### **Supplementary Methods:**

The following is the list of the materials used in the study: rabbit anti-human collagen IV (Novotec, Lyon, France), fluoro-nanogold anti-rabbit (Nanoprobes, New-York, USA), anti-CD31 (M0823, Dako, Glostrup, Denmark), collagenase A (Roche Applied Science, Pensberg, Germany), immunoselection cocktails EasySep TM "Do it yourself" selection kit (Stemcell technologies, Grenoble, France), Puramatrix (Corning, New-York, USA), human recombinant TGF-β1 and TGF-β3 (R&D Systems, Minneapolis, USA). ELISA tests of leptin, adiponectin and IL-6 (Duoset, R&D Systems, Minneapolis, MN, USA).

#### Immuno-electron microscopy in human SAT

Collagen IV localization was analyzed using the pre-embedding immunogold method with silver enhancement (30). SAT samples were immersion-fixed in 0.2% glutaraldehyde-2% paraformaldehyde at room temperature (RT) for 30 min. After agarose inclusion, vibratome sections (80 µM) were collected in PBS and incubated for 30 min in PBS with 4% goat serum at RT. Sections were incubated overnight at 4 °C with rabbit polyclonal collagen IV diluted in PBS with 4% goat serum. Sections were rinsed in PBS (3 x 10 min) and incubated with Fluoro-nanogold anti-rabbit antibody diluted in PBS with 0.2% fish skin gelatin and 2% bovine serum albumin (BSA), for 2 h at RT. After 3 x 10 min PBS washes, sections were post-fixed 10 min in 1% glutaraldehyde. After 3 x 10 min PBS washes and 3 x 10 min washes in 0.1M sodium acetate buffer pH7, silver enhancement (HQ silver, Nanoprobes, NY) was performed in the dark for 3 min and stopped by several rinses in 0.1M sodium acetate buffer pH 7.4. Sections were post-fixed 10 min in osmium tetroxide (1% water) at RT. After rinsing, they were dehydrated in serial ethanol dilutions (50%, 70% with 1% uranyl acetate, 95%, and 100%) followed by 10 min in propylene oxide. Samples were then infiltrated with 3:1 propylene oxide:epon resin for 30 min, then with 1:1 propylene oxide:epon resin for 30 min,

and finally with 1:3 propylene oxide:epon resin overnight at 4 °C. Sections were embedded in epon resin and were mounted on sigmacoated glass slides and polymerized at 60 °C for 48 h. Areas of interest were excised and glued to resin blocks. An ultracut UCT microtome (LEICA Microsystems, IL, USA) was used to generate 70 nm-thick sections, which were collected onto copper rhodium-coated grids. Grids were stained for 2 min in 0.2% lead citrate, and then analyzed with transmission electron microscopy (EM 912 Omega, Zeiss; München, Germany) equipped with a laB6 filament at 80kV. Images were captured with a digital camera (SS-CCD, Veleta 2kx2k) with iTEM software (Olympus, Münster, Germany).

#### **Quantigen Plex Assay**

Affymetrix has developed individual bead-based oligonucleotide probe sets specific for each examined gene. Samples were analyzed via the Luminex-200 system (Luminex Corporation, TX, USA), and data were acquired using Xponent software V3. Assays were performed according to the manufacturer's protocol. Briefly, cells lysates were incubated overnight at 54 °C with X-MAP beads containing oligonucleotide capture probes, label extenders, and blockers. The next day, beads and bound target RNA were washed and subsequently incubated with preamplifier solution at 50 °C for 1 h, then samples were washed and incubated with amplifier solution at 50 °C for 1 h. Subsequently, samples were washed and incubated with label probe (biotin) at 50 °C for 1 h. Samples were washed again and incubated with streptavidin-conjugated R-phycoerythin, which binds biotinylated probes, at room temperature for 30 min. Streptavidin-conjugated R-phycoerythrin fluorescence was then detected for each analyte within each sample. All data were standardized to housekeeping genes and normalized to control cells.

# **Supplementary Table:**

Table S1: list of the primers sequences used for real-time PCR

| Gene             | Forward               | Reverse                 |
|------------------|-----------------------|-------------------------|
| COL4A1           | cgggtacccaggactcatag  | ggacetgetteaccetttte    |
| COL4A3           | agcccacggacaagacct    | gaatggcattgtggtaaatcg   |
| COL4A5           | agageceaeggteaagaet   | catgaaaggcatggtactaaagc |
| LAMCI            | gtgctgttgttcccaagaca  | gccatcatcacagagctcac    |
| NID1             | cagttttcagatgagggaacg | tgaaggccagtttcacagtagtt |
| HSPG2 (perlecan) | tetggeteaagtgetgtee   | gaggaggagggctcgatg      |
| SPARC            | tttgatgatggtgcagagga  | gtggttctggcagggattt     |
| TGFB1            | gcagcacgtggagctgta    | cagccggttgctgaggta      |
| TGFB3            | aagaagcgggctttggac    | cgcacacagcagttctcc      |

