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The present paper addresses important fundamental issues of inter-phase heat transfer
and energy coupling in turbulent dispersed multiphase flows through scaling analysis.
In typical point-particle or two-fluid approaches, the fluid motion and convective heat
transfer at the particle scale are not resolved and the momentum and energy coupling
between fluid and particles are provided by proper closure models. By examining the
kinetic energy transfer due to the coupling forces from the macroscale to microscale
fluid motion, closure models are obtained for the contributions of the coupling forces
to the energy coupling. Due to the inviscid origin of the added-mass force, its contri-
bution to the microscale kinetic energy does not contribute to dissipative transfer
to fluid internal energy as was done by the quasi-steady force. Time scale analysis
shows that when the particle is larger than a critical diameter, the diffusive-unsteady
kernel decays at a time scale that is smaller than the Kolmogorov time scale. As
a result, the computationally costly Basset-like integral form of diffusive-unsteady
heat transfer can be simplified to a non-integral form. Conventionally, the fluid-to-
particle volumetric heat capacity ratio is used to evaluate the relative importance
of the unsteady heat transfer to the energy balance of the particles. Therefore, for
gas-particle flows, where the fluid-to-particle volumetric heat capacity ratio is small,
unsteady heat transfer is usually ignored. However, the present scaling analysis shows
that for small fluid-to-particle volumetric heat capacity ratio, the importance of the
unsteady heat transfer actually depends on the ratio between the particle size and
the Kolmogorov scale. Furthermore, the particle mass loading multiplied by the heat
capacity ratio is usually used to estimate the importance of the thermal two-way
coupling effect. Through scaling argument, improved estimates are established for
the energy coupling parameters of each energy exchange mechanism between the
phases. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942184]

I. INTRODUCTION

Inter-phase heat transfer and energy coupling are of essential importance to many applications
of turbulent dispersed multiphase flows. The dispersed multiphase flows of interest in the present
study consist of a “carrier phase” and a “dispersed phase.” The latter can be in the form of discrete
elements like solid particles, droplets, and bubbles. For convenience of discussion, here after we
refer to the dispersed and carrier phases as “particle” and “fluid,” but it should be noted that the
terms “particle” and “fluid” are used in a broad sense.

Numerical simulation is an important approach to investigate turbulent dispersed multiphase
flows. In many practical applications, the number of particles is huge and the scales of primary
interest are much larger than the size of individual particles. Therefore, the point-particle approach
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(PPA) is commonly used, in which the particles are modeled as point masses. Since the flows
around the particles are not resolved, the momentum and energy coupling between fluid and parti-
cles are represented by proper closure models.

To accurately represent the momentum coupling between the two phases, it is essential to
rigorously model the force on each individual particle due to fluid-particle interaction. The overall
force exerted on a spherical particle undergoing arbitrary time-dependent motion in an unsteady
inhomogeneous ambient flow can be derived analytically in the limit of zero Reynolds and Mach
numbers.1–4 Extension of the force model to finite Reynolds and Mach numbers unavoidably
involves empirical correlations.5,6 The overall inter-phase coupling force can be separated into
different physically meaningful contributions: the quasi-steady force Fqs, the stress-gradient force
Fsg, the added-mass force Fam, and the viscous-unsteady force Fvu (often called the Basset history
force). The latter three contributions together are loosely referred as the “unsteady forces,” since
they are non-zero only when the acceleration of the fluid or the particle is non-zero. Details of the
inter-phase momentum coupling and the modeling of coupling force can be found in the work of
Balachandar,7 Balachandar and Eaton,8 and Ling et al.,9 and thus are not repeated here.

Similarly, the inter-phase energy coupling is represented by the inter-phase heat transfer model.
The heat transfer between a spherical particle and the ambient fluid in an unsteady inhomogeneous
flow can also be derived in the limit of zero Reynolds number.10 The overall inter-phase heat trans-
fer can again be separated into physically meaningful contributions: the quasi-steady heat transfer
Qqs, the undisturbed-unsteady heat transfer Quu, and the diffusive-unsteady heat transfer Qdu, which
are the thermal analogues of Fqs, Fsg, and Fvu. Note that there is no thermal analog to Fam because
the latter is inviscid in nature and arises from the no-penetration boundary condition. Again, the
latter two contributions to inter-phase heat transfer together are loosely referred as the “unsteady
heat transfer,” since they are non-zero only when the thermal acceleration of the fluid or the particle
is non-zero. The extensions of the inter-phase heat transfer model to finite Reynolds number were
presented by Feng and Michaelides11 and Balachandar and Ha.12 Apart from heat transfer between
the fluid and the particles, the inter-phase coupling forces can also contribute to the energy coupling
between the two phases through the work done by the inter-phase coupling force. For example, the
back effect of the quasi-steady force on the fluid contributes to dissipative heating of the ambient
fluid. The energy contribution from inter-phase force-coupling to the fluid thermal field is generally
small; however, it can become significant in some applications.13

Recently, scaling analysis of the inter-phase momentum coupling in turbulent dispersed multi-
phase flows was reported by Ling et al.14 By analyzing the time scales of turbulent flows and
particle motion, useful estimates are obtained on the importance of unsteady forces compared to
the quasi-steady force, and on the importance of the inter-phase coupling forces in influencing
the ambient flow momentum balance. In this paper, we will extend the scaling analysis of Ling
et al.14 to investigate inter-phase heat transfer and energy coupling. In particular, we are interested
in addressing the following four fundamental questions regarding inter-phase energy coupling in
turbulent dispersed multiphase flows:

• Q1: How do different inter-phase coupling forces contribute to inter-phase energy coupling
and what are the correct formulations?

• Q2: Is it possible to simplify the history integral in computing the diffusive-unsteady heat
transfer? If so, under what conditions can this simplification be made?

• Q3: Under what conditions is unsteady heat transfer important in evaluating the particle
temperature evolution, when compared to the quasi-steady heat transfer?

• Q4: Under what conditions the back effects of the inter-phase heat transfer and coupling force
need to be taken into account in the fluid energy equation (i.e., under what conditions the fluid
and the particles are considered thermally two-way coupled)?

For Q1, it is generally considered that the discrepancy between the work done by the inter-phase
coupling force on the fluid (e.g., Fqs · u f ) and on the particles (e.g., −Fqs · up) is transferred to
the kinetic energy of the microscale fluid motion (at the particle scale), which will be eventually
transferred to the internal energy of the ambient fluid due to dissipation. This argument is valid
for the quasi-steady force due to its viscous nature. Similarly the contribution of the work done by
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the unsteady forces to the internal energy of the carrier phase must be clarified. Here we consider
u f is the instantaneous undisturbed fluid velocity at the particle location. If the mean value is used
instead, then it has been shown recently by Xu and Subramaniam15 and Mehrabadi et al.16 that
the work done by the inter-phase coupling force can indeed contribute to kinetic energy transfer
between the mean flow and the fluctuating motion of fluid and particles.

For Q2, the diffusive-unsteady heat transfer is generally computed as the Basset-like convo-
lution integral of the past history of relative thermal acceleration between the particle and the
surrounding fluid weighted by the history kernel.10 The evaluation of this convolution integral can
be computationally expensive if must be carried out for a large number of particles. If the rate of
change of relative thermal acceleration is slower than the decay of the thermal history kernel then
the convolution integral can be simplified and precomputed.12 In this paper, by investigating the
time scale of the diffusive-unsteady heat transfer kernel in relation to the turbulence time scales, we
will establish the condition under which the convolution integral can be simplified.

For Q3, the importance of unsteady forces in momentum coupling is usually estimated in terms
of the fluid-to-particle density ratio ρ f /ρp. Similarly, the fluid-to-particle volumetric heat capacity
ratio βθ = ρ fCf /ρpCp can be used to assess the importance of unsteady heat transfer, where Cp

and Cf are the specific heat capacities of the particle and the fluid. (Here the heat capacity of fluid
corresponds to that at constant volume.) Through scaling estimates of relative velocity and relative
acceleration for particles in turbulent flows, Ling et al.14 have established the relative importance
of unsteady forces in three regimes characterized by τpm < τη, τη < τpm < τL, and τpm > τL, where
τpm is the particle mechanical response time and τη and τL are the Kolmogorov and integral time
scales of the ambient flow. Following this line of reasoning, quantitative estimates of the relative
importance of unsteady heat transfer compared to the quasi-steady heat transfer will be obtained in
these three regimes of turbulent multiphase flows.

For Q4, the particle-to-fluid mass fraction ratio (or the particle mass fraction alone) is usually
used as the momentum coupling parameter to assess the importance of back effect of the inter-phase
coupling force on the fluid motion.17 When the particle-to-fluid mass fraction ratio is O(1), the
two phases are considered to be two-way mechanically coupled. The thermal extension of this
conventional criterion would be the particle-to-fluid mass fraction ratio multiplied by the specific
heat ratio. Nevertheless, it has been shown that the conventional momentum coupling parameter is
valid only for the quasi-steady force but not for the unsteady forces. As a result, it is of interest to
investigate the energy coupling parameters and evaluate under what conditions the two phases need
to be considered thermally two-way coupled.

To simplify the analysis and focus on answering the above questions, several assumptions and
approximations are made:

• The effect of temperature variation on the transport properties of the fluid is ignored.
• The effect of gravity is neglected and as a result there will be no buoyancy induced fluid

motion.
• The Prandtl number of the fluid, Pr f , is close to unity. As a result, the inertial-diffusive

subrange is negligibly small and the inertial-convective subrange dominates the spectra of
temperature fluctuation.

