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A concern for researchers planningmultisite studies is that scanner and T1-weighted sequence-related biases on
regional volumes could overshadow true effects, especially for studies with a heterogeneous set of scanners and
sequences. Current approaches attempt to harmonize data by standardizing hardware, pulse sequences, and pro-
tocols, or by calibrating across sites using phantom-based corrections to ensure the same raw image intensities.
We propose to avoid harmonization and phantom-based correction entirely. We hypothesized that the bias of
estimated regional volumes is scaled between sites due to the contrast and gradient distortion differences be-
tween scanners and sequences. Given this assumption, we provide a new statistical framework and derive a
power equation to define inclusion criteria for a set of sites based on the variability of their scaling factors. We
estimated the scaling factors of 20 scannerswith heterogeneous hardware and sequence parameters by scanning
a single set of 12 subjects at sites across the United States and Europe. Regional volumes and their scaling factors
were estimated for each site using Freesurfer's segmentation algorithm and ordinary least squares, respectively.
The scaling factorswere validated by comparing the theoretical and simulated power curves, performing a leave-
one-out calibration of regional volumes, and evaluating the absolute agreement of all regional volumes between
sites before and after calibration. Using our derived power equation, wewere able to define the conditions under
which harmonization is not necessary to achieve 80% power. This approach can inform choice of processing pipe-
lines and outcome metrics for multisite studies based on scaling factor variability across sites, enabling collabo-
ration between clinical and research institutions.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The pooled or meta-analysis of regional brain volumes derived from
T1-weighted MRI data across multiple sites is reliable when data is ac-
quired with similar acquisition parameters (Cannon et al., 2014;
Ewers et al., 2006; Jovicich et al., 2006). The inherent scanner- and
sequence-related noise of MRI volumetrics under heterogeneous acqui-
sition parameters has prompted many groups to standardize protocols
across imaging sites (Boccardi et al., 2013; Cannon et al., 2014; Weiner
et al., 2012). However, standardization across multiple sites can be pro-
hibitively expensive and requires a significant effort to implement and
maintain. At the other end of the spectrum, multisite studies without
standardization can also be successful, albeit with extremely large sam-
ple sizes. The ENIGMA consortium, for example, combined scans of over
10,000 subjects from 25 sites with varying field strengths, scanner
makes, acquisition protocols, and processing pipelines. The unusually
large sample size enabled this consortium to provide robust phenotypic
traits despite the variability of non-standardized MRI volumetrics and
the power required to run a genome wide association study (GWAS)
to identify modest effect sizes (Thompson et al., 2014). These studies
raise the following question: Is there a middle ground between fully
standardizing a set ofMRI scanners and recruiting thousands of subjects
across a large number of sites? Eliminating the harmonization require-
ment for a multisite study would facilitate inclusion of retrospectively
acquired data and data from sites with ongoing longitudinal studies
that would not want to adjust their acquisition parameters.

Towards this goal, there is a large body of literature addressing the
correction of geometric distortions that result from gradient non-
linearities. These corrections fall into two main categories: phantom-
based deformation field estimation and direct magnetic field gradient
measurement-based deformation estimation, the latter of which re-
quires extra hardware and spherical harmonic information from the
manufacturer (Fonov et al., 2010). Calibration phantoms, such as the
Alzheimer's Disease Neuroimaging Initiative (ADNI) (Gunter et al.,
2009) and LEGO® (Caramanos et al., 2010), have been used by large
multisite studies to correct for these geometric distortions, which also
affect regional volumemeasurements. These studies have outlined var-
ious correction methods that significantly improve deformation field
similarity between scanners. However, the relationship between the se-
verity of gradient distortion and its effect on regional volumes, in partic-
ular, remains unclear. In the case of heterogeneous acquisitions,
correction becomes especially difficult due to additional noise sources.
Gradient hardware differences across sites are compounded with con-
trast variation due to sequence parameter changes. In order to properly
evaluate the reproducibility of brain segmentation algorithms, these
phantoms should resemble the human brain in size, shape, and tissue
distribution. Droby and colleagues evaluated the stability of a post-
mortem brain phantom and found similar reproducibility of volumetric
measurements to that of a healthy control (Droby et al., 2015). In this
study, we propose to measure between-site bias through direct calibra-
tion of regional volumes by imaging 12 common healthy controls at
each site. Quantifying regional bias allows us to overcome between-
site variability by increasing sample size to an optimal amount, rather
than employing a phantom-based voxel-wise calibration scheme that
corrects both contrast differences and geometric distortions.

We hypothesized that all differences in regional contrast and geo-
metric distortion result in regional volumes that are consistently and
linearly scaled from their true value. For a given region of interest
(ROI), two mechanisms simultaneously impact the final boundary defi-
nition: (1) gradient nonlinearities cause distortion and (2) hardware
(including scanner, field strength, and coils) and acquisition parameters
modulate tissue contrast. Based on the results of Tardiff and colleagues,
who found that contrast-to-noise ratio and contrast inhomogeneity
from various pulse sequences and scanner strengths cause regional
biases in VBM (Tardif et al., 2009, 2010), we hypothesized that each
ROI will scale differently a teach site. Evidence for this scaling property
can also be seen in the overall increase of gray matter volume and de-
crease of white matter volume of the ADNI-2 compared to the ADNI-1

http://creativecommons.org/licenses/by/4.0/
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protocols despite attempts to maintain compatibility between these
protocols (Brunton et al., 2013). It was also observed that hippocampal
volumes were 1.17% larger on 3T scanners compared to the 1.5T scan-
ners in the ADNI study (Wolz et al., 2014). By imaging 12 subjects in
20 different scanners using varying acquisition schemes, we were able
to estimate the scaling factor for each regional volume at each site. We
also defined a framework for calculating the power of a multisite
study as a function of the scaling factor variability between sites. This
enables us to power a cross-sectional study, and to outline the condi-
tions under which harmonization could be replaced by sample size op-
timization. This framework can also indicate which regional volumes
are sufficiently reliable to investigate using a multisite approach.

Regional brain volumes are of interest in most neurological condi-
tions, including healthy aging, and typically indicates the degree of neu-
ronal degeneration. In this study, we investigate a number of well-
defined regional brain volumetrics related to multiple sclerosis disease
progression. Even though focal whitematter lesions seen onMRI largely
characterize multiple sclerosis (MS), lesion volumes are not strongly
correlated with clinical disability (Filippi et al., 1995; Furby et al.,
2010; Kappos et al., 1999). Instead, global gray matter atrophy corre-
lates better with clinical disability (for a review, see Horakova et al.
(2012)), along with white matter volume, to a lesser extent (Sanfilipo
et al., 2006). In addition, regional gray matter atrophy measurements,
such as thalamus (Cifelli et al., 2002; Houtchens et al., 2007;
Wylezinska et al., 2003; Zivadinov et al., 2013) and caudate (Bermel
et al., 2003; Tao et al., 2009) volumes, appear to be better predictors of
disability (Dalton et al., 2004; Fisher et al., 2008; Fisniku et al., 2008;
Giorgio et al., 2008).

