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2Ecole Doctorale Complexité du Vivant, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France

*Correspondence: aaa@caltech.edu

http://dx.doi.org/10.1016/j.celrep.2014.08.013
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
SUMMARY

Piwi-interacting (pi)RNAs repress diverse trans-
posable elements in germ cells of Metazoa and are
essential for fertility in both invertebrates and verte-
brates. The precursors of piRNAs are transcribed
from distinct genomic regions, the so-called piRNA
clusters; however, how piRNA clusters are differenti-
ated from the rest of the genome is not known. To
address this question, we studied piRNA biogenesis
in two D. virilis strains that show differential ability
to generate piRNAs from several genomic regions.
We found that active piRNA biogenesis correlates
with high levels of histone 3 lysine 9 trimethylation
(H3K9me3) over genomic regions that give rise to
piRNAs. Furthermore, piRNA biogenesis in the prog-
eny requires the transgenerational inheritance of an
epigenetic signal, presumably in the form of homol-
ogous piRNAs that are generated in the maternal
germline and deposited into the oocyte. The in-
herited piRNAs enhance piRNA biogenesis through
the installment of H3K9me3 on piRNA clusters.
INTRODUCTION

A distinct class of small RNAs called Piwi-interacting RNAs, or

piRNAs, provides sequence specificity for the recognition and

repression of a diverse set of invasive genetic elements in the

germline of metazoans (Aravin et al., 2007; Siomi et al., 2011).

piRNAs are loaded into members of the Piwi clade of Argonaute

proteins. Piwi/piRNA complexes in Drosophila repress transpos-

able elements through two different mechanisms. In the nucleus,

piRNAs associated with PIWI are responsible for the deposition

of H3K9me3 on homologous transposon targets (Le Thomas

et al., 2013; Rozhkov et al., 2013; Sienski et al., 2012). In the cyto-

plasm, two other Piwi proteins, AUB and AGO3, are guided by the

associatedpiRNAs tocleaveanddestroy homologous transposon

transcripts using their endonucleaseactivity. Simultaneously, their

cleavage of complementary transcripts by AUB and AGO3 also

leads to the biogenesis of new piRNAs (Brennecke et al., 2007).

The proper selection of RNA molecules to be processed into

mature piRNAs is critical for generating the diverse repertoire
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of piRNAs that guide effective silencing of transposable ele-

ments. The genomic regions that give rise to piRNAs, the piRNA

clusters, define the repertoire of elements that are recognized

and silenced. However, how piRNA clusters are differentiated

from the rest of the genome is not known. piRNAs are distinct

from other classes of small RNAs, such as microRNA (miRNA)

and small interfering RNA (siRNA), which are channeled into

their respective biogenesis pathways by the distinct secondary

structure of their precursors (Kim et al., 2009). In contrast, no

structural or sequence motifs have been identified in piRNA pre-

cursors in Drosophila. In fact, any sequence inserted into piRNA

clusters is processed into mature piRNAs (Muerdter et al., 2012;

Todeschini et al., 2010). In a recent breakthrough study, de Vans-

say and colleagues showed that piRNAs derived from a trans-

genic locus are able to induce de novo piRNA biogenesis at a

homologous locus originally incapable to generate piRNAs (de

Vanssay et al., 2012), yet the mechanisms behind this phenom-

enon remained unclear.

Several studies have suggested that piRNA clusters in

Drosophila possess a distinct chromatin structure that is impor-

tant for piRNA biogenesis. Indeed, piRNA clusters expressed in

D. melanogaster germ cells are enriched for H3K9me3 (Rangan

et al., 2011). They are also enriched for heterochromatin protein

1 (HP1) (Moshkovich and Lei, 2010) and its germline specific

paralog, Rhino (Klattenhoff et al., 2009), which have chromo-

domains capable of binding to H3K9me3 (Le Thomas et al.,

2014). Furthermore, deficiency in the histone methyltransferase

Eggless/SETDB1, which is responsible for deposition of the

H3K9me3 mark, and Rhino leads to the loss of piRNAs in germ

cells (Rangan et al., 2011; Klattenhoff et al., 2009).