• The particle Biot number is taken to be much smaller than unity and thus the temperature
within the particle is uniform.

• There is no phase change or mass transfer between the particle and the fluid.
• The multiphase flow is in the dilute regime and therefore inter-particle interactions are

negligible.

In the inertial-convective subrange, the effect of viscosity and thermal diffusivity is negligible. As a
result, the spectral density function of the variance of the temperature fluctuation is shown to have
the same decay rate as that of the turbulent kinetic energy, i.e., k−5/3, where k is the wavenum-
ber.18,19 The Kolmogorov length scale for turbulent motion and temperature fluctuation is defined
as ηm = (ν3

f
/ϵ)1/4 and ηθ = (α3

f
/ϵ)1/4, where νf and α f are the fluid viscous and thermal diffusivity,

respectively. Since the fluid Prandtl number is considered to be close to one, then ηm ≈ ηθ.
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The governing equations for both the fluid and the particles and the models for the inter-phase
coupling forces and heat transfer will be first described in Section II. In Section II E, we will discuss
the correct expression of work done by each inter-phase coupling force in the fluid energy equation.
A general analysis of particle and turbulent flow time scales is presented in Section III. Based on
the estimates of these time scales, we will discuss the integral and non-integral representations of
diffusive-unsteady heat transfer in Section IV. Scaling analysis of the inter-phase energy coupling
is conducted in Section V. We will first evaluate the importance of unsteady heat transfer compared
to quasi-steady heat transfer in Section V A. Then similar analysis will be done to investigate
the importance of the contributions of inter-phase heat transfer and coupling force in backward
coupling in Sections V B and V C, respectively. Finally, conclusions are drawn in Section VI.

II. GOVERNING EQUATIONS

A. PPA

The point-particle approach is a useful method in the simulation of dispersed multiphase
flows, including inviscid20 and viscous (turbulent) flows,21,22 incompressible23,24 and compressible
flows.13,25,26 Here we pursue PPA formulated under the Eulerian-Lagrangian framework: the fluid is
viewed as a continuum and the governing equations are written in the Eulerian framework, while the
particles are retained as discrete point masses and tracked in the Lagrangian framework. The gov-
erning equations for the fluid and the particles can be written in different ways. The following set
of equations is expressed in a manner well suited for the present Eulerian-Lagrangian framework.
The equivalence of this set of governing equations to more conventional form used in two-fluid
approaches will be discussed later,

∂(ρ f φ f )
∂t

+ ∇ · (ρ f φ fu f ) = 0, (1)

ρ f φ f

Du f

Dt
− ∇ · σ f = −

1
V

Np
i

F f p, i, (2)

ρ f φ f

DE f

Dt
− ∇ · (σ f · (φ fu f + φpup)) − ∇ · q f = −

1
V

Np
i

(G f p, i +Q f p, i), (3)

and
dxp, i

dt
= up, i, (4)

mp

dup, i

dt
= F f p, i, (5)

mpCs

dTp, i

dt
= Q f p, i. (6)

The subscripts f and p denote properties associated with the fluid and particles, respectively. The
fluid variables, ρ f , φ f , and E f , represent the density, volume fraction, and total macroscale energy
of fluid. The bold symbols u f , σ f , and q f represent the velocity vector, stress tensor, and heat flux
vector of fluid. The variable up appearing in Eq. (3) represent the average particle velocity and
detailed discussion of which is given in Section II D.

The position and velocity vectors and temperature of the ith particle are denoted by xp, i,up, i,
and Tp, i. For simplicity the mass and heat capacity of the particles are taken to be constants mp and
Cp. The overall force on the ith particle due to fluid-particle coupling is denoted by F f p, i, while the
overall convective heat transfer between the fluid and particles is denoted by Q f p, i.

In PPA, as the flow around particles is not resolved, the expressions of F f p, i and Q f p, i are given
by fluid-particle coupling models in terms of the macroscale (undisturbed) fluid flow properties.
To conserve momentum and energy of the whole system, F f p, i and Q f p, i need to be subtracted
from the fluid momentum and energy equations (Eqs. (2) and (3)) to account for the back effect
of the particles on the fluid motion and temperature evolution. In Eq. (3), G f p, i corresponds to
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contribution to the total energy of the fluid from the inter-phase coupling force F f p, i. In Eqs. (2) and
(3), (1/V)Np

i symbolically represent the net feedback from the particles onto the carrier phase. In
a finite volume context, this feedback is expressed as a sum over all the particles within the cell,
where Np is the total number of particles in the cell and V denotes the cell volume. If needed the
feedback can be computed in more sophisticated ways,27 but the form given in Eqs. (2) and (3) is
sufficient for the present scaling analysis.

B. Inter-phase coupling force

For an individual particle, the equation of motion, Eq. (5), can be written as

mp, i

dup, i

dt
= F f p, i = Fsg, i + Fqs, i + Fam, i + Fvu, i, (7)

where Fsg, i,Fqs, i,Fam, i, and Fvu, i represent the stress-gradient, quasi-steady, added-mass, and vis-
cous-unsteady forces. The expressions of these forces are given as

Fsg, i = Vp, i(∇ · σ f )i, (8)
Fqs, i = 3πµ f , idp, i(u f , i − up, i)Φ(Rep, i), (9)

Fam, i = Vp, iCM

(
∇ · σ f −

dρ fup

dt

)
i

, (10)

Fvu, i =
3
2

d2
p, i

√
πνf , i
√
τvu, i

 t

−∞
Kvu

(
t − ξ

τvu, i
,Rep, i

) (
∇ · σ f −

dρ fup

dt

)
i

dξ
τvu, i

, (11)

where Vp and dp denote the particle volume and diameter. The variables with a subscript f , i

represent the fluid variables at the ith particle location, e.g., µ f , i represents the fluid dynamic vis-
cosity at xp, i. The stress gradient force is the force due to the undisturbed ambient flow (i.e., due
to the incident flow without being modified by the particle). In the quasi-steady force formula-
tion, the correction function that accounts for the effect of finite Reynolds number is denoted by
Φ. Empirical correlations of this correction function are given in Refs. 28 and 29. The particle
Reynolds number, Rep, is defined based on the relative velocity between the fluid and the particle as
Rep = |u f − up |dp/νf . (For expressions that are identically applied to every point-particle, such as
the one for Rep here, the subscript i is dropped here for conciseness.) The viscous-unsteady kernel,
Kvu, is defined as a function of normalized time scaled by the viscous-unsteady time scale, τvu. The
detailed expressions of Kvu and τvu are given by Mei and Adrian5 and Ling et al.14

In Eqs. (10) and (11), the term ∇ · σ f is often replaced by ρ f Du f /Dt1 and Dρ fu f /Dt4 in
incompressible and compressible flows, respectively. It has been argued that the first two forms are
identically equal according to the Navier-Stokes equations of the fluid phase. This is indeed true
when one considers force on an isolated particle immersed in a fluid flow, where quantities such as
u f and ρ f correspond to those of the pure fluid. However, in a two-way coupled multiphase system,
as can be readily seen from Eq. (2), the different forms are not equivalent. In Eqs. (1)–(3), u f and
other fluid phase quantities are at the macroscale and must be interpreted as spatial or ensemble
averages. It remains somewhat unclear as to which form should be used in Eqs. (10) and (11).
Nevertheless, the results to be obtained by the scaling analysis in the present work are independent
of this detail.

C. Inter-phase coupling heat transfer

The equation of the thermal evolution of an individual particle can be written as

mpCp

dTp

dt
= Q f p = Quu +Qqs +Qdu, (12)

where Quu, Qqs, and Qdu represent the undisturbed-unsteady, quasi-steady, and diffusive-unsteady
contributions to the overall heat transfer due to inter-phase coupling.30 Their expressions are given
as

Quu = Vp∇ · q f , (13)
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Qqs = 2πκ f dp(Tf − Tp)Ψ(Rep,Pr f ), (14)

Qdu = πdpκ f τduPep

 t

−∞
Kdu

(
t − ξ

τdu
,Pep

) (
1

ρ fCf
∇ · q f −

dTp

dt

)
dξ
τdu

, (15)

where κ f is the thermal conductivity of fluid. The temperature of fluid and particle is represented by
Tf and Tp, respectively. Here again in Eqs. (13) and (15), ∇ · q f , which accounts for the undisturbed
ambient thermal field seen by the particle, can be replaced by ρ fCf DTf /Dt, assuming the work
induced heating is negligible.10

The first contribution, Quu, is analogous to the stress-gradient force Fsg. It accounts for the
heat transfer to the particle due to the undisturbed ambient flow field. On the right hand side of
Eq. (12), the second contribution Qqs accounts for the quasi-steady thermal transfer from the particle
to the surrounding fluid due to the instantaneous temperature difference. The correction function
that accounts for the effect of finite Reynolds number on the quasi-steady heat transfer is denoted
by Ψ = Nu/2, where Nu = α f dp/κ f is the Nusselt number and it is a function Rep and Pr f . At the
Stokes limit, Nu = 2 and Ψ = 1. At finite Reynolds numbers, Ψ is given by empirical correlations,
see, e.g., Whitaker31 and Ranz and Marshall.32

The last contribution Qdu accounts for the unsteady thermal diffusion due to the temporal
development of the thermal boundary layer around the particle and depends on the past history of
relative thermal acceleration. The diffusive-unsteady kernel, Kdu, is defined as a function of time
normalized by the diffusive-unsteady time scale, τdu. It is noted that the diffusive-unsteady kernel
Kdu and time scale τdu are the thermal analogues of the viscous-unsteady kernel Kvu and time scale
τvu, respectively.14 The diffusive-unsteady kernel generally depends on the particle Peclet number,
which is defined as Pep = RepPr f . The expression for Kdu in incompressible flows in the zero Peclet
(Reynolds) number limit is given by Michaelides and Feng.10 The extensions of Kdu to finite Peclet
(Reynolds) number have been presented by Feng and Michaelides11 and Balachandar and Ha.12

Under extreme conditions as in multiphase detonation, the solid particles can experience signif-
icant deformation.9 In such cases, compression heating and expansion cooling of the deforming
particles will need to be considered in inter-phase energy coupling, but these effects are out of the
scope of the present paper.