Theory

Linear mixed models are common in modeling data from multisite
studies becausemetrics derived from scanner, protocol, and population
heterogeneitymay not have uncorrelated error termswhenmodeled in
a general linearmodel (GLM),which violates a key assumption (Garson,
2013). In fact, Fennema-Notestine and colleagues found that a mixed
model, with scanner as a random effect, outperformed pooling data
via GLM (Fennema-Notestine et al., 2007) on a study on hippocampal
volumes and aging. Since we are only interested in the effect of
scanner-related heterogeneity, we assume that the relationship
between the volumetrics and clinical factors of interest are the
same at each site. This causes error terms to cluster by scanner and se-
quence type due to variation in field strengths, acquisition parameters,
scanner makes, head coil configurations, and field inhomogeneities, to
name a few (Cannon et al., 2014). Linear mixed models, which include
random effects and hierarchical effects, appropriately integrate
observation-level data based on their clustering characteristics
(Garson, 2013). The model we propose in this study is similar to a
mixed model, with a multiplicative effect instead of an additive effect.
Our goal is to incorporate an MRI bias-related term in our model in
order to optimize sample sizes.

We first defined the true, unobserved model for subject i at site j as:

Uij ¼ β00 þ β10Xi; j þ β20Zi; j þ ϵi; j ð1Þ

where Ui ,j is the unobserved value of the regional brain volume of inter-
est (without any effects from the scanner), and β00 ,β10 and β20 are the
true, unobserved, effect sizes. The covariates are Zi , j, residuals are ϵi , j,
and the contrast vector, Xi ,j, is given the weights Xhigh ,Xlow=0.5,−0.5
so that β10 is computed as the average difference between the high
and low groups. For this derivation we assume an equal number of sub-
jects observed at each site in the high and low groupswith balanced co-
variates. ϵ is normally distributed with mean 0 and standard deviation
σ0.
Wedefined a site-levelmodel using the notation of Raudenbush and
Liu (2000), to express the relationship between a brain metric that is
scaled by aj as Yi ,j=aj*Uij and high or low disease group Xi ,j for subject
i=1,… ,n at site j as

Yi; j ¼ b0 j þ b1; jXi; j þ b2; jZi; j þ ri; j: ð2Þ
The site mean, disease effect, and covariate effect randomly vary be-

tween sites so the intercept and slope coefficients become dependent
variables (Raudenbush and Liu, 2000) and we assume:

bk; j ¼ aj � βk;0 ð3Þ

where the true underlying coefficient, βk ,0 for k=0,1,2 is scaled ran-
domly by each site. The major contributors to brain structure region of
interest (ROI) boundary variability are contrast differences and gradient
distortions, both of which adjust the boundary of the whole ROI rather
than add a constant term. To reflect this property, we modeled the sys-
tematic error from each MRI sequence as a multiplicative (Yi , j=aj*Yi)
rather than additive (Yij=Yi+aj) error term. Similarly, the residual
term is also scaled by site, ri , j∼N(0,aj2σ0

2), and the scaling factor, aj, is
sampled from a normal distribution with mean μa and variance σa

2.

aj ∼N μa;σ
2
a

� � ð4Þ

For identifiability, let μa=1. The mean disease effect estimate, β1,j is
defined as themean brainmetric volume difference in the high and low
groups.

DY ; j ¼ YH j
−YL j

ð5Þ

The unconditional variance of the disease effect estimate at site j is
can be written in terms of the unobserved difference between groups
before scaling, DU ,j=DY ,j/aj:

var DY; j
� � ¼ var DU; ja j

� � ¼ var DU; j
� �

var aj
� �þ var DU; j

� �
E aj
� �2

þ var aj
� �

E DU; j
� �2 ð6Þ

where we are assuming that DU ,j and aj are independent, meaning that
MRI-related biases are independent of the biological effects being stud-
ied. For the derivation of this formula, see the Appendix. Given the dis-
tribution of scaling factors and the variance of the true disease effect,
var[DU ,j]=4σ0

2/n, the equation simplifies to

var DY; j
� � ¼ 4σ2

0
n

μ2
a þ

4σ2
0

n
σ2

a þ σ2
aβ

2
10: ð7Þ

We standardize the equation by defining the coefficient of variability

for the scaling factors as CV2
a ¼ ðσa

μa
Þ2, and the standardized true effect

size as δ ¼ β10
σ0
.

var DY; j
� � ¼ μ2

aσ
2
0

4
n
þ CV2

a
4
n
þ δ2

� �� �
ð8Þ

Finally, the coefficients are averaged over J sites to produce the over-

all estimate β̂10 ¼ 1
J ∑

J
j¼1DY; j, and

E β̂10

h i
¼ 1

J

XJ

j¼1

E DY; j
� � ¼ β10

J

XJ

j¼1

E aj
� � ¼ β10μa: ð9Þ

Note that this estimator is asympototically normally distributed
when the number of centers, J, is fixed, because it is the average of as-
ymptotically normal estimators. When the number of subjects per site
is not equal, the maximum likelihood estimator is the average of the
site-level estimates weighted by the standard error, and this is shown
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in the Appendix A. The variance of the overall estimate can be expressed
as

var β̂10

h i
¼ 1

J2
XJ

j¼1

var DY ; j
� � ¼ σ2

0μ
2
a

4
n
þ CV2

a
4
n
þ δ2

� �� �
J

: ð10Þ

In order to test the average disease effect under the null hypothesis
that β1=0, the non-central F distribution, F(1, J−1;λ) (Raudenbush
and Liu, 2000) is applied, with the non-centrality parameter defined as

λ ¼
E β̂10

h i2
var β̂10

h i ¼ Jδ2

4
n
þ CV2

a
4
n
þ δ2

� � : ð11Þ

Fig. 1 shows power curves for small to medium effect sizes (δ=
0.2 ,0.3, defined in Raudenbush and Liu (2000)), and a false positive
rate of α=0.002, which allows for 25 comparisons under Bonferroni
correction, where the corrected α=0.05. Power increases for larger λ

and maximizes at λ ¼ Jnδ2
4 as CVa approaches 0. In this case, the power

equation is dominated by the total number of subjects, as is the case
for the GLM. However, even as the number of subjects per site, n, ap-
proaches infinity and for non-negligible CVa, λ is still bounded by J

CV2
a
.

At this extreme, the power equation is largely influenced by the number
of sites. This highlights the importance of the site-level sample size (J) in
addition to the subject-level sample size (n) for power analyses, espe-
cially when there is larger variability between sites for metrics of inter-
est. In the methods section, the acquisition protocols and the standard
processing pipelines that were used to calculate CVa values of relevant
regional brain volumes for MS are described, though this framework
could be applied to any MRI derived metric.

We emphasize that the use of phantom subjects does not directly
contribute to the power equation in Fig. 1, as it does not account for
any sort of calibration or scaling. However, it requires an estimate for
CVa, which is the variability of scaling biases between sites. The goal of
this study is to provide researchers with estimates of CVa from our set
of calibration phantoms and our set of non-standardized MRI acquisi-
tions. For a standardized set of scanners, the values of CVa may be con-
sidered an upper bound.
Fig. 1.A. Power contours for total number of subjects (nJ) over various effect sizes (d), p=0.002
# sites for various effect sizes, where n = 200 subjects per site.
Methods

Acquisition

T1-weighted 3D-MPRAGE images were acquired from 12 healthy
subjects (3 male, 9 female, ages 24–57) in 20 scanners across Europe
and the United States. Institutional approval was acquired and signed
consentwas obtained for each subject at each site.These scanners varied
in make and model, including all three major manufacturers: Siemens,
GE, Philips. Two scans were acquired from each subject, where the sub-
ject got out of the scanner between scans for a couple minutes, and was
repositioned and rescanned by the scanning technician of that particu-
lar site. Previously, Jovicich and colleagues showed that reproducible
head positioning along the z axis significantly reduced image intensity
variability across sessions (Jovicich et al., 2006). By repositioning in
our study, a realistic measure of test–retest variability, which includes
the repositioning consistency of each site's scanning procedure, was
captured. Because gradient distortion effects correspond to differences
in z-positioning (Caramanos et al., 2010), the average translation in
the Z-direction between the two runs of each subject at each sitewas es-
timated with a rigid body registration.

