surface is ac-
counted for here in a simplified way, by introducing an internal pressure into the void,
perpendicularly to its major axis, when the ratio of its minor axis to its major one be-
comes smaller than some prescribed value (in practice 0.15). Numerical studies of Dahl
et al. (2012) have shown that this approximate procedure is acceptable.

The values of the material parameters are the same as before except for the hardening
exponent, for which the value n = 0.1 is now used instead of 0.2.

* Simulations based on the ML model. To reproduce the numerical results with the ML
model, we again use the value qsph = 1.47, but slightly different values of (f + g)c and δ,
now depending on the void aspect ratio α, see Table 3 below.

α 0.25 0.5 1 2 4

(f + g)c 0.16 0.13 0.095 0.074 0.105

δ 15 15 15 9 8

Table 3
Parameters of mesoscopic strain localization for an initially elliptic cylindrical void - f0 = 0.02452

In addition, since the minor semi-axis of the void is prevented from going to zero in the
micromechanical simulations, a positive minimum value cmin of this semi-axis is introduced
into the model. This value is chosen so as to be compatible with the minimum value of
0.15 of the ratio of the minor to major semi-axes imposed by Tvergaard (2015a).

* Comparison of results. Figures 6 and 7 compare numerical results to model predictions;
all quantities are plotted here versus the shear component of the overall transformation
gradient, F12 = U top

1 /(2B0). Note that in Figures 6(b), 6(c) for the porosity and the void’s
orientation and 7(a) - 7(e) for the void’s semi-axes, the curves are often stopped earlier
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than in Figure 7(a) for the overall shear stress. The reason is that since (in both the
micromechanical simulations and the model) the internal pressure is imposed before the
void’s minor axis becomes truly zero, its introduction certainly impairs the subsequent
evolutions of the porosity and the minor semi-axis, perhaps also those of the major semi-
axis and the orientation of the void; therefore the curves representing these evolutions are
truncated when (pseudo-)contact sets in.
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Fig. 6. Comparison of numerical results and model predictions - Initially elliptic cylindrical void,
f0 = 0.02452

For the overall shear stress Σ12 (Figure 6(a)), the agreement is again very good. The
reproduction by the model of the large influence of the void aspect ratio α, on both the
behavior prior to mesoscopic strain localization and the onset of localization, is especially
remarkable. Clearly, and appealingly, the void with initially circular cross-section is the
least detrimental; and for the voids with elliptic cross-section, these with initial major
axis oriented in the horizontal direction of shear, that is having R10 > R20 or α > 1, are
more detrimental than those with initial major axis oriented in the perpendicular vertical
direction, that is having R10 < R20 or α < 1.

For the porosity f (Figure 6(b)), the agreement of numerical results and theoretical pre-
dictions is notably poorer than for initially spherical or circular cylindrical voids (compare
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Fig. 7. Comparison of numerical results and model predictions - Initially elliptic cylindrical void,
f0 = 0.02452

to Figures 2(b) and 4(b)). Note for instance that for α = 2 and 4, the numerical porosity
slightly decreases while the theoretical one unrealistically increases. 12 But these discrep-

12 This is probably because the heuristic modelling of mesoscopic strain localization through
replacement of f + g with (f + g)∗ tends to enhance the porosity rate.
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ancies have little impact upon the quality of the model predictions for the overall shear
stress.

Finally for the orientation of the void (Figure 6(c)), the model again makes an acceptable
job, whereas for the values of the semi-axes (Figures 7(a) - 7(e)), the model predictions are
somewhat less satisfactory. It is worth noting in this respect that in the micromechanical
simulations contact occurs for all values of α, whereas the model predicts that contact
occurs only for α = 0.25 and 0.5, and for larger values of F12 than in the micromechanical
simulations (0.27 versus 0.16 for α = 0.25, 0.5 versus 0.25 for α = 0.5). The fact that the
model predicts less contact than actually observed numerically is a consequence of the
errors due to the hypothesis of persistent ellipsoidal shape of the void; and small values
of α favor contact in the model because the smaller this parameter, the smaller the initial
distance between the quasi-vertical parts of the void’s surface which will ultimately come
in contact. 13

4.4 Discussion

It is useful here to distinguish between the phases preceding and following the onset of
mesoscopic localization; indeed these phases are different from a modelling point of view
since the heuristic parameters (f + g)c and δ do not have any impact upon the first one,
but play a role during the entire second one.

During the phase preceding the onset of mesoscopic localization, the model predictions
do not involve any adjustable parameter. They reproduce the influence of the initial
void shape in a remarkable way. They do predict that the softening effect of the void is
somewhat stronger for an initially circular cylindrical void than for an initially spherical
one (compare Figures 2(a) and 4(a)). More importantly, for elliptic cylindrical voids,
the ML model captures very well the important influence of the void aspect ratio, the
detrimental effect of the void being maximal when its cross-section is an elongated ellipse
with major axis oriented in the direction of shear (Figure 6(a)).