D. Equivalence to the Eulerian-Eulerian (two-fluid) formulation

As pointed out earlier, Eqs. (4)–(15) have been written in the Lagrangian framework as applied
to each individual particle, and the gas governing equations in (1)–(3) have been expressed accord-
ingly. Here we will consider the fluid and the particle phase governing equations as typically ex-
pressed in the Eulerian-Eulerian framework (or two-fluid formulation),17,33 so their equivalence can
be established. In the two-fluid formulation, the fluid-phase governing equations can be expressed
as

∂(ρ f φ f )
∂t

+ ∇ · (ρ f φ fu f ) = 0, (16)

∂(ρ f φ fu f )
∂t

+ ∇ · (ρ f φ fu fu f ) − ∇ · (φ fσ f ) + σ f · ∇φ f =

−ρpφp(fqs + fam + fvu) , (17)
∂(ρ f φ f E f )

∂t
+ ∇ · (ρ f φ fu f E f ) − ∇ · (φ fσ f · u f ) − φ f∇ · q f =

σ f : ∇(φpup) − ρpφp(gqs + gam + gvu) − ρpφp(qqs + qdu) . (18)

The particle phase properties, such as velocity up and total energy Ep, must be interpreted as field
variables in the two-fluid formulation. The corresponding particle phase governing equations now
mirror those of the gas phase and can be expressed as

∂(ρpφp)
∂t

+ ∇ · (ρpφpup) = 0, (19)
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∂(ρpφpup)
∂t

+ ∇ · (ρpφpupup) − ∇ · (φpσ f ) + σ f · ∇φp =

ρpφp(fqs + fam + fvu) , (20)
∂(ρpφpEp)

∂t
+ ∇ · (ρpφpupEp) − ∇ · (φpσ f · up) − φp∇ · q f =

−σ f : ∇(φpup) + ρpφp( fqs + fam + fvu) · up + ρpφp(qqs + qdu) . (21)

Several comments are given in order as follows with regard to the above equations as compared
to governing equations (1)–(12) presented earlier. First, in the above two-fluid formulation, the left
hand side of the equations are in the conservative form, except for the nozzling terms, σ f · ∇φ f and
σ f · ∇φp, in the momentum equations and the heat conduction terms, −φ f∇ · q f and −φp∇ · q f , in
the energy equations. The right hand sides of the momentum equations correspond to inter-phase
exchange of momentum and by comparing (2) with (17) it can be observed,

f(sg,qs,am,vu) =
1

ρpφpV

Np
i

F(sg,qs,am,vu), i. (22)

Similarly from the energy equations we obtain

g(sg,qs,am,vu) =
1

ρpφpV

Np
i

G(sg,qs,am,vu), i (23)

and

q(uu,qs,du) =
1

ρpφpV

Np
i

Q(uu,qs,du), i. (24)

The right hand sides of the gas and the particle momentum equations add to zero, and thus the
inter-phase exchange of momentum does not affect the global balance.

In the above equations, the total stress is the sum of pressure and the deviatoric (viscous)
stress, i.e., σ f = pf I + τ f , where I is the identity tensor. The pressure part of σ f · ∇φ f in the fluid
momentum (i.e., pf∇φ f ) can be identified as the inviscid nozzling force used in many two fluid
models34 and its viscous generalization is the term σ f · ∇φ f . The nozzling force does not appear
explicitly in the fluid momentum equation given in Eq. (2). To reconcile, we first note that the
contribution of the stress gradient force to the right hand side of Eq. (2) is given by −Np

i F(sg ), i/V,
where the sum is over all the particles within a grid cell. The stress gradient force on each particle
is given by Eq. (10) and in a finite volume context if we take all the particles within a grid cell
to experience the same stress gradient force, we obtain the sum to be equal to the local value of
φp∇ · σ f . This stress gradient force combined with the stress divergence term, −∇ · σ f , in Eq. (2) is
identical to −∇ · (φ fσ f ) + σ f · ∇φ f in Eq. (17). Thus, the nozzling term is implicitly included in the
momentum equation (Eq. (2)). Conversely, the stress gradient force does not explicitly appear in the
two-fluid momentum equation (Eq. (17)).

In particle momentum equation (20), the third and the fourth terms on the left hand side
combine to yield φp∇ · σ f on the right hand side, which is nothing but the stress gradient force.
Thus, it can be readily verified that Lagrangian particle momentum equation (5) when summed over
all the particles within a grid cell is equivalent to the Eulerian version given in (20). The particle
kinetic energy equation, obtained from dotting (20) with up, can be subtracted from total energy
equation (21) to obtain the following particle internal energy equation:

ρpφpCp

dTp

dt
= φp∇ · q f + ρpφp(qqs + qdu). (25)

From (13) the first term on the right corresponds to heat transfer to the particle due to the undis-
turbed ambient flow. It can be seen that (25) is the same as Lagrangian energy equation (12)
summed over all the particles with the grid cell.

We finally come to establishing the equivalence of the two forms of the fluid energy equations.
We define the work done on the gas phase due to the stress gradient force to be
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gsg = fsg · up. (26)

This along with (23) and the definition of stress gradient force yield

1
V

Np
i

Gsg = φp(∇ · σ f ) · up. (27)

It can be noted that the two-fluid energy equation given in (18) does not explicitly include either
heat transfer due to the undisturbed ambient flow (i.e., −ρpφpquu) or work due to the stress gradient
force (i.e., −ρpφpgsg). Both these effects are due to the undisturbed flow and are only implicitly
accounted for in (18). Using Eqs. (8), (13), and (27), these effects can be explicitly included on the
right hand side of the energy equation. With additional manipulations and using relations (23) and
(24), we can show that the continuous phase energy equation given in (3) is identical to that given
in (18).

It should be reminded that in the two-fluid formulations, the spatial scale for averaging is
considered to be smaller than the smallest flow length scale (e.g., Kolmogorov scale for turbulent
flows). Therefore, Reynolds stress terms due to averaging of turbulent fluctuations do not appear.

E. Fluid phase internal energy equation

In (18) inter-phase coupling forces, fqs, fam, and fvu, contribute to the total energy of the fluid
through the rate of work terms gqs, gam, and gvu. The relations between the g and the f terms can
be expected to be analogous to that given in (26) for the stress gradient force. We first obtain the
following internal energy equation for the fluid phase by subtracting the kinetic energy component
from (18):

ρ fφ f

De f

Dt
= φ f∇ · q f − ρpφp(qqs + qdu) + σ f : ∇(φ fu f + φpup)
+ ρpφp

�(fqs · u f − gqs) + (fam · u f − gam) + (fvu · u f − gvu)�. (28)

The first two terms on the right are analogous to those in the particle phase internal energy equation
given in (25). Summing the first term on the right of Eq. (25) and that of Eq. (28) yields total
conductive heat transfer, i.e., ∇ · q f , while the second terms of Eqs. (25) and (28) cancel each other,
as they represent inter-phase heat transfer.

Based on the form of the third term on the right of Eq. (28), the following Newtonian constitu-
tive model is often proposed for the deviatoric stress in a multiphase flow:35

τ f = σ f − pf I = µ(∇um + (∇um)T) + �λ − 2
3
µ
�
I∇ · um, (29)

where µ and λ are the shear and bulk viscosities of the multiphase flow mixture (which can be
substantially different from those of the pure fluid). The volume weighted mixture velocity is
defined as

um = φ fu f + φpup. (30)

With the above constitutive relation we can see that the pressure part of the third term of Eq. (28)
yields −p∇ · um. This term corresponds to adiabatic compression heating or expansion cooling
of the multiphase flow, and it depends on the divergence of the mixture velocity. In the above
model, this reversible heating or cooling directly influences only the fluid internal energy and the
contribution is generally small compared to heat transfer except for highly compressible flows.
The contribution of the deviatoric part of the third term of Eq. (28), τ f : ∇um, is guaranteed to be
non-negative and corresponds to viscous dissipation. Again, the contribution of viscous dissipation
to the fluid internal energy balance is generally small.