Tables 1 through 4 show the acquisition parameters for all 20 scan-
ners. Note that the definitions of repetition time (TR), inversion time
(TI) and echo time (TE) vary by scanner make. For example, the TR in
a Siemens scanner is the time between preparation pulses, while for
Philips andGE, the TR is the timebetween excitation pulses.Wedecided
to report the parameters according to the scannermake definition, rath-
er than trying to make them uniform, because slightly different pulse
programming rationales would make a fair comparison difficult. In ad-
dition, a 3D-FLASH sequence (TR = 20 ms, TE = 4.92 ms, flip
angle = 25°, resolution = 1 mm isotropic) was acquired on healthy
controls and MS patients at site 12, in order to compare differences in
scaling factor estimates between patients and healthy controls.
Processing

A neuroradiologist reviewed all images to screen for major artifacts
and pathology. The standard Freesurfer (Fischl et al., 2002) version
5.3.0 cross-sectional pipeline (recon-all) was run on each site's native
T1-weighted protocol, using the RedHat 7 operating system on IEEE
754 compliant hardware. Both 1.5T and 3T scans were run with the
same parameters (without using the −3T flag), meaning that the
non-uniformity correction parameters were kept at the default values.
, CVa=5%. B. # of sites required for effect sizes and # subjects per site (n). C effect of CVa on



Table 2
Top: Acquisition parameters for the 3T Philips andGE scanners. Ph=Philips, GE=General Electric. Bottom: Test–retest reliabilities for selectedROIs, processed by Freesurfer. The ROIs are
graymatter volume (GMV), subcortical graymatter volume (scGMV), cortex volume (cVol), corticalwhitematter volume (cWMV), and the volumes of the lateral ventricle (LV), amygdala
(Amyg), thalamus (Thal), hippocampus (Hipp), caudate (Caud), and finally the estimated total intracranial volume (eTIV). Test–retest reliability is computed as within-site ICC(1,1)

5 6 7 8 9

TR (ms) 8.21 7.80 9 8.21 6.99
TE (ms) 3.22 2.90 4.00 3.81 3.16
Strength (T) 3 3 3 3 3
TI (ms) 450 450 1000 1016.30 900
Flip angle (∘) 12 12 8 8 9
Make GE GE Ph Ph Ph
Voxel size (mm) .94 × .94 × 1 1 × 1 × 1.2 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1
Distortion correction N Y Y Y Y
Parallel imaging 2 2 3 2 —
FOV (mm) 240 × 240 × 172 256 × 256 × 166 240 × 240 × 170 240 × 240 × 160 256 × 256 × 204
Read out direction HF FH AP FH FH
Head coil # channels 8 8 16 32 8
Model MR750 Signa HDxt Achieva Achieva TX Intera
OS DV24 HD23.0_V01_1210a 3.2.3.2 5.1.7 3.2.3
Acq. time (min) 5:02 7:11 05:55 05:38 08:30:00
Orientation sag sag sag sag sag
# scans 24/24 24/24 24/24 24/24 21/22
Amyg (L) .67 .89 .66 .85 0.97
Amyg (R) .88 .79 .91 .94 0.94
Caud (L) .96 .98 .98 .97 0.98
Caud (R) .95 .96 .98 .93 0.96
GMV 1 .99 .99 .98 0.99
Hipp (L) .51 .97 .83 .90 0.99
Hipp (R) .95 .96 .93 .96 0.99
Thal (L) .97 .81 .94 .80 0.88
Thal (R) .70 .87 .96 .96 0.97
cVol .99 .99 .98 .98 0.99
cWMV 1 .99 1 1 1.00
eTIV 1 1 1 .92 0.99
scGMV .98 .99 .96 .98 0.99

Table 1
Top: Acquisition parameters for the four 1.5T scanners. Si = Siemens, Ph= Philips, GE= General Electric. Bottom: Test–retest reliabilities for selected ROIs, processed by Freesurfer. The
ROIs are graymatter volume (GMV), subcortical gray matter volume (scGMV), cortex volume (cVol), cortical white matter volume (cWMV), and the volumes of the lateral ventricle (LV),
amygdala (Amyg), thalamus (Thal), hippocampus (Hipp), caudate (Caud), and finally the estimated total intracranial volume (eTIV). Test–retest reliability is computed as within-site
ICC(1,1). * signifies a quadrature coil.

1 2 3 4

TR (ms) 8.18 7.10 2130 2080
TE (ms) 3.86 3.20 2.94 3.10
Strength (T) 1.50 1.50 1.50 1.50
TI (ms) 300 862.90 1100 1100
Flip angle (∘) 20 8 15 15
Make GE Ph Si Si
Voxel size (mm) .94 × .94 × 1.2 1 × 1 × 1 1 × 1 × 1 .97 × .97 × 1
Distortion correction N N N Y
Parallel imaging – 2 2 –
FOV (mm) 240 × 240 × 200 256 × 256 × 160 256 × 256 × 176 234 × 250 × 160
Read out direction HF AP HF HF
Head coil # channels 2* 8 20 12
Model Signa LX Achieva Avanto Avanto
OS 11x 2.50 VD13B B17A
Acq. time (min) 06:24 05:34 04:58 08:56
Orientation sag sag sag sag
# scans 24/24 24/24 24/24 18/18
Amyg (L) .93 .89 .61 .96
Amyg (R) .93 .90 .83 .88
Caud (L) .96 .96 .98 .99
Caud (R) .96 .97 .90 .96
GMV .96 .99 .98 .99
Hipp (L) .94 .95 .89 .93
Hipp (R) .93 .91 .94 .95
Thal (L) .77 .93 .59 .82
Thal (R) .91 .90 .76 .82
cVol .95 .99 .97 .99
cWMV .99 1 .99 .99
eTIV 1 1 1 1
scGMV .98 .97 .98 .93
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Table 3
Top: Acquisition parameters for the 3T Siemens (Si) Skyra and Prisma scanners. Bottom: Test–retest reliabilities for selectedROIs, processed by Freesurfer. The ROIs are graymatter volume
(GMV), subcortical gray matter volume (scGMV), cortex volume (cVol), cortical white matter volume (cWMV), and the volumes of the lateral ventricle (LV), amygdala (Amyg), thalamus
(Thal), hippocampus (Hipp), caudate (Caud), and finally the estimated total intracranial volume (eTIV). Test–retest reliability is computed as within-site ICC(1,1).