Here, we built upon our previous finding of two Drosophila

virilis strains that show differential capacity to generate piRNAs

from several genomic loci (Rozhkov et al., 2010) in order to un-

derstand the genetic and epigenetic requirements for piRNA

biogenesis. We found that piRNA biogenesis positively corre-

lates with the level of H3K9me3 on genomic loci. Furthermore,

maternally inherited epigenetic factors, likely piRNAs, are neces-

sary for the maintenance of high H3K9me3 levels on homolo-

gous loci in the progeny.
RESULTS

To understand the determinants of piRNA cluster activity and

identify the features that discriminate piRNA-generating regions
ports 8, 1617–1623, September 25, 2014 ª2014 The Authors 1617
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Figure 1. Profiles of the H3K9me3 Mark,

piRNAs, and Long RNAs on Differentially

Expressed piRNA Clusters

piRNA, H3K9me3, and long RNA-seq (rRNA-

depleted total RNA) densities on cluster #1 in the

two D. virilis strains. High H3K9me3 signal is pre-

sent over the cluster sequence in strain A that

generates abundant piRNAs from this region; low

H3K9me3 signal and no piRNAs are present in

strain I. Only uniquely mappable reads are shown,

resulting in the gap in read density over a recent

and nondivergent repetitive element (LTR retro-

transposon) insertion. Unique-mappability tracks

for 25- and 50-bp-long reads are shown in gray.

piRNAs mapping to the forward (‘‘+’’) and reverse

(‘‘�’’) strand are shown in green and red, respec-

tively. See also Table S4.
from other genomic loci, we took advantage of our previous

finding of piRNA clusters that are differentially active in two

D. virilis strains (Rozhkov et al., 2010). Three genomic regions

designated as clusters #1, #2, and #3 are present in the ge-

nomes of both strains 9 and 160, yet piRNAs are only gener-

ated from these clusters in strain 160 (we will refer to strain

160 as the active or A strain) (Figures 1 and 2A). Strain 9 (the

inactive or I strain) does not have general defects in the piRNA

pathway as piRNAs are generated from other genomic regions

in this strain. The reason for the differential ability to generate

piRNAs from certain genomic regions in the two strains is

unknown.

Recent studies revealed that two chromatin factors, SETDB1,

a methyltransferase responsible for installation of H3K9me3,

and the HP1 paralog Rhino that binds this mark are required

for piRNA biogenesis in D. melanogaster (Klattenhoff et al.,

2009; Rangan et al., 2011). We hypothesized that a difference

in the chromatin state of the genomic regions in strains A and I

might explain their differential ability to produce piRNAs. To

determine whether chromatin state plays a role in the differential

activity of the piRNA clusters, we profiled H3K9me3 in ovaries

from flies of both strains. For each strain, chromatin immunopre-

cipitation sequencing (ChIP-seq) libraries from two independent

biological samples were generated, sequenced, and analyzed.

Genomic regions that generate piRNAs exclusively in strain A

(clusters #1–3) had significantly higher levels of H3K9me3 in
1618 Cell Reports 8, 1617–1623, September 25, 2014 ª2014 The Authors
this strain compared to strain I (Figures

1, 2A, 2B, and S1A). In contrast, cluster

#4, which produced a similar amount of

piRNAs in both strains, had comparable

levels of H3K9me3 (Figures 2A, 2B, and

S1A). The H3K9me3 profile on piRNA

clusters in strain A closely parallels the

profile of piRNA generation: both signals

drop at the same genomic position

(Figure 1). Therefore, the activity of native

piRNA-generating regions in D. virilis

correlates with high levels of the

H3K9me3 mark for all three differentially

expressed clusters.
To understand how H3K9me3 affects the activity of piRNA-

generating loci, we used ChIP-seq to profile genome-wide

RNA polymerase II occupancy and RNA-seq to measure tran-

script levels in ovaries from strains A and I. We found that high

H3K9me3 levels on differentially expressed clusters in strain A

correlated with high occupancy of RNA polymerase II on these

regions (Figures 2C and S1B). Furthermore, the piRNA clusters

gave rise to more precursor transcripts in strain A than in strain

I, indicating that the enrichment of Pol II at these sites represents

polymerase engaged in active transcription (Figures 2D and S2).