F. Energy implications of inter-phase coupling forces

Earlier we noted that in both point-particle and two-fluid approaches, u f represents macroscale
fluid motion at scales much larger than the particle size. Thus, fluid velocity and all other fluid
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properties in (1)–(3) and in (16)–(18) are averaged quantities that have been suitably volume or
ensemble averaged. In the two-fluid equations, up and all other particle properties are also averaged
macroscale quantities. At the microscale, i.e., at the scale of the particle size, we expect the fluid
velocity to vary from being close to the particle velocity in a layer close to the particles to being
close to the macroscale fluid velocity away from the particles. In point-particle and two-fluid ap-
proaches, such microscale motion is implicitly accounted in the momentum equation through the
inter-phase coupling forces and in the energy equations through inter-phase heat transfer and energy
contributions of the inter-phase coupling forces.

In Eq. (28) we now consider the first part of the fourth term, i.e., ρpφp(fqs · u f − gqs). This term
arises from the difference in the contribution of the quasi-steady force to the fluid kinetic energy
(ρpφpfqs · u f ) and to the particle phase kinetic energy (ρpφpgqs). Their difference corresponds to
the flow of energy to the microscale fluid motion around the particles arising from the velocity
difference between the fluid and the particle phases. Due to the viscous origin of the quasi-steady
force, this microscale kinetic energy in turn is dissipated and transferred to the internal energy of the
fluid. The proper closure for gqs is then given by

gqs = fqs · up. (31)

The quasi-steady force fqs is oriented in the direction of relative velocity, u f − up, and therefore it
is guaranteed that this irreversible transfer to the internal energy of the fluid through the microscale
fluid motion is non-negative, i.e., fqs · (u f − up) ≥ 0. The transfer of macroscale kinetic energy due
to the quasi-steady force is shown schematically in Fig. 1.

The energetics of the added-mass force requires further consideration. The added-mass force
arises from the kinetic energy change in the inviscid microscale flow around the particle, due to
the relative acceleration of the particle. Thus the term ρpφp(fam · u f − gam) in Eq. (28) corresponds
to kinetic energy transfer to the inviscid microscale fluid motion. However, since its origin is in
inviscid mechanism it is not dissipated by viscosity and does not contribute to dissipative transfer
to internal energy of the fluid. Furthermore, this term can take both positive and negative values
and accordingly energy can flow back and forth between the macroscale motion and the microscale
inviscid perturbation (indicated by the bi-directional arrow in Fig. 1). This energy in microscale
inviscid motion should not be transferred to internal energy, as was done for the quasi-steady force.
Therefore, the proper closure for gam is to make ρpφp(fam · u f − gam) = 0 and thus

gam = fam · u f . (32)

In compressible flows, the added-mass force involves a history integral as the relative accel-
eration of the particle generates compression and rarefaction waves that propagate away from the
particle at finite acoustic speed (see the work of Parmar et al.36). If relative acceleration between the
particle and the surrounding fluid occurs on a time scale comparable to the acoustic time scale, then
part of the macroscale kinetic energy can be radiated to the far-field and irreversibly lost (similar
to viscous dissipation). Even so, this loss of energy from the kinetic energy of the system should
not contribute to the internal energy of the fluid. Furthermore, the form of the added-mass force
used in Eq. (10) assumes the time scale of relative acceleration to be slower than the acoustic time
scale, thus allowing the use of an effective added-mass coefficient, without the need for a history
integral. In this limit there is no radiated loss of energy, the energy exchange between the macro-
and microscale fluid motion is fully conservative.

FIG. 1. Transfer of kinetic energy of the system due to the quasi-steady, added-mass, and viscous-unsteady forces.
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The kinetic energy transfer due to viscous-unsteady force is more complicated. Contribution
to kinetic energy change in the macroscale system due to the viscous-unsteady force is partially
dissipative like the quasi-steady force, and partially non-dissipative like the added-mass force and
used to modify the viscous microscale flow in the vicinity of the particle. (Note that the kinetic
energy transfer due to the added-mass force is used to modify the inviscid microscale flow around
the particle.) The former portion is irreversible and positively contributes to the fluid internal en-
ergy; while the latter portion is reversible and contributes to kinetic energy exchange between the
macroscale and microscale, see Fig. 1. Due to the complex nature of the viscous-unsteady force, it
is difficult to separate the two contributions in the time domain (see Parmar et al.37). Over long time
scale, the dissipation portion can be expected to dominate and the following closure is appropriate
for gvu as

gvu = fvu · up. (33)

Based on the above discussion of the energy implications of the inter-phase coupling forces,
finally we obtain the following expression for G f p, i to be used in (3) in the context of PPA:

G f p, i = Fsg, i · up, i + Fqs, i · up, i + Fam, i · u f + Fvu, i · up, i. (34)

Similarly for the two-fluid approach, the total and internal energy equations, Eqs. (18) and (28), can
be rewritten as

∂(ρ f φ f E f )
∂t

+ ∇ · (ρ f φ fu f E f ) − ∇ · (φ fσ f · u f ) − φ f∇ · q f =

σ f : ∇(φpup) − ρpφp

�(fqs + fvu) · up + fam · u f

�
− ρpφp(qqs + qdu) (35)

and

ρ f φ f

De f

Dt
= φ f∇ · q f + σ f : ∇um + ρpφp(fqs + fvu) · (u f − up) − ρpφp(qqs + qdu). (36)

It must be stressed that only the sum of (a) the energy of the particles, (b) the macroscale energy
of the fluid, and (c) the energy of the microscale motion of the fluid is conserved. In other words,
only the sum of Eqs. (21), (35), and fam · (up − u f ) add to zero, where the last two correspond to the
macroscale and microscale total energy of the fluid flow.

III. CHARACTERISTIC SCALES OF TURBULENT DISPERSED MULTIPHASE FLOWS

A. Scales of particle motion and thermal evolution

The particle mechanical time scale, τpm, is generally defined as the time it takes for a particle,
instantaneously released in a steady uniform stream, to accelerate and the relative velocity to decay
by factor (1/e). Under such simplified condition, Eqs. (7)–(11), in the absence of viscous unsteady
force, can be solved to define the time scale for particle motion as

τpm =
d2
p

12βνf

1
Φ(Rep) , (37)

where β = 3/(2ρp/ρ f + 1). For a heavy particle β = 0, for neutrally buoyant particles β = 1, and
for bubbles, β = 3.

Similarly, the particle thermal time scale can be defined as the time it takes for a particle with
initial temperature Tp,0, instantaneously released in a steady fluid flow of uniform temperature Tf ,
to be heated or cooled and the relative temperature reaches (1/e) times the original temperature
difference. Eqs. (12)–(15), in the absence of diffusive-unsteady contribution, can be solved and the
thermal time scale of the particle can be written as

τpθ =
d2
p

12βθα f

1
Ψ(Rep,Pr f ) , (38)

where βθ = ρ fCf /(ρpCp) is the volumetric heat capacity ratio between the fluid and particles. The
thermal diffusivity of the fluid is given by α f = k f /(ρ fCf ).
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B. Scales of turbulent motion and thermal evolution

In turbulent flows, there exists eddies of size varying from the Kolmogorov microscale to the
integral scale. The Kolmogorov microscale is expressed as η = (νf /ϵ)1/4, which depends on the
kinematic viscosity νf and the dissipation rate ϵ . At large Reynolds number, an inertial subrange
exists between the Kolmogorov and the integral scales, where the effect of viscosity on the energy
spectral density can be neglected.

A similar subrange also exists in the spectral density of the variance of temperature fluctua-
tions, (i.e., in the spectra of kθ = T ′2

f
), which is the thermal analog of the turbulent kinetic energy. In

this inertial-convective subrange, the temperature fluctuation is dictated by the turbulent eddies, and
the influence of viscosity and thermal diffusivity on kθ can be ignored.18,19 A thermal microscale
similar to the Kolmogorov microscale can then be defined as ηθ = (α f /ϵ)1/4. In a fluid of Pr f < 1,
η < ηθ and the temperature fluctuations will be diffused before the cascade reaches the smallest
eddies which then are dissipated. In case of Pr f > 1, η > ηθ and an additional inertial-diffusive
subrange will appear, in which the spectral density of kθ depends on α f but not νf .38 Due to the
focus of the present paper on inter-phase energy coupling, here we consider the simple case of
Pr f = 1 (and η = ηθ). The scaling approach to be presented can be extended to the more general
case of Pr f , 1.

Based on the hypothesis that the dissipation rates of k and kθ are constant within the inertial-
convective subrange, the velocity and temperature scales of an eddy of size l (η < l < L, where L is
the integral length scale) can be expressed as

ul = (ϵτl)1/2, (39)
Tl = (ϵθτl)1/2, (40)

where ϵθ is the dissipation of kθ, and τl is the time scale for the l-size eddy. It can be shown that
uL/uη = TL/Tη = (τL/τη)1/2. Since ul = l/τl, then Eqs. (39) and (40) can be rewritten as

ul = l1/3ϵ1/3, (41)
Tl = l1/3ϵ1/2

θ ϵ−1/6. (42)

The scales of mechanical and thermal acceleration for l-size eddy are then estimated as (Du/Dt)l =
ul/τl and (DT/Dt)l = Tl/τl.