10 11 12 13 14 15

TR (ms) 2300 2300 2300 2300 2300 2000
TE (ms) 2.96 2.98 2.98 2.96 2.96 3.22
Strength (T) 3 3 3 3 3 3
TI (ms) 900 900 900 900 900 900
Flip angle (∘) 9 9 9 9 9 8
Make Si Si Si Si Si Si
Voxel size (mm) 1 × 1 × 1 1 × 1 × 1.1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1
Distortion correction Y N Y Y Y N
Parallel imaging 2 – 2 2 2 2
FOV (mm) 256 × 256 × 176 240 × 256 × 176 240 × 256 × 176 240 × 276 × 156 256 × 256 × 176 256 × 208 × 160
Read out direction HF RL HF HF HF RL
Head coil # channels 20 32 20 20 20 32
Model Prisma Prisma fit Skyra Skyra Skyra Skyra
OS D13D VD13D VD13 VD13 VD13C VD13
Acq. time (min) 05:09 07:46 05:12 05:12 05:09 04:56
Orientation sag sag sag sag sag ax
# scans 22/22 24/24 25/25 23/24 23/24 22/22
Amyg (L) .83 .89 .80 .85 .98 .89
Amyg (R) .94 .92 .93 .85 .93 .84
Caud (L) .99 .99 .98 .99 .98 .98
Caud (R) .99 .96 .95 .95 .98 .97
GMV .99 .98 .99 1 .99 .97
Hipp (L) .94 .98 .99 .95 .97 .98
Hipp (R) .91 .94 .97 .98 .95 .96
Thal (L) .92 .87 .87 .76 .91 .89
Thal (R) .74 .93 .80 .91 .93 .89
cVol .99 .98 .98 1 .99 .96
cWMV 1 1 1 1 1 .97
eTIV 1 1 1 1 1 .97
scGMV .98 .99 .98 .98 .99 .99
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All Freesurfer results were quality controlled by evaluating the cortical
gray matter segmentation and checking the linear transform to
MNI305 spacewhich is used to compute the estimated total intracranial
Table 4
Top: Acquisition parameters for 3T Siemens (Si) Trio scanners. Bottom: Test–retest reliabilities
cortical graymatter volume (scGMV), cortex volume (cVol), cortical white matter volume (cWM
pocampus (Hipp), caudate (Caud), and finally the estimated total intracranial volume (eTIV). T

16 17

TR (ms) 2300 2150
TE (ms) 2.98 3.40
Strength (T) 3 3
TI (ms) 900 1100
Flip angle (∘) 9 8
Make Si Si
Voxel size 1 × 1 × 1 1 × 1 × 1
Distortion correction N N
Parallel imaging 2 2
FOV (mm) 256 × 256 × 176 256 × 256 × 192
Read out direction HF RL
Head coil # channels 12 12
Model Trio Trio
OS MRB17 VB17
Acq. time (min) 05:03 04:59
Orientation sag ax
# scans 24/24 23/24
Amyg (L) .55 .88
Amyg (R) .85 .93
Caud (L) .99 .95
Caud (R) .97 .92
GMV .99 .99
Hipp (L) .71 .96
Hipp (R) .94 .94
Thal (L) .45 .85
Thal (R) .61 .95
cVol .99 .98
cWMV 1 .99
eTIV .97 1
scGMV .98 .98
volume (Buckner et al., 2004). Scanswere excluded from the study if the
cortical gray matter segmentation misclassified parts of the cortex, or if
the registration to MNI305 space was grossly inaccurate. Three scans
for selected ROIs, processed by Freesurfer. The ROIs are gray matter volume (GMV), sub-
V), and the volumes of the lateral ventricle (LV), amygdala (Amyg), thalamus (Thal), hip-
est–retest reliability is computed as within-site ICC(1,1).

18 19 20

1900 1900 1800
3.03 2.52 3.01
3 3 3
900 900 900
9 9 9
Si Si Si
1 × 1 × 1 1 × 1 × 1 .86 × .86 × .86
N N N
2 2 2
256 × 256 × 176 256 × 256 × 192 220 × 220 × 179
AP FH FH
12 32 32
Trio Trio Trio
VB17A VB17 MRB19
04:26 05:26 06:25
sag sag sag
23/24 24/24 24/24
.77 .88 .91
.81 .94 .93
.97 .97 .97
.98 .91 .95
.98 .99 1
.94 .93 .96
.92 .83 .96
.80 .80 .88
.85 .96 .79
.96 .99 1
.99 1 1
1 1 1
.98 .98 .98
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were excluded formisregistration. Two exclusionswere because of data
transfer errors. Because of time constraints, some subjectswere not able
to be scanned. One of the 12 subjects could not travel to all the sites, and
that subject was replaced by another of the same age and gender. The
details of this are provided in the supplemental materials and the total
number of scans is shown in Tables 1–4. 46 Freesurfer ROIs, including
the left and right subcortical ROIs, from the aparc.stats tables, were
studied. In this study we report on the ROIs relevant to the disease
progression of MS, which include the gray matter volume (GMV),
subcortical gray matter volume (scGMV), cortex volume (cVol),
cortical white matter volume (cWMV), and the volumes of the lateral
ventricle (LV), amygdala (amyg), thalamus (thal), hippocampus
(hipp), caudate (caud). The remaining ROIs are reported in the supple-
mental materials.

Test–retest reliability, defined as ICC(1,1) (Friedman et al., 2008),
was computed across each site and protocol for the selected metrics
using the “psych” package in R (Revelle, 2015). The between-site
ICC(2,1) values were computed following the procedure from previous
studies on multisite reliability (Cannon et al., 2014; Friedman et al.,
2008). Variance components were calculated for a fully crossed random
effects model for subject, site, and run using the “lme4” package in R.
Using the variance components, between site ICC was defined as

ICCBW ¼
σ2

subject

σ2
subject þ σ2

site þ σ2
run þ σ2

subject�site þ σ2
unexplained

ð12Þ

and an overall within-site ICC was defined as

ICCWI ¼
σ2

subject þ σ2
site þ σ2

subject�site

σ2
subject þ σ2

site þ σ2
run þ σ2

subject�site þ σ2
unexplained

: ð13Þ

Scaling factors between sites were estimated using ordinary least
squares from the average of the scan–rescan volumes, referenced to av-
erage scan–rescan volumes from the UCSF site. The OLS was run with
the intercept fixed at 0. CVa for each metric was calculated from the
sampling distribution of scaling factor estimates â as follows:

CVa ¼ std âð Þ
mean âð Þ : ð14Þ

Scaling factor validation

Scaling factor estimates were validated under the assumption of
scaled, systematic error, in 2 ways: first, by simulating power curves
that take into account the uncertainty of the scaling factor estimate,
and second, by a leave-one-out calibration. For the simulation, we gen-
erate data for each of the 20 sites included in this study. Subcortical gray
matter volumes (scGMV) for each site were generated for two subject
groups based on a small standardized effect size (Cohen's d) of 0.2,
which reflects the effect sizes seen in genomics studies. Age and gender
were generated as matched covariates, where age was sampled from a
normal distribution with mean and standard deviation set at 41 and
10 years, respectively. Gender was sampled from a binomial distribu-
tion with a probability of 60% female to match typical multiple sclerosis
cohorts.

Coefficientswere set on the intercept as 63.135 cm3,β10 as−.95 cm3,
covariates ZAge as −.25 cm3/year and ZGender as 4.6 cm3. scGM volumes
were generated in a linearmodel using these coefficients and additional
noisewas added from the residuals, whichwere sampled from a normal
distribution with zero mean and standard deviation 5.03 cm3. Next, the
scGM volumes were scaled by each site's calculated scaling factor and
gaussian noise from the residuals of the scaling factor fit of that
particular site were added.

scGMVsite j
¼ scGMVtrue j � aj þ N 0;σ2

fit j

� 	
ð15Þ

The simulated dataset of each individual site was modeled via OLS,
and an F score on XGroup was calculated following our proposed statisti-
cal model:

FXGroup ¼
1
J

X20

j¼1
β̂ j

� 	2
1

J2
X20

j¼1
σ2

j

ð16Þ

A power curve was constructed by running the simulation 5000
times, where power for a particular p-value was defined as the average
number of F values greater than the critical F for a set of false positive
rates ranging from 1e−4−1e−2. The critical F was calculated with de-
grees of freedomof the numerator and denominator as 1 and 19 respec-
tively. The simulated power curve was compared to the derived
theoretical power curve to evaluate how scaling factor uncertainty in-
fluences power estimates. If the scaling factors of each site, which
were calculated from the 12 subjects, were not accurate, then the
added residual noise from the scaling factor estimate would result in
the simulated power curve deviating largely from the theoretical curve.