Together, these results suggest that high levels of H3K9me3 on

piRNA clusters correlate with the generation of precursor tran-

scripts for piRNA processing.

To further understand the properties of genomic regions

that generate piRNAs, we studied the activity of piRNA clus-

ters in the progeny of the cross between strains A and I. The

cross between the two strains can be performed in two

different directions: the progeny of the cross between strain

A females and strain I males was designated as MD (for

maternal deposition) as the A chromosomes and correspond-

ing piRNAs are inherited from the mothers (Figure 3A). In the

progeny of the opposite cross, designated as NMD (for no

maternal deposition), the A chromosomes are inherited from

the fathers, and no cognate piRNAs are inherited. Importantly,

the genotypes of MD and NMD progeny are absolutely

identical.
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Figure 2. Enrichment of H3K9me3 on piRNA

Clusters Correlates with Increased Tran-

scription and piRNA Generation

(A) Differential expression of piRNA clusters in

the two D. virilis strains. Clusters #1, #2, and #3

generate large numbers of piRNAs in strain A but

are inactive in strain I. Cluster #4 shows similar

piRNA levels in both strains. Only the 50 portion
of cluster 1, which does not contain protein-

coding sequences (marked on Figure 1), was

used for quantification (here and in subsequent

analyses).

(B) Production of piRNAs correlates with H3K9me3

levels. Clusters #1, #2, and #3 have high levels of

H3K9me3 in strain A and low levels in strain I;

cluster #4 has similar levels of H3K9me3 in both

strains as measured by ChIP-seq. An independent

biological replicate for this experiment is shown in

Figure S1A.

(C) RNA polymerase II density over piRNA clusters

in the two strains as measured by ChIP-seq.

Clusters #1, #2, and #3 have higher RNA Pol II

density in strain A, whereas cluster #4 shows

similar levels of RNA Pol II signal in both strains.

Because cluster #1 contains a protein-coding

gene, only sequences coming from the regions not

overlapping with the gene were considered. An independent biological replicate for this experiment is shown in Figure S1B.

(D) Long RNA expression from piRNA clusters in the two strains as measured by RNA-seq on rRNA-depleted total RNA. Clusters #1, #2, and #3 generate more

transcripts in strain A than in strain I; levels were similar in the two strains for cluster #4. For (B)–(D), cluster genomic regions were divided into 200 bp windows, a

sequencing-depth normalized RPM (reads per million) score was calculated for each window, and the distribution of values was plotted. The Mann-Whitney U

test was used to calculate the p values and evaluate the significance of the observed differences.

See also Figures S1 and S2 and Table S4.
Profiling of piRNAs in ovaries of MD and NMD flies showed

that similar amounts of piRNAs were generated from cluster

#4, which is equally expressed in both parental strains (Fig-

ure 3B). Surprisingly, �3-fold more piRNAs were generated

from the three differentially active clusters in MD compared to

NMD progeny. Because the genotypes of MD and NMD progeny

are identical, this result indicates that the transgenerational

inheritance of an epigenetic signal that is transmitted from

the mothers to their progeny enhances the ability to generate

piRNAs.

One mechanism of piRNA biogenesis involves the ping-pong

amplification loop. In the ping-pong loop, piRNAs guide cleav-

age of complementary targets leading to the generation of

new piRNAs from the cleaved product (Brennecke et al., 2007;

Gunawardane et al., 2007; Olovnikov and Kalmykova, 2013).