C. Estimates of relative temperature and thermal acceleration

In a turbulent multiphase flow, a particle will interact with eddies of different sizes. In order to
estimate the relative velocity and relative acceleration between the particle and fluid, Ling et al.14

advanced a hypothesis that a particle will mechanically respond to an eddy of size l only if the
mechanical Stokes number corresponding to the l-size eddy (Stm,l = τm/τl) is less than unity. In
fact, this hypothesis has also been used in other previous works and proved to be effective.39–42 A
similar hypothesis is made here to estimate the scales of relative temperature |Tf − Tp | and relative
thermal acceleration |DTf /Dt − dTp/dt |. It is considered that only if the thermal Stokes number
(Stθ,l = τpθ/τl) is less than unity, the particle will thermally respond to the temperature fluctuation
induced by the l-size eddy. In such a case, the relative temperature and thermal acceleration can
be estimated from the Equilibrium Eulerian Approximation (EEA) as (see the work of Ferry and
Balachandar43 for thermal equilibrium approximation)

Tf − Tp = τpθ(1 − βθ)DTf

Dt
+ O(StmStθ,St2

θ). (43)

The above equation is an asymptotic solution of Eq. (12) with Stm and Stθ as small parameters. A
simple interpretation of Eq. (43) is that when the particle temperature is in equilibrium with the fluid
temperature, their temperature difference is dictated by particle’s inability to respond to the local
fluid temperature variation. Validation tests and range of applicability of EEA for turbulent flows
can be found in the work of Ferry and Balachandar.43 Furthermore, it can be easily shown that EEA
is equivalent to the assumption DTf /Dt = dTp/dt.
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In contrast, when Stθ,l > 1, the particle is considered thermally too sluggish to respond to the
temperature variation induced by the l-size eddy. Then the relative temperature will be dictated
by the temperature scale of the l-size eddy. Similarly, the thermal acceleration of the particle in
response to the l-size eddy is negligible, and the relative thermal acceleration is dictated by the fluid
thermal acceleration alone.

In summary, the relative temperature and the thermal acceleration between the fluid and particle
for Stθ,l < 1 and Stθ,l > 1 can be approximated as




|Tf − Tp |l ≈ τpθ |1 − βθ |Tl

τl
,

����
DTf

Dt
−

dTp

dt
����l
≈ 0,




if Stθ,l < 1, (44)




|Tf − Tp |l ≈ |1 − βθ |Tl,

����
DTf

Dt
−

dTp

dt
����l
≈ Tl

τl
,




if Stθ,l > 1. (45)

D. Different regimes in turbulent multiphase flows

With the above results of relative temperature and thermal acceleration in response to the l-size
eddy, we can obtain estimates of the maximum relative temperature and thermal acceleration for
a particle subjected to a range of turbulent eddies. Similar analysis has been performed by Ling
et al.14 to estimate the maximum relative velocity and particle Reynolds number. Based on the
values of mechanical and thermal time scales of the particle (τpm and τpθ) in relation to the typical
turbulence time scales (τη and τL), we can define three different regimes of particle mechanical and
thermal behavior. Since the mechanical behavior has been discussed by Ling et al.,14 here we will
focus only on the thermal behavior in the three regimes.

• Regime I particles ({τpθ, τpm} < τη): In this regime, Stθ,L < Stθ,η < 1, where Stθ,L = τpθ/τL
and Stθ,η = τpθ/τη. Since τη is the smallest time scale in the fluid flow, the particle will respond
to the temperature fluctuation of every eddy in the flow. Therefore, the relative temperature and
the relative thermal acceleration corresponding to every eddy can be estimated by Eq. (44) and
we have

|Tf − Tp |l
Tη

≈ |1 − βθ | St1/2
θ,η

(
τl
τpθ

)−1/2

, (46)

����
DTf

Dt
−

dTp

dt
����l
≈ 0, (47)

which are shown in Fig. 2. Since the relative thermal acceleration in this regime is identical to
zero, it is not shown in the log-log plot of Fig. 2(b). The maximum relative temperature in this
regime, thus, corresponds to the Kolmogorov time scale, and can be given as

|Tf − Tp |max,I ≈ τpθ |1 − βθ |Tη
τη
, (48)

|u f − up |max,I ≈ τpm|1 − β |uη
τη
, (49)

Rep,IΦ(Rep,I) ≈ |1 − β |
12β

(
dp

η

)3

. (50)

For completeness the scaling of the maximum relative velocity and the particle Reynolds
number have also been presented from Ling et al.14

• Regime III particles ({τpθ, τpm} > τL): In this regime, 1 < Stθ,L < Stθ,η. The particle thermal
time scale exceeds all turbulence time scales and thus the particle does not thermally respond
to any eddy. The relative temperature is then determined by the temperature fluctuation of the
eddy as given in Eq. (45). In this regime, we have
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FIG. 2. Estimates of relative (a) temperature and (b) thermal acceleration between fluid and particles as functions of τl/τpθ

for the three different regimes (regime I: (τpθ < τη); regime II: τη < τpθ < τL; regime III: τpθ > τL). The maximum values
in each regime are marked with a open circle. Note that the relative thermal acceleration of regime I particles is identical
to zero and thus is not shown in the log-log plot. The results plotted in this example are for τη = 1 ms, τL = 316 ms, and
τpθ = 0.692, 17.3, 433 ms for regimes I, II, and III, respectively. These parameters are corresponding to sand particles
(dp = 10, 50, 250 µm for regimes I, II, and III) in air for ReL = 105.

|Tf − Tp |l
Tη

≈ |1 − βθ | st1/2
θ,η

(
τl
τpθ

)1/2

, (51)

����
DTf

Dt
−

dTp

dt
����l
τη

Tη
≈ st−1/2

θ,η

(
τl
τpθ

)−1/2

, (52)

which are also shown in Fig. 2. Since the largest fluid temperature fluctuation is TL, see
Eq. (42), the maximum relative temperature in this regime can be approximated as

|Tf − Tp |max,III ≈ |1 − βθ |TL, (53)

|u f − up |max,III ≈ |1 − β |uL, (54)

Rep,III ≈ |1 − β |
(

d
η

) (
L
η

)1/3

. (55)

• Regime II particles (τη < {τpθ, τpm} < τL): In this regime, Stθ,L < 1 < Stθ,η. The particle re-
sponds to the temperature fluctuation induced by the large eddies in the flow but do not
respond to the small ones. There exists an eddy of size l∗ (η < l∗ < L), whose time scale
matches the particle thermal time scale, i.e., τl∗ = τpθ. The particle will respond to the larger
eddies with τl > τl∗, and the relative temperature and thermal acceleration are represented by
Eqs. (46) and (47). On the other hand, the particle does not respond to the smaller eddies of
τl < τl∗, and the relative temperature and thermal acceleration are as given by Eqs. (51) and
(52). It can be shown that the relative temperature increases with τl for τl < τl∗ and decreases
for τl > τl∗ (see Fig. 2(a)). Then the maximum relative temperature is reached at τl∗ and the
value of which is given as

|Tf − Tp |max,II ≈ τpθ |1 − βθ |Tl∗

τl∗
= |1 − βθ |Tl∗, (56)

|u f − up |max,II ≈ τpm |1 − β |ul∗

τl∗
= |1 − β |ul∗. (57)

Rep,II

Φ(Rep,II) ≈ |1 − β |

12β

(
dp

η

)2

. (58)

The above three major regimes are defined based on the assumption that τpm and τpθ are close,
so that they are either both smaller than τη (τL) or both larger than τη (τL). This assumption is valid
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for a wide range of particle materials. For example, at low Reynolds numbers, τpm/τpθ for glass
and copper particles, immersed in cool air, are 1.13 and 2.44, respectively. Nevertheless, there exist
cases where the particle mechanical and thermal time scales are very different. In such cases, minor
regimes such as τpm < τη and τη < τpθ < τL exist. In the present paper, we will focus only on the
three important major regimes. Similar analysis can be easily extended to the minor regimes if they
are of interest.

IV. INTEGRAL REPRESENTATION OF DIFFUSIVE-UNSTEADY HEAT TRANSFER

In this section, different representations of the diffusive-unsteady heat transfer are discussed.
The conventional formulation of Qdu, as shown in Eq. (15), involves a convolutional integral and
thus is computationally costly. It is therefore of great interest to see if it is possible to simplify the
calculation of Qdu and under what conditions such a simplification can be justified.

For finite but small particle Peclet number, the diffusive-unsteady kernel Kdu appearing in
Eq. (15) is given by Feng and Michaelides,11

Kdu(t/τdu) = exp(−t/τdu)
π(t/τdu)

− erfc(t/τdu), (59)

where the diffusive-unsteady time scale is defined as

τdu =
d2
p

α f

4
Pe2

p

. (60)

The diffusive-unsteady kernel given in Eq. (59) is shown in Fig. 3. It is seen that at short time
(t ≪ τdu), Kdu reduces to the form in the Stokes limit

lim
t/τdu→0

Kdu(t/τdu) = 1
π(t/τdu)

(61)

and Kdu decays as t−1/2.
At long time t ≫ τdu, both the terms on the right hand side of Eq. (59) approach zero expo-

nentially. Furthermore, it can be shown that the first term becomes identical to the second with a
opposite sign as t/τdu → ∞. Thus the sum of them further accelerates the decay of Kdu.