With regard to the phase following the onset of mesoscopic localization, the ML model
correctly predicts both the onset of mesoscopic localization and the subsequent evolutions
of quantities. It may be objected that this success is obtained at the expense of (i) intro-
duction of the heuristic parameters (f+g)c and δ, and (ii) adjustment of these parameters
as functions of the loading and, in the case of elliptic cylindrical voids, the void aspect
ratio. One may answer to the first objection that Gurson (1977)’s model, even if taken
in the form of the GTN variant incorporating analogous parameters fc and δ, cannot do
a similar job since it predicts softening only if the porosity increases, which is not the
case in several of the micromechanical simulations. And the natural answer to the second
objection is that the necessary variations of the parameters (f + g)c and δ, which were
already observed by Koplik and Needleman (1988) and Perrin (1992) in the classical case

13 An additional unrealistic feature of the model predictions is the final increase of the void’s
minor semi-axis c for α = 1 and 2, probably again due to the crudeness of the heuristic modelling
of mesoscopic strain localization.
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of initially spherical voids subjected to axisymmetric loadings, are a consequence of the
crude modelling of mesoscopic strain localization; it is hoped that more rigorous models
of this phenomenon, based on micromechanical analyses extending that recently proposed
by Benzerga and Leblond (2014), will be developed in the future and incorporated into
the model.

The model predicts occurrence of contact between diametrically opposed parts of the
void’s surface less frequently than what is actually observed in the micromechanical sim-
ulations. This is due to the hypothesis it makes of persisting ellipsoidal shape, which
disregards the thinning of the central part of the void leading to easier and earlier con-
tact. But this discrepancy does not seem to bear important consequences upon the quality
of the model predictions with regard to the overall stresses and the global softening.

A comparison with Nahshon and Hutchinson (2008)’s proposed heuristic modelling of
ductile damage in shear within Gurson (1977)’s model is finally in order. The simplicity
and practical usefulness of Nahshon and Hutchinson (2008)’s proposal are not in question
here. It is recalled in particular that Tvergaard and Nielsen (2010) have shown that it
permits, with a suitable adjustment of a parameter governing the growth of the “porosity”
in shear, to satisfactorily reproduce the results of their micromechanical simulations of
initially spherical and circular cylindrical voids. But such a good agreement would not be
obtained for Tvergaard (2015a)’s simulations of initially elliptic cylindrical voids, since
they evidence a large effect of the initial void shape which is not incorporated in Gurson
(1977)’s model, even with Nahshon and Hutchinson (2008)’s modified evolution equation
of the porosity.

5 Summary and perspectives

The aim of this paper was to assess the capabilities of the ML model of porous plastic
solids recently developed by Madou and Leblond (2012a,b, 2013); Madou et al. (2013),
extending Gurson (1977)’s classical model through incorporation of void shape effects.
This was done by comparing the predictions of this model to the results of some mi-
cromechanical simulations, used as references, of Tvergaard and coworkers (Tvergaard,
2008, 2009; Dahl et al., 2012; Nielsen et al., 2012; Tvergaard, 2012, 2015a) of elementary
porous cells subjected to various loadings including an important shear component.

In a first step, a finite element implementation of the model was proposed. Heavy use
was made there of the theory of generalized standard materials developed by Halphen
and Nguyen (1975) and Nguyen (1977). This theory served as a guide to define an im-
plementation ensuring existence and uniqueness of the solution of the local problem, at
an arbitrary integration point, of “projection” of the (supposedly known) elastic stress
predictor onto the complex ML yield locus. This implementation has been incorporated
into the SYSTUS� and ABAQUS� finite element programmes; for the latter programme
this has been done by writing a UMAT made freely available on the Web (Leblond, 2015).

In a second step, the micromechanical simulations of Nielsen et al. (2012); Tvergaard
(2015a) were tentatively reproduced by applying the loadings considered by these authors
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to a mesh consisting of a single element obeying the ML model. All results of Nielsen et
al. (2012); Tvergaard (2015a) with regard to the evolutions of the overall shear stress, the
porosity, the orientation of the void and the magnitude of its principal axes were more
or less well reproduced, the overall agreement being quite acceptable. The model was
found in particular to satisfactorily account for (i) the large influence, prior to mesoscopic
strain localization, of the aspect ratio of elliptic cylindrical voids upon the softening they
generate; (ii) the occurrence of mesoscopic strain localization accelerating softening, even
in the absence of significant void growth.

The ML model thus appears as a viable, more complete and versatile although more com-
plex, alternative to Nahshon and Hutchinson (2008)’s proposed modification of Gurson
(1977)’s model for the description of ductile rupture at low triaxialities.