These secondary piRNAs belong to complementary piRNA pairs

with a 10 nt overlap between their 50 ends (so called ping-pong

pairs). In the MD progeny, the majority of piRNA sequences

coming from clusters 1–3 can form pairs with a 10 nt overlap be-

tween their 50 ends (Figure 3C). In contrast, only a small fraction

of piRNAs form ping-pong pairs in the NMD progeny. It must

be noted, however, that, because of limited sequencing depth,

this fraction underestimates the real proportion of secondary

piRNAs, especially for the piRNA pairs that produce few reads

of one partner. In an attempt to account for the different number

of sequences derived from differentially expressed clusters in

MD and NMD progenies, we sampled the same number of reads

from each library and calculated the fraction of reads in ping-

pong pairs a thousand times. A similar proportion of secondary
Cell Re
piRNAs was detected in strain A and in the MD progeny; how-

ever, the fraction of piRNAs forming ping-pong pairs in clusters

#1, #2, and #3 was dramatically reduced in the NMD progeny,

compared to the fraction in the MD progeny (Figure 3D). A

similar fraction of piRNAs mapping to cluster #4 formed ping-

pong pairs in strain A and both the MD and the NMD progeny,

indicating that the ping-pong machinery was intact in both prog-

enies. These data suggest that an epigenetic signal inherited by

MD progeny from their mothers eventually boosts the biogen-

esis of secondary piRNAs.

Next, we studied the chromatin state of differentially active

clusters in MD and NMD progenies. We compared the levels

of H3K9me3 using separate ChIP-qPCR and ChIP-seq experi-

ments performed on two independent biological samples of

MD and NMD ovaries (Figures 4A and S3). In both progenies,

H3K9me3 levels over the clusters were intermediate between

the strong and weak enrichment seen in strain A and strain I,

respectively. Importantly, both methods show that H3K9me3

enrichment was higher in ovaries of MD compared to NMD

flies, indicating that the maternally supplied epigenetic signal

affects chromatin of piRNA clusters in the progeny (Figures

4A and S3).

The identical genomes of theMDand theNMDprogenies each

contain two alleles of differentially active piRNA clusters that

have different H3K9me3 levels in their parents, the A and the I

strains. To understand the impact of the maternally supplied

epigenetic signal on individual alleles, it is critical to differentiate

sequences derived from the A and I chromosomes. We therefore

carried out whole-genome sequencing of the genomes of both
ports 8, 1617–1623, September 25, 2014 ª2014 The Authors 1619
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Figure 3. The Effect of Transgenerational

Epigenetic Signal on the Ping-Pong piRNA

Processing

(A) Scheme of the cross between A and I strains

along with the chromatin status and piRNA levels

at differentially expressed clusters in the parental

strains. H3K9me3 levels (red triangle) and piRNA

abundance for the parental strains are shown in the

gray box.

(B) Transgenerational inheritance of piRNAs from

the mother leads to increased piRNA generation in

the progeny. Expression of piRNAs in MD progeny

(female A crossed to male I) that inherited piRNAs

derived from clusters #1, #2, and #3 from their

mothers and NMD progeny (female I crossed to

male A) that did not inherit these piRNAs.

(C) The fraction of piRNAs in ping-pong pairs is

higher in MD progeny than in NMD progeny. piRNA

density on a 500 bp fragment of cluster #1 shows

higher numbers of ping-pong pairs in the MD

progeny than in the NMD progeny. Shown are in-

dividual piRNA reads with reads in ping-pong pairs

on the forward and reverse strand in red and blue,

respectively.

(D) Transgenerational epigenetic signal enhances

the ping-pong amplification cycle in the progeny

as indicated by the higher abundance of ping-pong

pairs in MD compared to NMD progeny. To

determine the fraction of piRNAs that participate in ping-pong pairs uniquely mapped, piRNA reads that mapped to opposite strands of each other and have a

10 bp distance between their 50 ends were counted. To account for variable sequencing depth and for the different number of reads over each cluster in different

samples, we carried out the analysis by sampling reads to�25% of the read counts in the library with the fewest reads in a region and repeating this 1,000 times

(see Experimental Procedures for details).