Therefore, τdu can be viewed as the time scale at which Kdu switches from the slow t−1/2 decay
to the fast exponential decay. If the particle and fluid thermal acceleration time scales are much
larger than τdu, then the relative thermal acceleration can be taken out of the convolution integral and
Eq. (15) can be reduced to the following simpler form:

FIG. 3. Diffusive-unsteady kernel as a function of t/τdu.
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Qdu = Vpρ fCfCdu

(
DTf

Dt
−

dTp

dt

)
. (62)

A similar simplified formulation for diffusive-unsteady heat transfer has been proposed by Bal-
achandar and Ha.12 Here the effective diffusive-unsteady coefficient, Cdu, is defined as

Cdu =
24
Pep

 ∞

0
Kdu (ξ/τdu) d(ξ/τdu) = 12

Pep
. (63)

Note that Cdu → ∞ when Pep = 0. Since τdu → ∞ in the limit of Pep = 0, the kernel function always
decays as t−1/2 and as a result the integral of the kernel diverges. Therefore, finite Cdu only exists for
finite Pep.

It can be argued that the Kolmogorov time scale (τη) is the smallest relevant characteristic time
scale of relative thermal acceleration. In the case τpθ > τη, particle response is slow and the time
scale of relative thermal acceleration is dictated by that of the fluid. Even in the case of fast particle
response time (i.e., τpθ < τη), since thermal fluctuations in the particle are induced only by the
thermal fluctuations of the fluid, the characteristic time scales of thermal acceleration of both the
fluid and the particle are τη. As a result, if τdu ≪ τη, then the diffusive-unsteady heat transfer can be
accurately approximated by the simpler expression given in Eq. (62). Otherwise, the conventional
and more complex integral form, Eq. (15), must be used. Therefore, the ratio τη/τdu plays a critical
role in determining whether the simplified equation can be used or not. In the present study, we
consider the simple case that Pr f = 1, so that τη = η/νf = η/α f , then it is shown that

τη

τdu
=

1
4

(
η

dp

)2

Re2
p. (64)

It is seen that Rep is required to estimate τη/τdu. With the approximations of Rep given in Eqs. (50),
(58), and (55), τη/τdu can be estimated in the three regimes as

• Regime I

τη

τdu
≈ |1 − β |2

576β2Φ2

(
dp

η

)4

, (65)

• Regime II

τη

τdu
≈ |1 − β |2

48βΦ

(
dp

η

)2

, (66)

• Regime III

τη

τdu
≈ |1 − β |2

4

(
L
η

)2/3

. (67)

Therefore, the time scale ratio τη/τdu is a function of dp/η, ρp/ρ f , and L/η, which is plotted in
Fig. 4(a). The finite Reynolds number correction is taken to be Φ = 1 in Fig. 4.

Several important observations can be made. First of all, a horizontal line can be drawn for a
chosen threshold (τη/τdu)th (for example, see the line (τη/τdu) = 1 in Fig. 4(a)). For cases falling
above the line, the simpler form of Qdu, Eq. (62) can be used. It is observed that τη/τdu is, in general,
not very sensitive to L/η, except when the particle size is large compared to the Kolmogorov length
scale, falling in regime III.

Furthermore, τη/τdu increases monotonically with dp/η. As a result, there exists a critical diam-
eter, d∗

p,du
, and for particles larger than d∗

p,du
the diffusive-unsteady heat transfer can be calculated

without the convolution integral. If we set the threshold here as (τη/τdu) = 1, then it can be shown
from Eqs. (65)-(67) that d∗

p,du
corresponds to regime II. If the effect ofΦ is further neglected, we have

d∗p,du/η =


48β

|1 − β | . (68)

It can be shown that the particle time scale corresponding to this critical diameter satisfies τ∗pm/τη =
4/|1 − β |2 ≥ 1 for all β and thus validates the assertion that d∗

p,du
is in regime II. As shown in
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FIG. 4. (a) The time scale ratio τη/τdu as a function of dp/η, ρp/ρ f , and L/η and (b) the critical particle diameter d∗
p,du

as a function of ρp/ρ f when the threshold is set to be (τη/τdu)= 1.

Eq. (68), d∗
p,du

depends only on ρp/ρ f (or β). The variation of d∗
p,du

as a function of ρp/ρ f is
plotted in Fig. 4(b). For particle sizes below and above d∗

p,du
we can use the integral (Eq. (15)) and

non-integral (Eq. (62)) forms of diffusive-unsteady heat transfer, respectively.
In general, the integral form is required for very small particles and the non-integral form

can be used for very large particles (except for the special case that ρp/ρ f = 1). For bubbly flows
(ρp/ρ f ≪ 1), d∗

p,du
/η → 6, therefore, the integral form, Eq. (15), is generally needed unless the

bubble size is six times or more larger than the Kolmogorov length scale. For gas-particle flows
(ρp/ρ f ≫ 1), since d∗

p,du
/η decrease as (ρp/ρ f )−1/2, there exist a wide range of particle size where

the simpler form Eq. (62) can be used. For example, when ρp/ρ f = 103, the non-integral form of
diffusive-unsteady heat transfer can be used even for particles smaller than the Kolmogorov length
scale. For neutrally buoyant particles (ρp/ρ f = 1), since the relative velocity is identical to zero,
both τdu and d∗

p,du
/η approach infinity.

In general, PPA is theoretically well grounded only in the limit when the particle size is much
smaller than the grid resolution. Extension of PPA to d/η > 1 requires additional modeling efforts,
such as including the stochastic contribution to the particle motion,44 which is out of the scope of
the present paper. For cases d/η > 1, the diffusive-unsteady heat transfer formulations (Eqs. (15)
and (62)) given here can at most serve as the deterministic portion of the overall diffusive-unsteady
contribution. Therefore it is still interesting to show under what condition the convolution integral
formulation can be simplified.

V. SCALING ANALYSIS OF INTER-PHASE ENERGY COUPLING

Strictly speaking, due to the inter-phase momentum and energy transfer, the fluid and the parti-
cles are always two-way coupled. On one hand, the motion and thermal evolution of the particles
are driven by the fluid flow (forward coupling); on the other hand, the particles influence the fluid
velocity and temperature evolution (backward coupling). The back effects of the particles on the
fluid are represented by the source terms −Np

i F f p, i/V and − 1
V

Np

i (G f p, i +Q f p, i) on the right
hand sides of Eqs. (2) and (3) (or those of Eqs. (17) and (18)). If the back effects are not important,
then the particles and fluid can be approximated as one-way coupled and the above source terms can
be ignored (as compared to the remaining terms). Nevertheless, such simplifications must be made
with great caution, otherwise neglecting these contributions may lead to significant errors. In this
section, scaling estimates are established to access the importance of different contributions of heat
transfer in forward and backward energy coupling, by which one can determine whether unsteady
heat transfer to particles and its back effect on the fluid can be ignored. Similar analysis for the
importance of unsteady forces and their backward coupling to the fluid momentum balance has been
considered by Ling et al.14
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A. Importance of unsteady heat transfer in forward energy coupling

The importance of the unsteady contributions to heat transfer in forward energy coupling is
evaluated in terms of the ratio between the unsteady and quasi-steady contributions.

1. Undisturbed-unsteady heat transfer

From (13) to (15), and with the definition of thermal time scale of the particle given in (38), the
ratio between the undisturbed-unsteady to the quasi-steady contribution can be expressed as

|Quu|
|Qqs| = βθIuu, (69)

where Iuu is a correction function, defined as

Iuu =
τpθ |DTf /Dt |
|Tf − Tp | . (70)

It is seen that the conventional estimate that the fluid-to-particle volumetric heat capacity ratio
(i.e., βθ) is sufficient to determine the importance of the unsteady heat transfer is valid only if the
correction factor Iuu ∼ O(1). With Eqs. (44) and (45), we obtain

Iuu =




Stθ,l
|1 − βθ | , if τl < τpθ,

1
|1 − βθ | , if τl > τpθ.

(71)

It is seen that the denominator |1 − βθ | approaches 1 for small βθ (such as for the case of gas-
particle flows) and to βθ for large βθ (such as for the case of bubbly flows). For the special case of
βθ = 1, namely, ρpCp = ρ fCf , the quasi-steady contribution to heat transfer is identically zero and
thus Iuu → ∞.

For regime I particles, since τpθ is smaller than all turbulent time scales, Iuu = 1/|1 − βθ |, while
for regime III particles, since τpθ is larger than all turbulent time scales, Iuu = Stθ,l/|1 − βθ |. For
particles in regime II, Iuu = 1/|1 − βθ | for the eddies with τl larger than τpθ and Iuu = Stθ,l/|1 − βθ |
for the eddies with τl smaller than τpθ. The behavior of the correction function is shown in Fig. 5(a).
The largest value of the correction function always corresponds to the smallest turbulent eddy,
i.e., the Kolmogorov scale eddy, and the maximum value of Iuu for all the three regimes can be

FIG. 5. Correction functions for (a) undisturbed-unsteady heat transfer (Iuu) and (b) diffusive-unsteady heat transfer (Idu,nint
and Idu, int), as functions of τl/τpm in three regimes. The results plotted in this example are for τη = 1 ms, τL = 316 ms,
and τpθ = 0.692, 17.3, 433 ms for regimes I, II, and III, respectively. These parameters are corresponding to sand particles
(dp = 10, 50, 250 µm for regimes I, II, and III) in air for ReL = 105.
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summarized as

Iuu,max =
max(1,Stθ,η)

|1 − βθ | . (72)

2. Diffusive-unsteady heat transfer

Similarly, the importance of the diffusive-unsteady heat transfer is evaluated through the ratio
Qdu/Qqs. As explained in Section IV, the diffusive-unsteady heat transfer can be expressed in the
non-integral form (Eq. (62)) or the integral (Eq. (15)) form depending on the time scale ratio τη/τdu.
The latter can also be expressed in terms of fractional derivative as