The scaling factors were also validated by calibrating the regional
volumes of each site in a leave-one-out cross-validation. The calibrated
volume for a particular subject i and site jwas scaled by the scaling fac-
tor estimated from all subjects excluding subject i. Within- and
between-site ICCswere calculated for the calibrated volumes. If the scal-
ing factor estimateswere inaccurate, the between-site ICCs of calibrated
regional volumes would be worse than the between-site ICCs of the
original regional volumes. Additionally, the between-site ICC's after cal-
ibration should be similar to those found for harmonized studies, such
as Cannon et al. (2014).

Finally, to address the concern about whether these scaling factors
could apply to a disease population, we calculated scaling factors from
12 healthy controls and 14 MS patients between 2 different sequences
(3D-MPRAGE versus 3D-FLASH) at the UCSF scanner (site 12). The pa-
tients had a mean age of 51 years with standard deviation of 11 years,
mean disease duration of 15 years with a standard deviation of
12 years, and mean Kurtzke Expanded Disability Status Scale (EDSS)
(Kurtzke, 1983) score of 2.8 with a standard deviation of 2.2.

The accuracy of our scaling factor estimates depends on the accuracy
of tissue segmentation, but the lesions in MS specifically impact white
matter and pial surface segmentations. Because of the effect of lesions
on Freesurfer's tissue classification, all images were manually corrected
for lesions on the T1-weighted images by a neurologist after editing by
Freesurfer's quality assurance procedure, which included extensive to-
pological white matter corrections, white matter mask edits, and pial
edits on images that were not lesion filled. These manual edits altered
the white matter surface so that white matter lesions were not
misclassified as gray matter or non-brain tissue. The errors in white
matter segmentations most typically occurred at the border of white
matter and gray matter and around the ventricles. The errors in pial
surface segmentations most typically occurred near the eyes
(orbitofrontal) and the superior frontal or medial frontal lobes. Images
that were still misclassified after thorough edits were removed from
the analysis, because segmentations were not accurate enough to pro-
duce realistic scaling factor estimates.

Results

Scan–rescan reliability for the 20 scanners is shown in Tables 1
through 4. The majority of scan–rescan reliabilities were greater than
80% for the selected Freesurfer-derived volumes, which included gray
matter volume (GMV), cortical white matter volume (cWMV), cortex
volume (cVol), lateral ventricle (LV), thalamus (thal), amygdala



Table 5
Coefficient of variability (CVa) values for selected
ROIs. CVa was defined in Eq. (14). The ROIs are

Fig. 2. Leave-one-out calibration improvement on within- (WI) and between- (BW) site ICCs for gray matter volume (GMV), subcortical gray matter volume (scGMV), cortex volume
(cVol), cortical white matter volume (cWMV), lateral ventricle (LV), Thalamus (Thal), Hippocampus (Hipp), Amygdala (Amyg), and Caudate (Caud).
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(amyg), caudate (caud), hippocampus (hipp), and estimated total intra-
cranial volume (eTIV). However, the thalamus at sites 3 and 16 had low
scan–rescan reproducibility, below 70%. The left hippocampus and
amygdala at site 5 were also below 70%, and the left amygdala at
site 16 was also low, at 55%. In addition, the average translation in the
Z-direction across all sites was 3.5mm±3.7mm, which falls within the
accuracy range reported by Caramanos et al. (2010). The repositioning
Z-translation measurements for each site separately is reported in the
supplemental materials.

Between- and within-site ICC's are plotted with the calibrated ICCs
in Fig. 2. The between-site ICCs of the 46 ROIs improved,with the excep-
tion of the right lateral ventricle, which did not change after calibration,
and thefifth ventricle, which had very low scan–rescan reliability, and is
shown in the supplemental materials. The within-site ICCs of the thala-
mus, hippocampus, and amygdala decreased slightly after calibration.
Both calibrated and uncalibrated within-site ICCs were greater than
90% for the MS related ROIs listed in this paper. For the full set of
within- and between-site ICCs of the Freesurfer aseg regions, see the
Supplemental Materials.

Simulation results are shown in Fig. 3. The simulated and theoretical
curves align closely when power is equal to 80%, but the simulated
curve is slightly lower than the theoretical curve for power below 80%.
This is probably due to the uncertainty in our scaling factor estimates.

Table 5 shows the scaling factor variability (CVa) for the selected
ROIs, which range from 2 to 8%. The full distribution of CVa for all the
Freesurfer ROIs is shown in Fig. 7. To derive the maximum acceptable
CVa for 80%power, the theoretical power equationwas solved at various
Fig. 3. Theoretical power vs. simulated power with scaling factor uncertainty.
subject and site sample sizes with the standardized effect size we de-
tected in our local single center cohort (0.2). The distribution of CVa

across all ROIs was plotted adjacent to the power curves (Fig. 7) to un-
derstand how many ROIs would need to be calibrated for each case. Fi-
nally, Figs. 4, 5, and 6 show the scaling factors from the calibration
between two scanners with different sequences at UCSF. Scaling factors
derived from the healthy controls (HC) and MS subjects were identical
for subcortical gray matter volume (1.05) and very similar for cortical
gray matter volume (1, 1.002 for HC, MS) and white matter volume
(.967, .975 for HC, MS).
Discussion

In this studywe proposed a statistical model based on the physics of
MRI volumetric biases using the key assumption that biases between
sites are scaled linearly. Variation in scaling factors could explain why
a study may estimate different effect sizes based on the pulse sequence
used. For example, Streitbürger et al. (2014) found significant effects of
RF head coils, pulse sequences, and resolution on VBM results. The esti-
mation of scaling factors in ourmodel depends on good scan–rescan re-
liability. In our study, scan–rescan reliabilities for each scanner were
gray matter volume (GMV), subcortical gray
matter volume (scGMV), cortex volume (cVol),
cortical white matter volume (cWMV, which
does not include cerebellar white matter), and
the volumes of the lateral ventricle (LV), amyg-
dala (Amyg), thalamus (Thal), hippocampus
(Hipp), caudate (Caud), and finally the estimated
total intracranial volume (eTIV).

CVa

Variable
LV (L) 0.03
LV (R) 0.03
cWMV 0.02
cVol 0.04
scGMV 0.02
GMV 0.04
Caud (L) 0.02
Caud (R) 0.07
Amyg (R) 0.09
Amyg (L) 0.07
Hipp (L) 0.03
Hipp (R) 0.03
Thal (L) 0.05
Thal (R) 0.05