See also Table S4.
strains. We generated 82 times and 71 times coverage for strains

A and I, respectively, and identified SNPs for each strain relative

to the D. virilis reference genome (see the Experimental Proce-

dures for details). We found 326,026 and 1,086,963 SNPs in

the genomes of A and I, respectively, of which, 169,192 SNPs

were shared. A total of 1,074,605 SNPs differed between the

genomes of the two strains (average density of 5.19 such

SNPs per Kb) allowing us to determine the allelic origin of piRNAs

and ChIP-seq reads derived from polymorphic genomic regions.

Importantly, we identified such SNPs in each of the differentially

expressed piRNA clusters (Table S1). This allowed us to unam-

biguously map a fraction of the ChIP-seq and piRNA reads to

each individual allele (Figures 4B–4D and S4).

We found that the two alleles of differentially expressed piRNA

clusters maintained their distinct chromatin states in the hybrid

progeny. Levels of H3K9me3 were higher on the A alleles

compared to the I alleles in both the MD and the NMD ovaries

(Figures 4B and S4). However, MD progenies had higher levels

of H3K9me3 mark on both the A and I alleles. This result indi-

cates that maternally inherited epigenetic signal in MD flies

causes an increase in H3K9 methylation on the I alleles. Impor-

tantly, the increase in H3K9me3 signal on the I alleles in the

MD progeny correlated with the induction of piRNA generation

from these alleles, whereas no piRNAs were generated from

the I alleles in the NMD flies (Figures 4C and 4D). Therefore,

transgenerational inheritance of an epigenetic signal correlates

with deposition of the H3K9me3 mark and induction of piRNA

generation from previously inactive genomic loci (Figure 4E).
1620 Cell Reports 8, 1617–1623, September 25, 2014 ª2014 The Au
DISCUSSION

Our results reveal an essential role for a transgenerationally in-

herited epigenetic factor in generation of piRNAs in germ cells

ofD. virilis. This maternally inherited factor is required tomaintain

the high level of piRNA generation from active piRNA clusters.

Furthermore, it is able to activate previously naive loci on I chro-

mosomes. These findings parallel the study by de Vanssay and

colleagues who showed that a maternally inherited factor pro-

duced by a transgenic piRNA locus is able to activate piRNA

generation from a previously inactive homologous locus in

D. melanogaster (de Vanssay et al., 2012). Multiple lines of evi-

dence point to piRNAs themselves as the carriers of the epige-

netic signal that triggers piRNA generation from homologous

loci in the progeny. First, in Drosophila both piRNAs and Piwi

proteins are inherited from thematernal germline to the early em-

bryos (Brennecke et al., 2008). Second, piRNAs can serve as

sequence-specific guides to identify and activate homologous

loci. Recent studies have shown that piRNAs and the nuclear

Piwi protein trigger installation of the H3K9me3 mark on homol-

ogous targets providing a possible mechanism by which in-

herited piRNAs could lead to chromatin changes (Le Thomas

et al., 2013; Rozhkov et al., 2013; Sienski et al., 2012; Wang

and Elgin, 2011). Finally, the study of a similar phenomenon in

D. melanogaster showed that the epigenetic signal produced

by the transgenic piRNA locus does not require inheritance of

the locus itself (de Vanssay et al., 2012). This result indicates

that the epigenetic signal has a nonchromosomal nature and
thors
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Figure 4. The Effect of Transgenerational

Epigenetic Signal on the Activity and the

Chromatin State of piRNA Clusters

(A) Transgenerational epigenetic signal leads to

increase in H3K9me3 levels on piRNA clusters in

the progeny. The input-normalized H3K9me3 signal

as measured by ChIP-qPCR is higher in the MD

progeny compared to the NMD progeny. ChIP-

qPCR signals were normalized to respective inputs

and compared to signal at a control genomic region

located inside cluster #4 (scaffold_12823:176535-

176654). The levels of H3K9me3 on the same

clusters measured by ChIP-seq performed on two

independent biological samples are shown in Fig-

ure S3. The error bars represent the SEM between

two independent biological replicates.