Qdu = Vpρ fCf
24

Pep
√
τdu

(
D1/2Tf

Dt1/2 −
d1/2Tp

dt1/2

)
, (73)

which is more convenient to estimate the ratio Qdu/Qqs. Similar fractional derivative form has been
used for Basset history force in the work of Bagchi and Balachandar45 and Ling et al.14 Then
Qdu/Qqs can be written as

Qdu

Qqs
=



βθCduIdu,nint, if τη > τdu,
12βθ/ΨIdu,int, if τη < τdu,

(74)

where Idu,nint and Idu,int are correction functions corresponding to the non-integral and integral forms
of Qdu, defined as

Idu,nint =
τpθ |DTf /Dt − dTp/dt |

|Tf − Tp | , (75)

Idu,int =

√
τpθ |D1/2Tf /Dt1/2 − d1/2Tp/dt1/2|

|Tf − Tp | . (76)

It can be easily shown that Idu,nint = Idu,int = 0 for τl > τpθ, and Idu,int = Idu,nint/


Stθ,l for τl < τpθ.
With Eqs. (44) and (45), Idu,nint can be approximated as

Idu,nint =



Iuu, if τl < τpθ,

0, if τl > τpθ.
(77)

Therefore, Idu,nint = 0 for regime I particles, while for regime III particles, Idu,nint is identical to
Iuu. In regime II, Idu,nint = 0 when τl > τpθ and Idu,nint = Iuu when τl < τpθ. Schematics of Idu,nint

and Idu,nint are shown in Fig. 5(b). It is seen that the relative importance of the diffusive-unsteady
heat transfer is again the strongest for the Kolmogorov scale eddies. These estimates of the rela-
tive importance of different unsteady contributions to inter-phase heat transfer compared to the
quasi-steady contribution are summarized in Table I, along with the corresponding results on
the relative importance of the unsteady forces. The special cases of heavy particle limit (i.e.,
βρ = ρ f /ρp ≪ 1 and βθ ≪ 1) and light bubbles (i.e., βρ ≫ 1 and βθ ≫ 1) are given in Tables II
and III.

TABLE I. Scaling estimates of relative importance of unsteady force and heat transfer comparing to quasi-steady force and
heat transfer in turbulent multiphase flows, where βρ = ρ f /ρp, βθ = (ρ fC f )/(ρpCp), and β = 3/(2ρp/ρ f +1).

Force Heat transfer

Reg I Reg II, III Reg I Reg II, III

|Fsg/Fqs| βρ
1

|1−βρ | βρ
τpm/τη
|1−βρ | |Quu/Qqs| βθ

1
|1−βθ | βθ

τpθ/τη
|1−βθ |

|Fam/Fqs| 0 βρCM
τpm/τη
|1−βρ |

|Fvu,nint/Fqs| 0 βρCvu
τpm/τη
|1−βρ | |Qdu,nint/Qqs| 0 βθCdu

τpθ/τη
|1−βθ |

|Fvu, int/Fqs| 0


3β
πΦ

√
τpm/τη
|1−β | |Qdu, int/Qqs| 0


12βθ
Ψ

√
τpθ/τη

|1−βθ |
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TABLE II. Scaling estimates of relative importance of unsteady force and
heat transfer comparing to quasi-steady force and heat transfer in turbulent
multiphase flows in the limit of gas-particles flows, namely, βρ ≪ 1, βθ ≪
1, and β→ 3/2βρ.

Force Heat transfer

Reg I Reg II, III Reg I Reg II, III

|Fsg/Fqs| βρ
1

18Φ

(
dp

η

)2
|Quu/Qqs| βθ

Pr f
12Ψ

(
dp

η

)2

|Fam/Fqs| 0 CM
18Φ

(
dp

η

)2

|Fvu,nint/Fqs| 0 Cvu
18Φ

(
dp

η

)2
|Qdu/Qqs| 0

Pr fCdu
12Ψ

(
dp

η

)2

|Fvu, int/Fqs| 0 1
2
√
πΦ

dp

η |Qdu/Qqs| 0
√

Pr f
Ψ

(
dp

η

)

3. Evaluate importance of unsteady heat transfer

For regime I particles, Quu/Qqs = βθ/|1 − βθ | and Qdu/Qqs = 0. Therefore, when βθ is small
such as for gas-particle flows, the quasi-steady contribution always dominates inter-phase heat
transfer and the unsteady heat transfer contributions can be ignored as has been done in many
simulations of gas-particle flows.20,25

For regimes II and III particles, the maximum values of the ratios correspond to the Kol-
mogorov scale eddies. If a threshold value δ (say, for example, δ = 5%) is chosen, so that for values
of Quu/Qqs and Qdu/Qqs given in Eqs. (69) and (74) larger than the threshold, we will consider
the corresponding unsteady contribution to heat transfer to the particle temperature evolution is
significant when compared to the quasi-steady contribution.

With such a choice of threshold, the criteria for the importance of the undisturbed-unsteady
heat transfer can be stated as

βθStθ,η
|1 − βθ | > δ, (78)

and that for the diffusive-unsteady heat transfer can be expressed as




Cdu
βθStθ,η
|1 − βθ | > δ, if τη > τdu,

12
Ψ


βθStθ,η

|1 − βθ | > δ, if τη < τdu.

(79)

It is seen that when τη > τdu, the criteria for Qdu are very similar to Quu. For gas-particle flows,
βθ ≪ 1 and thus |1 − βθ | ≈ 1. In such a case, Eqs. (78) and (79) can be further simplified as

TABLE III. Scaling estimates of relative importance of unsteady force and
heat transfer comparing to quasi-steady force and heat transfer in turbulent
multiphase flows in the limit of bubbly flows, namely, βρ ≫ 1, βθ ≫ 1, and
β→ 3.

Force Heat transfer

Reg I Reg II, III Reg I Reg II, III

|Fsg/Fqs| 1 1
36Φ

(
dp

η

)2
|Quu/Qqs| 1 1

|Fam/Fqs| 0 CM
36Φ

(
dp

η

)2

|Fvu,nint/Fqs| 0 Cvu
36Φ

(
dp

η

)2
|Qdu/Qqs| 0 Cdu

|Fvu, int/Fqs| 0 1
4
√
πΦ

dp

η |Qdu/Qqs| 0


12
Ψ
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dp

η
>


12Ψδ
Pr f

(80)

and




dp

η
>


12Ψδ
Pr fCdu

, if τη > τdu,

dp

η
>
Ψδ
Pr f

, if τη < τdu.

(81)

It is clearly shown that for gas-particle flows, the importance of both undisturbed-unsteady and
diffusive-unsteady heat transfer actually depends on particle-to-fluid length scale ratio, i.e., the ratio
between the particle size and the Kolmogorov length scale, instead of the volumetric heat capacity
ratios.

The above criteria are derived based on particle’s response to Kolmogorov scale eddies. If the
above conditions (Eqs. (78)-(81)) are satisfied, it implies that a range of eddies of size η and larger
influence the particle temperature evolution not only through the quasi-steady contribution but also
through the undisturbed-unsteady and diffusive-unsteady contributions of heat transfer. This impor-
tance of unsteady heat transfer may only be limited to the influence of the small scale turbulent
eddies. Nevertheless, in the context of direct numerical simulation (DNS), where all the scales of
turbulent motion are fully resolved, it is essential to account for the influence of the entire range of
flow scales on particle temperature evolution.

The above argument can be easily extended to large eddy simulations (LES), where a cut-off
length scale lc is defined, and only eddies larger than lc are directly computed. In such a case, the
maximum values of the ratios between the unsteady and quasi-steady contributions to heat transfer
are dictated by the smallest resolved eddies of length scale lc, as shown in Fig. 5. As a result, the
importance of unsteady heat transfer for gas-particle flows arising from the resolved scales can be
again evaluated by Eqs. (80) and (81), except with η replaced by lc. At last, it should be reminded
when the particle is small compared to the LES cut-off length scale but is larger or comparable
to the Kolmogorov length scale, then the unsteady heat transfer due to the resolved scales may be
small, but that arising from the unresolved scales can be significant and thus needs to be taken into
account in subgrid closure model.

B. Importance of inter-phase heat transfer in backward energy coupling

In the work of Crowe et al.17 and Ling et al.,14 the momentum coupling parameter has been
used to assess the importance of different forces in backward momentum coupling. The momentum
coupling parameter is defined as the ratio between the backward coupling force contribution and the
inertial term in the fluid momentum equation. Similarly, to assess the importance of the different
contributions to backward energy coupling, an energy coupling parameter can be defined here as the
ratio between the backward coupling contribution and the thermal inertial term in the fluid internal
energy equation (Eq. (36)). When the energy coupling parameter is large, such as∼O(1), the two-way
coupling effect of the corresponding contribution to fluid internal energy equation is significant.

1. Quasi-steady heat transfer

The energy coupling parameter for the quasi-steady heat transfer can be expressed as

Γqqs =
|ρpφpqqs|
|ρ f φ f

De f
Dt

|
. (82)

With the scaling estimates obtained in Eqs. (48)–(55), Γqqs can be written as

Γqqs ≈
YpCp

YfCf
|1 − βθ |Jqqs, (83)

where the correction function Jqqs = 1/Iuu (see Eq. (70)) and can be estimated in different regimes as
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Jqqs ≈



1, regime I,
1

Stθ,L
, regimes II and III.