Table S2: Correlation between *COL4A1* and BM component expression in obese adipocytes isolated from human subcutaneous or visceral adipose tissue

|                 | Ad. SAT                  | Ad. VAT                 |
|-----------------|--------------------------|-------------------------|
|                 | relative mRNA expression | relative mRNA expressio |
| COL4A1 vs LAMC1 | 0.60 (p=0.047)           | 0.57 (p=0.021)          |
| COL4A1 vs NID1  | 0.66 (p=0.004)           | 0.76 (p<0.01)           |
| COL4A1 vs SPARC | 0.54 (p=0.026)           | 0.71 (p=0.002)          |

Abbreviations: Ad: Adipocytes; SAT: subcutaneous adipose tissue; VAT: Visceral adipose tissue; n=16. Data are expressed as r and p (in parenthesis) values obtained using Spearman's correlation. In bold, significant correlations.

Table S3: Clinical parameters of obese subjects with impaired fasting glucose

| n (women/men)                 | 40/20          |
|-------------------------------|----------------|
| Age (years)                   | $51.3 \pm 1.2$ |
| BMI (Kg/m <sup>2</sup> )      | $31.4 \pm 0.4$ |
| Weight (Kg)                   | $86.9 \pm 1.6$ |
| Glycemia (mmol/L)             | $6.1 \pm 0.1$  |
| HOMA-IR                       | $1.3 \pm 0.1$  |
| Insulinemia (μU/L)            | $9.3 \pm 0.6$  |
| Insulin sensitivity (HOMA-%S) | $63.2 \pm 2$   |
| B-cell function (HOMA-%B)     | $4.5 \pm 0.4$  |

Table S4: Clinical parameters of non-diabetic morbidly obese women subjects before (T0) and six months after surgery (T6)

|                          | Т0             | Т6              | P Value    |
|--------------------------|----------------|-----------------|------------|
| n                        | 16             | 16              | -          |
| Age (years)              | $48.9 \pm 1.8$ | $48.9 \pm 1.8$  | -          |
| BMI (Kg/m <sup>2</sup> ) | $46 \pm 2.1$   | 34.8± 1.7       | < 0.0001   |
| Glycemia (mmol/L)        | $5.6 \pm 0.24$ | $5.24 \pm 0.24$ | NS (0.078) |
| Insulinemia              | 15.1 ± 1.97    | $7.87 \pm 0.72$ | 0.0009     |
| HOMA-IR                  | $3.8 \pm 0.51$ | $1.85 \pm 0.2$  | 0.0006     |
| HbA1c (%)                | $6.2 \pm 0.2$  | $5.8 \pm 0.2$   | 0.001      |
| Leptin (ng/mL)           | $61.9 \pm 8.9$ | $23.3 \pm 3.9$  | 0.001      |
| Adiponectin (μg/mL)      | $5\pm0.6$      | $6.6 \pm 0.36$  | 0.012      |

P values were obtained using Wilcoxon's tests

Table S5: Clinical parameters of morbidly obese subjects before (T0) and six months after surgery (T6)

|                          | Т0             | T6             | P Value  |
|--------------------------|----------------|----------------|----------|
| n                        | 25             | 25             | -        |
| Age (years)              | $48.9 \pm 1.8$ | $48.9 \pm 1.8$ | -        |
| BMI (kg/m <sup>2</sup> ) | 47 ± 1.4       | 35.7± 1.2      | < 0.0001 |
| Type 2-Diabetic (%)      | 15 (60)        | 15 (60)        | -        |
| Glycemia (mmol/L)        | $5.9 \pm 0.21$ | $5.3 \pm 0.2$  | 0.0067   |
| HOMA-IR                  | $4.1 \pm 0.49$ | $2.04 \pm 0.2$ | 0.0003   |
| HbA1c (%)                | $6.4 \pm 0.16$ | $5.8 \pm 0.1$  | 0.0019   |
| Leptin (ng/mL)           | $62.6 \pm 5.6$ | $27.3 \pm 3.7$ | < 0.0001 |
| Adiponectin (μg/mL)      | $4.5 \pm 0.4$  | $6.3 \pm 0.36$ | 0.0003   |

P values were obtained using Wilcoxon's tests.

## **Additional results**

Figure S1: Collagen IV immuno-electron microscopy in 4 leans (A; B; C; D) and 4 obeses (E; F; G; H) human subcutaneous adipose tissue. Arrows: collagen IV.



Figure S2: The reduced expression of LAMC1, HSPG2, and SPARC in subcutaneous adipose tissue seen with weight loss, is also associated with variations in TGFB1 and TGFB2 expression.



D.

| Gene expression          | Delta TGFβ1    | Delta TGFβ3      |
|--------------------------|----------------|------------------|
| Delta LAMC1              | r=0.36; p=0.08 | r=0.64; p=0.0005 |
| Delta perlecan/<br>HSPG2 | r=0.35; p=0.08 | r=0.6; p=0.0021  |
| Delta SPARC              | NS             | r=0.48; p=0.0151 |