(B) Maternally inherited piRNAs lead to an increase

in H3K9me3 levels on both the paternal and

maternal alleles in the progeny. H3K9me3 ChIP-seq

data were mapped to the heterozygous genome of

the cross between A and I, considering only reads

that could be unambiguously mapped to either the I

or the A genome (see Experimental Procedures for

details). For each cluster, the H3K9me3 levels are

normalized to the signal on allele A in the MD cross.

For both the I and the A chromosomes, H3K9me3

levels over the differentially expressed clusters in-

crease when cognate piRNAs are inherited (MD

versus NMD progeny). At the same time, each

parental chromosome preserves its distinct chro-

matin state in the progeny: H3K9me3 levels are

higher on the parental chromosome coming from

strain A than on the one coming from strain I. The

error bars represent the SD of the mean between

two independent biological replicates. See also

Figure S4.

(C) Inheritance of piRNAs boosts piRNA production from both parental chromosomes in the progeny. piRNA density on each chromosome was determined by

mapping reads to the heterozygous genome of the cross between A and I, considering only reads that could be unambiguously mapped to either the I or the A

genome. For each cluster, the number of piRNAs is normalized to the piRNA derived from allele A in MD cross. For each differentially expressed cluster, more

piRNAs are produced from each allele when piRNAs are maternally inherited (MD versus NMD progeny). Importantly, inheritance of piRNAs activates piRNA

generation from clusters that were inactive in the parental I strain (solid light blue versus dark blue bars).

(D) The profiles of piRNA derived from A and I chromosomes in MD and NMD progenies on cluster #1. Only reads that mapped to SNPs that are distinct between

the genomes of strain A and I are shown. Note that chromosome I generates piRNAs in MD, but not NMD flies. The distribution of SNPs is shown below piRNA

tracks. See also Figure S4.

(E) Scheme of the cross between A and I strains along with the chromatin status (the level of H3K9me3 mark, red triangles) and the piRNA levels of each

chromosome in the progeny.

See also Figures S3 and S4 and Tables S1, S3, and S4.
eliminates the possibility that it is carried by a chromatin mark

linked to the active locus. Our results, together with these previ-

ous studies, strongly support the role of inherited piRNAs as a

transgenerationally inherited epigenetic signal that activates

piRNA generation from homologous loci in the progeny.

Transgenerationally inherited piRNAs activate piRNA genera-

tion in a nuclear process that is linked to the deposition of

H3K9me3 on homologous genomic regions. We found that

acquisition of the H3K9me3 mark by genomic regions that did

not previously produce piRNAs correlates with initiation of

piRNA biogenesis (Figure 4). In contrast, absence of inherited

piRNAs leads to a decrease in H3K9me3 levels on homologous

regions and a concomitant decrease in the corresponding

piRNAs (Figure 4). These results suggest that modification of

the chromatin structure of genomic regions homologous to in-

herited piRNAs induces piRNA biogenesis in the progeny. In
Cell Re
agreement with our results, previous studies have shown that

the biogenesis of piRNAs inD. melanogaster requires the activity

of Eggless/SETDB1, one of the methyl-transferases carrying out

the trimethylation of H3K9 (Rangan et al., 2011) and of Rhino, the

HP1 homolog, that is enriched over piRNA clusters (Klattenhoff

et al., 2009; Zhang et al., 2014). Rhino has a chromodomain

that is similar to the chromodomain of HP1 and binds the

H3K9me3 mark (Le Thomas et al., 2014; Mohn et al., 2014).