Fig. 4. Sub-cortical graymatter volume (scGMV) calibration between 2 scanners/sequences at UCSF. The trendline fit shows the slopes (scaling factors) are identical for the healthy control
and MS populations.
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generally N0.8 for Freesurfer-derived regional volumes. Volumes of cor-
tex, cortical gray, subcortical gray, and corticalwhitematter parcellation
had greater than 90% reliability for all 20 sites. The subcortical regions
and estimated total intracranial volume had an average reliability of
over 89%, however, some sites had much lower scan–rescan reliability.
For example, the thalamus at sites 3 and 16 had test–retest reliabilities
between 41 and 63%. This could be explained by the visual quality con-
trol process of the segmented images,which focused on the cortical gray
matter segmentation and the initial standard space registration only,
due to time restrictions. Visually evaluating all regional segmentations
may be unrealistic for a large multisite study. On the other hand,
Jovicich et al. (2013) reported a low within-site ICC of the thalamus
across sessions (0.765±0.183) using the same freesurfer cross-
Fig. 5.Cortex graymatter volume (cVol) calibration between2 scanners/sequences atUCSF. The
populations.
sectional pipeline as this study. The poor between-site reliability
(61%) of the thalamus is consistent with findings from Schnack et al.
(2010), in which a multisite VBM analysis showed poor consistency in
that region. Other segmentation algorithms may be more robust for
subcortical regions in particular. Using FSL's FIRST segmentation algo-
rithm, Cannon et al. (2014) report a between-site ICC of the thalamus
of 0.95, compared to our calibrated between-site ICC of 0.78. FSL's
FIRST algorithm (Patenaude et al., 2011) uses a Bayesian model of
shape and intensity features to produce a more precise segmentation.
Nugent and colleagues reported the reliability of the FIRST algorithm
across 3 platforms. Their study of subcortical ROIs found a good scan–
rescan reliability of 83%, but lower between-site ICCs ranging from
57% to 93% (Nugent et al., 2013). The LEAP algorithm proposed by
trendlinefit shows the slopes (scaling factors) are very close for thehealthy control andMS



Fig. 7. Shows power curves for 80% power for 2260–3000 total subjects, where the false
positive rate is 0.002, and the effect size is 0.2. The lowest point of each curve shows the
minimum number of sites required for a given number of subjects on the x-axis and the
y-axis corresponds to the maximum acceptable coefficient of variability (CVa, defined in
14) for that case. The right-hand side of the chart shows the distribution of CVa values
across all sites and all Freesurfer ROIs. When minimizing the total number of sites for a
set number of subjects, the maximum allowable CVa is around 5%, meaning that if the
CVa is higher than 5% for a particular ROI, the power of the model will fall below 80%.
The shaded section on the bottom of the chart called the “Harmonization Zone” which
indicates the regions of the graph where the maximum acceptable CVa is below the
largest CVa across all freesurfer ROIs (which is the right amygdala at 9%). If site- and
subject-level sample sizes fall within the harmonization zone, efforts to harmonize
between sites is required to guarantee power for all ROIs.

Fig. 6.White matter volume (WMV) calibration between 2 scanners/sequences at UCSF. The trendline fit shows the slopes (scaling factors) are very close for the healthy control and MS
populations.
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Wolz et al. (2010) was shown to be extremely reliable with strong ICCs
N0.97 for hippocampal segmentations (Wolz et al., 2014). Another fac-
tor not accounted for in our segmentation results was the effect of par-
tial voluming, which adds uncertainty to tissue volume estimates. In
Roche and Forbes (2014), researchers developed a method to more ac-
curately estimate partial volume effects using only T1-weighed images
from the ADNI dataset. This approach resulted in higher classification
accuracy between Alzheimer's disease (AD) patients and mild cogni-
tively impaired (MCI) patients from normal controls (NL). Designing
optimized pipelines that are robust for each site, scanner make, and
metric, is outside the scope of this paper. However, Kim and colleagues
have developed a robust technique for tissue classification of heteroge-
neously acquired data that incorporates iterative bias field correction,
registration, and classification (Kim and Johnson, 2013). Wang and col-
leagues developed a method to reduce systematic errors of segmenta-
tion algorithms relative to manual segmentations by training a
wrapper method that learns spatial patterns of systematic errors
(Wang et al., 2011). Methods such as those employed byWang and col-
leagues may be preferred over standard segmentation pipelines when
data acquisition is not standardized. Due to its wide range of acquisition
parameters and size of the dataset, our approach could be used to eval-
uate such generalized pipelines in the future.

The above derivation of power for a multisite study defines hard
thresholds for the amount of acceptable scaling factor variability (CVa)
using scaled, systematic error from MRI. Many factors contribute to
the CVa cut-off, such as the total number of subjects, total number of
sites, effect size, and false positive rate. In Fig. 7, we show the distribu-
tion of experimental CVa values across all Freesurfer aseg ROIs to refer-
ence while comparing power curves of various sample sizes. The
maximum CVa value is 9% which, with enough subjects and sites, falls
well below themaximum acceptable CVa value. However, with themin-
imumnumber of subjects and sites, the power curves of Fig. 7 show that
the maximum acceptable CVα must be below 5% for 80% power. If we
minimize the total number of subjects to 2260 for the 20 sites in our
study, the CVa of the amygdala does not meet this requirement (see
Table 5). One option to address this is to harmonize protocols, which
may reduce CVa values below those estimated from our sites such that
they satisfy the maximum CVa requirement. The other option is to re-
cruit more subjects per site. The number of additional subjects needed
to overcome a large CVa can be estimated using our power equation.
In the case of the parameters defined in Fig. 7 (a small effect size of
0.2, false positive rate of 0.002), 40 additional subjects beyond the initial
2260 are needed to adequately power the study. This is easily visualized
in Fig. 7: the point on the curve for the initial 2260 subjects over 20 sites
lies below the harmonization zone, while that of 2300 total subjects lies



Table 6
Between-site ICC comparison to the study by Cannon et al. (2014), where MRI sequences
were standardized and subcortical segmentation was performed using FIRST, and cortical
segmentation using cortical pattern matching. ICC BW and ICC BW Cal were calculated
using our multisite healthy control data, where ICC BWCal was calculated as the between
site ICC of volumes after applying the scaling factor froma leave-one-out calibration.Other
than the thalamus (Thal), we found that the between-site ICCs were comparable to Can-
non et al. (2014) for the amygdala (Amyg), caudate (Caud), and even higher for the hip-
pocampus (Hipp), gray matter volume (GMV) and white matter volume (WMV).

ROI ICC BW ICC BW Cal (Cannon et al., 2014) ICC BW

GMV .78 .96 .854
WMV .96 .98 .774
Thal .61 .73 .95
Hipp .75 .84 .79
Amyg .56 .74 .76
Caud .82 .91 .92
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above. The number of additional subjects needed to achieve an ade-
quately powered multisite study depends on effect sizes, false positive
rates, power requirements, and site-level sample size.

We have validated our scaling factors by demonstrating that a leave-
one-out calibration resulted in increased absolute agreement between
sites compared to the original, uncalibrated values for 44 out of 46
ROIs studied. Tables 6 and 7 compare these calibrated and original
values to the ICC findings of other harmonization efforts. Table 6 com-
pares our between-site ICCs before and after scaling factor calibration
to those of Cannon et al. (2014). Cannon et al. (2014) used a cortical pat-
tern matching segmentation algorithm (Thompson et al., 2001) for the
cortical ROIs and FSL's FIRST algorithm for the subcortical ROIs. The
between-site ICC for gray matter volume (GMV) for our study was
0.78 while Cannon et al. (2014) reported an ICC of 0.85. This difference
could be explained by the harmonization of scanners in Cannon et al.
(2014). After using the scaling factors to calibrate GMV, the between-
site ICC increased to 0.96, indicating that the estimated CVa of GMV
(4%) is an accurate representation of the true between-site bias variabil-
ity. Scaling calibration of the hippocampus also outperformed the
between-site ICC of Cannon et al. (2014) (0.84 versus 0.79), validating
the CVa estimate of 3% for both hemispheres. For the amygdala and cau-
date volumes, scaling calibration showed improvement to nearly the
same value as Cannon et al. (2014). The amygdala increased from 0.54
to 0.74 (versus 0.76 in the Cannon et al. (2014)), and the ICC of the cau-
date increased from 0.82 to 0.91 (versus 0.92 in the Cannon et al.
(2014)). The CVa of the left and right amygdala were the highest in
our study, at 7 and 9 percent, respectively. The most extreme asymme-
try in the scaling factors was between the left and right caudate (2% and
7%, respectively), which demonstrates regional contrast to noise varia-
tion. Even after scaling factor calibration, the between-site ICC produced
by our approach varied widely from that of Cannon et al. (2014) in two
ROIs. The between-site ICC of white matter volume (WMV) was very
high (0.96 versus 0.774) and that of thalamus volume was very low
(.61 versus .95), compared to Cannon et al. (2014). This could be due
to differences algorithm differences (FIRST vs. Freesurfer). It should
also be noted that the scan–rescan reliability of the thalamus was
Table 7
Comparing the within-site ICC before and after leave-one-out scaling factor calibration
with the cross-sectional freesurfer results of Jovicich et al. (2013), where scanners were
standardized, and the average within-site ICC is shown. The within-site ICCs of our study
fall within the range of Jovicich et al. (2013), which shows the that sites in this study are as
reliable as those in Jovicich et al. (2013).