This work opens perspectives of two kinds:

• The simulations depicted in the present paper represent only elementary tests of the ML
model based on comparison with independent micromechanical simulations of the be-
havior of small homogeneous volumes. The model, having successfully passed the tests,
must now be applied to full experimental specimens or industrial structures involving
inhomogeneous stress states. This is all the more indispensable since the “reference”
micromechanical simulations, in spite of their interest, do not cover the whole range
of possible void shapes and loadings to be encountered in practice. A first example of
application, pertaining to the simulation of fracture tests performed by Dunand and
Mohr (2011a,b) on “butterfly specimens” subjected to combined tension and shear, will
be presented shortly. Other future examples could include simulations of fracture tests
of axisymmetric specimens subjected to combined tension and torsion.

• Also, the ML model may now be used to assist the development of improved, micro-
mechanically-based models of (void coalescence)/(mesoscopic strain localization), along
the lines recently defined by Benzerga and Leblond (2014). Indeed in models of this kind,
the spacings of the voids in the different directions of space always have an important
impact upon the onset of the phenomenon, generating a need for accurate prediction of
the evolution of the void axes prior to this event. The ML model may be used for this
purpose, quite in the same way as Pardoen and Hutchinson (2000) used the simpler
GLD model in cases where the voids could be assumed to remain spheroidal. Conversely,
the ML model may in turn benefit from the development of such micromechanical
descriptions of (void coalescence)/(mesoscopic strain localization), which will serve as
advantageous alternatives to the simple heuristic modelling proposed in this paper,
based on a “critical value” of the parameter f + g characterizing ductile damage.
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métaux. Thèse de Doctorat d’Etat, Ecole Polytechnique (in French).

Perrin G., Leblond J.B. (1990). Analytical study of a hollow sphere made of porous plastic
material and subjected to hydrostatic tension - Application to some problems in ductile
fracture of metals. Int. J. Plast., 6, 677-699.

Ponte-Castaneda P., Zaidman M. (1994). Constitutive models for porous materials with
evolving microstructure. J. Mech. Phys. Solids, 42, 1459-1492.

Rice J.R., Tracey D.M. (1969). On the ductile enlargement of voids in triaxial stress fields.
J. Mech. Phys. Solids, 17, 201-217.

Scheyvaerts F., Onck P., Tekoglu C., Pardoen T. (2011). The growth and coalescence

28



of ellipsoidal voids in plane strain under combined shear and tension. J. Mech. Phys.
Solids, 59, 373-397.

Siruguet K., Leblond J.B. (2004a). Effect of void locking by inclusions upon the plastic
behavior of porous ductile solids - I: Theoretical modelling and numerical study of void
growth. Int. J. Plast., 20, 225-254.

Siruguet K., Leblond J.B. (2004b). Effect of void locking by inclusions upon the plastic
behavior of porous ductile solids - II: Theoretical modelling and numerical study of void
coalescence. Int. J. Plast., 20, 255-268.

Song D., Agoras M., Ponte-Castaneda P. (2015). The evolution of pore shape and orien-
tation in plastically deforming metals: implications for macroscopic response and shear
localization. Mech. Mater., 90, 47-68.

Tvergaard V. (1981). Influence of voids on shear band instabilities under plane strain
conditions. Int. J. Fract., 17, 389-407.

Tvergaard V. (1990). Material failure by void growth to coalescence. Adv. Appl. Mech.,
27, 83-151.

Tvergaard V. (2008). Shear deformation of voids with contact modeled by internal pres-
sure. Int. J. Mech. Sci., 50, 1459-1465.

Tvergaard V. (2009). Behaviour of voids in a shear field. Int. J. Fract., 158, 41-49.
Tvergaard V. (2012). Effect of stress-state and spacing on voids in a shear-field. Int. J.
Solids Struct., 49, 3047-3054.

Tvergaard V. (2015a). Effect of initial void shape on ductile failure in a shear field. Mech.
Mater., 90, 2-9.

Tvergaard V. (2015b). Behaviour of porous ductile solids at low stress triaxiality in dif-
ferent modes of deformation. Int. J. Solids Struct., 60-61, 28-34.

Tvergaard V., Needleman A. (1984). Analysis of the cup-cone fracture in a round tensile
bar. Acta Metall., 32, 157-169.

Tvergaard V., Nielsen K.L. (2010). Relations between a micro-mechanical model and a
damage model for ductile failure in shear. J. Mech. Phys. Solids, 58, 1243-1252.

Xue Z., Pontin M.A., Zok F.W., Hutchinson J.W. (2010). Calibration procedures for a
computational model of ductile fracture. Engng. Fract. Mech., 77, 492-509.

29