The exact molecular mechanism by which the H3K9me3 mark

is linked to piRNA biogenesis in the nucleus remains to be eluci-

dated; however, our results suggest that, counterintuitively, high

levels of H3K9me3 correlate with elevated transcription in the

context of piRNA clusters. Indeed, we found that high levels of

H3K9me3 on differentially expressed piRNA clusters in D. virilis

correlated with increased Pol II occupancy and with the genera-

tion of more precursor transcripts (Figures 1 and 2). Therefore,
ports 8, 1617–1623, September 25, 2014 ª2014 The Authors 1621



wepropose that changes in chromatin state associatedwith high

levels of H3K9me3 lead to the recruitment of nonconventional

readers of this mark such as Rhino, which subsequently affect

transcription in these regions, providing more precursors for

piRNA biogenesis. Overall, our data revealed that the determina-

tion of a piRNA producing loci in D. virilis is mediated by the pro-

cess of the transgenerational epigenetic inheritance.

EXPERIMENTAL PROCEDURES

Drosophila Stocks

D. virilis strain 160 (A) and strain 9 (I) were a generous gift from M. Evgeyev.

ChIP and RNA-Seq

ChIP experiments were carried out using commercially available antibodies

anti-H3K9me3 (ab8898) and anti-RNA Pol II (ab5408). Ovaries were fixed for

10 min at room temperature using 1% paraformaldehyde (PFA) followed by

5 min quenching by directly adding glycine (final concentration 25 mM). A

detailed protocol is provided in the Supplemental Experimental Procedures.

Quantitative ChIP-PCR (ChIP-qPCR) experiments were performed in at least

two biological replicates with two technical replicates each. Error bars repre-

sent the SEM. Primer pairs used in the qPCR experiments are presented in

Table S3. ChIP-seq and RNA-seq library construction and sequencing were

carried out using standard protocols and sequenced on the Illumina HiSeq

2000 (50 bp reads). Publicly available data sets for piRNAs were extracted

from the GEO Short Read Archive GSE22067 (Rozhkov et al., 2010).

Analysis of Ping-Pong Processing

To determine the fraction of piRNAs that participate in ping-pong pairs, we

counted uniquely mapped piRNA reads that map to opposite strands of

each other, overlap, and have a 10 bp distance between their 50 ends. To
account for different number of piRNAs in each sample, we carried out the

analysis by sampling reads to �25% of the read counts in the library with

the fewest reads in a region and repeating this 1,000 times.

D. virilis Genome Sequencing and Allele-Specific Mapping

Genomic libraries were generated from eachD. virilis strain and sequenced (as

23 100 reads) on an Illumina HiSeq 2000 platform. Sequencing coverage was

�82 times for strain A and �71 times for strain I. A detailed protocol for allele-

specific mapping is provided in the Supplemental Experimental Procedures.

Detailed statistics on the number of SNPs identified genome-wide and in the

particular piRNA clusters studied here can be found in Table S1.

ACCESSION NUMBERS

High-throughput sequencing data for ChIP-seq and RNA-seq experiments

are available through the Gene Expression Omnibus (accession number

GSE59965).
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de Vanssay, A., Bougé, A.-L., Boivin, A., Hermant, C., Teysset, L., Delmarre, V.,

Antoniewski, C., and Ronsseray, S. (2012). Paramutation in Drosophila linked

to emergence of a piRNA-producing locus. Nature 490, 112–115.

Gunawardane, L.S., Saito, K., Nishida, K.M., Miyoshi, K., Kawamura, Y.,

Nagami, T., Siomi, H., and Siomi, M.C. (2007). A slicer-mediated mechanism

for repeat-associated siRNA 50 end formation in Drosophila. Science 315,

1587–1590.

Kim, V.N., Han, J., and Siomi, M.C. (2009). Biogenesis of small RNAs in ani-

mals. Nat. Rev. Mol. Cell Biol. 10, 126–139.

Klattenhoff, C., Xi, H., Li, C., Lee, S., Xu, J., Khurana, J.S., Zhang, F., Schultz,

N., Koppetsch, B.S., Nowosielska, A., et al. (2009). The Drosophila HP1 homo-

log Rhino is required for transposon silencing and piRNA production by dual-

strand clusters. Cell 138, 1137–1149.

Le Thomas, A., Rogers, A.K., Webster, A., Marinov, G.K., Liao, S.E., Perkins,
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