ROI ICC WI ICC WI Cal (Jovicich et al., 2013) ICC WI Average

LV 1 1 .998±0.002
Thal .86 .84 0.765± .183
Hipp .93 .93 0.878± .132
Amyg .89 .86 0.761± .134
Caud .97 .97 0.909±0.092
particularly low in some sites, which propagated errors to scaling factor
estimates. Therefore, the 5% CVa estimate for the thalamus in both hemi-
spheres may not be reproducible and would need to be recalculated
using a different algorithm.

Table 7 shows comparisons of our within-site ICCs to the average
within-site ICCs reported byJovicich et al. (2013). Similar to our study,
scanners were not strictly standardized and the freesurfer cross-
sectional algorithm was run. All within site ICCs (both before and after
scaling factor calibration) fall within the range described by Jovicich
et al. (2013), including the thalamus. Our last attempt to validate this
statisticalmodel and accompanying scaling factor estimateswas to sim-
ulate multisite data using scaling factor estimates and their residual
error from the estimate. We found that the power curves align closely,
and match when power is at least 80%. We believe that the small devi-
ations from the theoretical model result from scaling factor estimation
error and a non-normal scaling factor distribution due to a relatively
small sampling of scaling factors (J = 20 sites).

The data acquisition of our study is similar to that of Schnack et al.
(2004), in which the researchers acquired T1-weighted images from 8
consistent human phantoms across 5 sites with non-standardized pro-
tocols. These scanners were all 1.5T except for one 1T scanner.
Schnack et al. (2004) calibrated the intensity histograms of the images
before segmentation with a calibration factor estimated based on the
absolute agreement of volumes to the reference site (ICC). After apply-
ing their calibration method, the ICC of the lateral ventricle was ≥0.96,
which is similar to our pre- and post-calibrated result of 0.97. The ICC
for the intensity calibrated gray matter volume in Schnack et al.
(2004) was ≥0.84, compared to our calibrated between-site ICC of
0.78 (uncalibrated), and 0.96 (calibrated). Our between-site ICCs for
white matter volume (0.96 and 0.98 for the pre- and post-calibrated
volumes, respectively) were much higher than those of the intensity
calibrated white matter volume in Schnack et al. (2004) (≥ .78). This
could be explained by the fact that our cohort of sites is a consortium
studying multiple sclerosis, which is a white matter disease, so there
may be a bias toward optimizing scan parameters for white matter.
Most importantly, the calibration method of Schnack et al. (2004) re-
quires re-acquisition of a human phantom cohort at each site for each
multisite study. Alternatively, multisite studies employing our approach
can use the results of our direct-volume calibration (the estimates of CVa
for each ROI) to estimate sample sizes based on our proposed power
equation and bias measurements without acquiring their own human
phantom dataset to use in calibration.

To our knowledge, this is the first study measuring scaling factors
between siteswith non-standardized protocols using a single set of sub-
jects, and deriving an equation for power that takes this scaling into ac-
count via mixed modeling. This study builds on the work of Fennema-
Notestine et al. (2007), which investigated the feasibility of pooling ret-
rospective data from three different sites with non-standardized se-
quences using standard pooling, mixed effects modeling, and fixed
effects modeling. Fennema-Notestine et al. (2007) found that mixed ef-
fects and fixed effects modeling outperformed standard pooling. Our
statistical model specifies how MRI bias between sites affects the
cross-sectional mixed effects model, so it is limited to powering cross-
sectional study designs. Jones and colleagues have derived sample size
calculations for longitudinal studies acquired under heterogeneous con-
ditions without the use of calibration subjects (Jones et al., 2013). This
can be useful for studies measuring longitudinal atrophy over long
time periods, during which scanners and protocols may change. For
the cross-sectional case, the use of random effects modeling enables
us to generalize our results to any protocol with acquisition parameters
similar to those described here (primarilyMPRAGE). If protocols change
drastically compared to our sample of 3D MPRAGE-type protocols, a
small set of healthy controls should be scanned before and after any
major software, hardware, or protocol change so that the resulting scal-
ing factors can be compared to the distribution of scaling factors (CVa)
reported in this study. A large CVa can severely impact the power of a
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multisite study, so it is important not to generalize the results in this
study to non-MPRAGE sequences without validation. Potentially, new
3D-printed brain-shaped phantoms with similar regional contrast to
noise ratios as human brains may become an excellent option for esti-
mating CVa.

A limitation of our model is the assumption of independence be-
tween the unobserved effect (DU ,j) at a particular site, j, with the scaling
factor of that site (aj). This assumption does not hold if patients with
more severe disease have tissue with different properties that, when
scanned, shows different regional contrast than that of healthy controls.
As shown in the Appendix, the calculation of the unconditional variance
of the observed estimate (Eq. (7)) can get quite complicated. We ad-
dressed this issue for multiple sclerosis patients by showing that the
scaling factors from healthy controls are very similar to those derived
fromanMSpopulation. The largest difference in scaling factors between
healthy controls andmultiple sclerosis patientswas inwhitematter vol-
ume, where aMS=0.967 and aHC=0.975. A two-sample T test between
the scaling factors produced a p-value of 0.88, showing that we could
not detect a significant difference between scaling factors of HC and
MS. This part of the study was limited in that we only scanned MS pa-
tients at two scanners, while the healthy controls were scanned at 20,
so we could not estimate a patient-derived CVa (the direct input to the
power equation). However, the similarity between scaling factors for
the subcortical gray matter, cortical gray matter, and white matter vol-
umes between the MS and HC populations suggests that, given careful
editing of volumes in the disease population, the independence as-
sumption holds for MS. We recommend that researchers studying
other diseases validate our approach by scanning healthy controls and
patients before and after an upgrade or sequence change to test the va-
lidity of the independence assumption.

Even though we did not standardize the protocols and scanners
within this study, the consortium is unbalanced in that there are 16 3T
scanners, 11 of which are Siemens. Of the Siemens 3T scanners, there
is little variability in TR, TE, and TI, however, there is more variance in
the use of parallel imaging, the number of channels in the head coil
(12, 20 or 32), and the field of view. Similar to the findings of Jovicich
et al. (2009), we could not detect differences in scan–rescan reliability
between field strengths. Wolz and colleagues could not detect differ-
ences in scan–rescan reliabilities of the hippocampus volumes estimat-
ed by the LEAP algorithm, but they detected a small bias between field
strengths. They found that the hippocampus volumes measured from
the 3T ADNI scanners were 1.17% larger than those measured from
the 1.5T (Wolz et al., 2014). A two-sample T-testwith unequal variances
was run between the scaling factors of the 1.5T versus 3T scanners. This
test could not detect differences in any ROI except for the left- and right-
amygdala. We found that the scaling factors were lower for the 1.5T
scanners than for the 3T scanners (0.9 versus 1.02), suggesting that
the amygdala volume estimates from the 1.5T were larger than those
of the 3T. It should be noted that this interpretation is limited due to
the small sample size of 1.5T scanners in this consortium.

Another limitation of this study is that we were under-powered to
accurately estimate both the scaling and intercept for a linearmodel be-
tween two sites, and that we did not take the intercept into account
when deriving power. We excluded the intercept from our analysis for
two reasons: (1) we believe that the nature of systematic error from
MRI segmentation is not additive, meaning that offsets in metrics be-
tween sites for different subjects is scaledwith ROI size instead of a con-
stant additive factor and (2) the model becomes more complicated if
site-level effects are both multiplicative and additive. The other limita-
tion of this study is that we assumed that subjects across all sites will
come from the same population, and that stratification occurs solely
from systematic errors within each site. In reality, sites may recruit
from different populations and the true disease effect will vary even
more. For example, in a comparison study between the matched ADNI
cohort and a matched Mayo Clinic Study of Aging cohort, researchers
found different rates of hippocampal atrophy even though no
differences in hippocampal volume was detected (Whitwell, 2012).
This could be attributed to sampling from two different populations.
This added site-level variability requires a larger site-level sample size,
for an example of modeling this, see Han and Eskin (2011).

In this study,we reported reliability using both between-site ICC and
CVa because these twometrics have complementary advantages. ICC de-
pends on the true subject-level variability studied. Since we scanned
healthy controls, our variance component estimates of subject variabil-
ity may be lower than that of our target population (patients with mul-
tiple sclerosis related atrophy). As a result, ICCs may be lower than
expected in MS based on the results of healthy controls. We tried to ad-
dress this issue by scanning subjects in a large age range, capturing the
variability in gray and white matter volume due to atrophy from aging.
On the other hand, CVa is invariant to true subject variability, but is lim-
ited by the accuracy of between-site scaling estimates. Both between-
site ICC and CVa should be reportedwhen evaluatingmultisite reliability
datasets to understand a given algorithm's ability to differentiate
between subjects (via the ICC) and the magnitude of systemic
error between sites (via the CVa), which could be corrected using
harmonization.

Conclusion

When planning a multisite study, there is an emphasis on acquiring
data from more sites because the estimated effect sizes from each site
are sampled from a distribution and averaged. Understanding how
much of the variance in the distribution is due to scanner noise as op-
posed to population heterogeneity is an important part of powering a
study. For the purposes of this study, we estimated the effect size vari-
ability of Freesurfer-derived regional volumes, but this framework
could be generalized to any T1-weighted segmentation algorithm, and
any modality for which systematic errors are scaled. Scaling factor cali-
bration of metrics resulted in higher absolute agreement of metrics be-
tween sites, which showed that the scaling factor variabilities for the
ROIs in this study were accurate. The equation for power we outlined
in this study along with our measurements of variability between sites
should help researchers understand the trade-off between protocol har-
monization and sample size optimization, along with the choice of out-
come metrics. Our statistical model and bias measurements enable
collaboration between research institutions and hospitals when hard-
ware and software adaptation are not feasible. We provide a compre-
hensive framework for assessing and making informed quantitative
decisions for MRI facility inclusion, pipeline and metric optimization,
and study power.
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Appendix A

A.1. Variance of a product of random variables

The proof for this is found in Introduction to the Theory of Statistics
(1974) by Mood et al. (1963), Section 2.3, Theorem 3:
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Let X and Y be two random variables where var[XY] exists, then

var XY½ � ¼ μ2
Yvar X½ � þ μ2

Xvar Y½ � þ 2μXμYcov X; Y½ �
− cov X;Y½ �ð Þ2 þ E X−μXð Þ2 Y−μYð Þ2

h i
þ2μYE X−μXð Þ2 Y−μYð Þ

h i
þ 2μXE X−μXð Þ Y−μYð Þ2

h i ð17Þ

which can be obtained by computing E[XY] and E[(XY)]2 when XY is
expressed as

XY ¼ μXμY þ X−μXð ÞμY þ Y−μXð ÞμX þ X−μXð Þ Y−μYð Þ: ð18Þ
If X and Y are independent, then E[XY]=μXμY, the covariance terms

are 0, and

E X−μXð Þ2 Y−μYð Þ2
h i

¼ E X−μXð Þ2
h i

E Y−μYð Þ2
h i

¼ var X½ �var Y½ � ð19Þ

and

μYE½ðX−μXÞ2ðY−μYÞ� ¼ E½ðX−μXÞ2�E½ðY−μYÞ� ¼ 0 ð20Þ

μXE Y−μYð Þ2 X−μXð Þ
h i

¼ E Y−μYð Þ2
h i

E X−μXð Þ½ � ¼ 0 ð21Þ

which gives

var XY½ � ¼ μ2
Xvar Y½ � þ μ2

Yvar X½ � þ var X½ �var Y½ � ð22Þ

A.2. Maximum likelihood

Note that the estimator defined in 9 is a maximum likelihood esti-
mator under the condition of equal unexplained variance at each site
and an equal number of subjects at each site. In the case with different
number of subjects at each site, the maximum likelihood estimator for

the disease effect, β̂10, is not the average of the site-level coefficients,
but instead is the average weighted by the inverse error variance. This
is a common method to run meta-analyses, for example, see (Han and
Eskin, 2011; Thompson et al., 2014). To show this, we follow the proce-
dure from Han and Eskin (2011), and define the likelihood of the alter-
nate hypotheses as

L1 ¼ ∏
j

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πa2j V j

q exp
− β1 j−μ
� �2
2a2j V j

 !
ð23Þ

for a non-zero μ andVj defined as the unscaled error variance on β̂1; j. The
maximum likelihood estimator μ̂ is found by taking the derivative of the
log of (23), setting it equal to 0, and solving for μ,

∂
∂μ

log L1ð Þð Þ ¼ ∂
∂μ

XJ

j

log
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πa2j V j

q
0
B@

1
CAþ

XJ

j

β1 j−μ
� �2
2a2j V j

0
B@

1
CA

¼ 0⇒ μ̂ ¼

XJ

j

a−2
j V−1

j β1 j

XJ

j

a−2
j V−1

j

ð24Þ

which shows that the inverse variance weighted average is the maxi-
mum likelihood estimator for the overall treatment effect. If we assume
that the unexplained variance (σ0) is the same across all sites, which is a
valid assumption if subjects are from the same population, the estimate
can be expressed as

β̂10 ¼

XJ

j¼1

njβ̂1 j

N
¼

β10

XJ

j¼1

nja j

N
ð25Þ

where N ¼ ∑
J

n j is the total number of subjects in the study. The vari-
ance of the estimate is

var β̂10

� 	
¼ σ2

0α
2
0

N2

XJ

j¼1

4nj þ CV2
α 4nj þ δ2n2

j

� 	
ð26Þ

and it follows that the noncentrality parameter is

λ ¼
δ2

XJ

j¼1

nj
aj

μa

0
@

1
A

2

XJ

j¼1

4nj þ CV2
a 4nj þ δ2n2

j

� 	 ð27Þ

which should be used for a more accurate power analysis if the specific
number of subjects per site and the site's scaling factors are known.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.03.051.
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