(84)

For gas-particle flows (βθ ≪ 1), Eq. (83) becomes

Γqqs ≈
YpCp

YfCf
Jqqs. (85)

For small particles Jqqs = 1, and as a result, the particle-to-fluid mass fraction ratioYp/Yf multiplied by
the specific heat ratio Cp/Cf is sufficient to evaluate the importance of the contribution of quasi-steady
heat transfer in the backward energy coupling. Attention is required for large particles as the correc-
tion function Jqqs = 1/Stθ,L can be quite large. Similar observations have been made on momentum
coupling parameter by Ling et al.14

For bubbly flows (βθ ≫ 1), Eq. (83) becomes

Γqqs ≈
φp

φ f
Jqqs. (86)

Then it is clearly seen that the importance of quasi-steady heat transfer in backward energy coupling
depends on the particle-to-fluid volume fraction ratio instead of mass fraction ratio.

2. Undisturbed-unsteady heat transfer

Similarly, we can estimate the energy coupling parameter for the undisturbed-steady heat transfer
as

Γquu ≈
|ρpφpquu|
|ρ f φ f

De f
Dt

|
≈

φp

φ f
. (87)

It is seen that the energy coupling parameter is independent of volumetric heat capacity ratio and
depends on the particle-to-fluid volume fraction ratio.

3. Diffusive-unsteady heat transfer

The energy coupling parameter corresponding to diffusive-unsteady heat transfer is defined as

Γqdu ≈
|ρpφpqdu|
|ρ f φ f

De f
Dt

|
. (88)

Depending on the parameter τη/τdu, Γqdu can be estimated based on either the non-integral (Eq. (62))
or integral (Eq. (15)) expressions. It can shown that

Γqdu ≈



0, Regime I,
φp

φ f
Jqdu, Regime II and III.

(89)

where the correction function Jqdu can be estimated in different regimes as

Jqdu ≈



Cdu, if τη > τdu,

12
η

dp
Re1/4

L , if τη < τdu,
(90)

where ReL = uLL/νf is the Reynolds number based on the integral length scale. Since regime I parti-
cles respond to eddies of all scales, the diffusive-unsteady contribution of heat transfer is very small
(identical to zero based on the present scaling argument); therefore, its contribution to continuous
phase energy equation is also negligible. For regimes II and III particles, the energy coupling param-
eter for diffusive-unsteady heat transfer depends on the particle-to-fluid volume fraction ratio, similar
to undisturbed-unsteady heat transfer. Depending on the particle diffusive-unsteady time scale τdu

in relation to the Kolmogorov time scale τη, two different estimates are obtained for the correction
function Jqdu. It is noted that Jqdu can be much larger than one in either situation given in Eq. (90).
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As an example, for solid particles of size comparable to the Kolmogorov length scale in a turbulent
gas flow with ReL = 1000 and Pr f = 0.7, it can be shown that Jqdu ≈ 3.05 and 67.5 from Eq. (90).
Therefore, Jqdu must be taken into account in estimating the importance of diffusive-unsteady heat
transfer in backward energy coupling for particles in regimes II and III.

C. Importance of work done by inter-phase coupling forces in backward
energy coupling

Similar to the inter-phase heat transfer, the importance of the work done by the quasi-steady and
viscous-unsteady forces in backward energy coupling can be assessed by the corresponding energy
coupling parameters.

1. Quasi-steady force

The energy coupling parameter for the quasi-steady force can be expressed as

Γfqs =
|ρpφpfqs · (u f − up)|

|ρ f φ f
De f
Dt

|
. (91)

With the scaling estimates given in Eqs. (48)–(55), Γfqs in the three regimes can be approximated as

Γfqs ≈
Yp

Yf
Ec

(
1 +

ρ f

2ρp

)
|1 − β |2Jfqs, (92)

where the correction function Jfqs can be expressed as

Jfqs ≈




Stθ,η, regime I,

max(Stθ,η,
1

Stθ,L
), regime II,

1
Stθ,L

, regime III.

(93)

Here the Eckert number is defined as Ec = u2
l
/(CfTl), and for simplicity is considered a constant,

independent of the eddy size l. For gas-particle flows, Eq. (92) becomes

Γfqs ≈
Yp

Yf
EcJfqs, (94)

while for bubbly flows (ρ f ≫ ρp), Eq. (92) becomes

Γfqs ≈ 2
φp

φ f
EcJfqs. (95)

It is shown that the energy coupling parameter for the quasi-steady force is proportional to particle-
to-fluid mass fraction ratio Yp/Yf for heavy particles and to particle-to-fluid volume fraction ratio
φp/φ f for bubbles. This is consistent with the observations of the momentum coupling parameter
corresponding to the quasi-steady force.

It can be also seen that Γfqs is related to the Eckert number. Generally, Ec is very small in incom-
pressible turbulent flows. Therefore, except for special cases where Yp/Yf , φp/φ f , or Jfqs are very
large, Γfqs is generally quite small. Furthermore, it can be shown from Eqs. (85) and (94) (or Eqs. (86)
and (95)) that Γfqs/Γqqs is proportional to Ec for both gas-particle and bubbly flows. Therefore, when
Ec is small, the contribution of work done by the quasi-steady force on backward energy coupling is
generally less important than the quasi-steady heat transfer.

2. Viscous-unsteady force

The energy coupling parameter for the viscous-unsteady force is given as

Γf vu =
|ρpφpfvu · (u f − up)|

|ρ fφ f
De f
Dt

|
(96)
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and can be estimated in the three regimes as

Γf vu ≈



0, regime I,
φ f

φp
Jf vu, regimes II and III,

(97)

where Jf vu is a correction function given as

Jf vu =
9Ec
√
π

η

dp
Re1/4

L . (98)

It is seen that, similar to Γqdu, Γf vu is proportional to the particle-to-fluid volume fraction ratio instead
of mass fraction ratio for all ρp/ρ f . Again it can be shown from Eqs. (89) and (97) that Γf vu/Γqdu

is proportional to Ec. As a result, the contribution of the work done by the viscous-unsteady force
in changing the fluid temperature is generally small compared to that of the diffusive-unsteady heat
transfer.

Finally, it is noted that the above scaling approach in estimating the importance of inter-phase
heat transfer and the work done by the coupling forces on the fluid internal energy evolution can also
be applied to other terms of Eq. (36). For example, the ratio between the viscous dissipation and the
thermal inertia term can be estimated as (τ f : ∇um)/(ρ f φ f De f /Dt) ≈ Ec/Re. As expected the contri-
bution of viscous dissipation to the fluid internal energy is not significant since Ec is small in general.

VI. CONCLUSIONS

Modeling of inter-phase momentum and energy coupling is critical to accurate simulation of
turbulent multiphase flows. In this paper, we address four important fundamental questions about
inter-phase energy coupling in turbulent multiphase flows: (1) What is the contribution of the inter-
phase coupling forces to inter-phase energy coupling? (2) When and how can we simplify the integral
representation of diffusive-unsteady heat transfer? (3) Under what conditions unsteady heat transfer
is important to the energy balance of the particles? (4) What parameters accurately evaluate the
importance of back effect of both the inter-phase heat transfer and coupling forces in the fluid energy
equation? The key findings of the present study in regard to these four questions are summarized
separately as follows.

A. Conclusions on the contribution of the inter-phase coupling forces
to energy coupling

By Newton’s third law, the inter-phase force components on the fluid and particle phases are
opposite of each other. However, since the macroscale fluid and particle phase velocities are different
(i.e., u f , up), the kinetic energy contribution of the inter-phase coupling forces to the macroscale
fluid and particle motion will not balance. The difference between the two must be balanced by
changes to the kinetic energy of the microscale motion of the fluid around the particles. Due to the
viscous origin of the quasi-steady force, its contribution to microscale kinetic energy is dissipated and
transferred to the internal energy of the fluid. However, due to the inviscid origin of the added-mass
force, its contribution to the microscale kinetic energy cannot contribute to dissipative transfer to
internal energy, as was done for the quasi-steady force. The microscale kinetic energy transfer due to
viscous-unsteady force is more complicated. It is partly dissipative like the quasi-steady force, and
partially non-dissipative and used to modify the near-field viscous microscale flow structure in the
vicinity of the particle. It is difficult to separate the two contributions in the time domain, but over
long time, the dissipation portion can be expected to dominate.

B. Conclusions on representation of diffusive-unsteady heat transfer

In general, the diffusive-unsteady contribution to heat transfer is given by a Basset-like convo-
lution integral, whose computation is often costly. However, when both the particle and the fluid
acceleration are sufficiently slow, it is possible to simplify the conventional formulation and avoid
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evaluating the convolution integral as in Eq. (62). Here we establish the condition under which such
a simplification can be made. The main conclusions are as follows:

• Only when the diffusive-unsteady time scale τdu (defined as the transition time for the kernel to
change from the slow t−1/2 decay to the fast exponential decay) is smaller than all the fluid time
scales, the diffusive-unsteady heat transfer formulation can be simplified. As τη is the small-
est fluid time scale, the time scale ratio τη/τdu can be used to determine when the simplified
formulation (Eq. (62)) can be used.

• In turbulent multiphase flows, τη/τdu increases monotonically with dp/η. Therefore, there ex-
ists a critical diameter d∗

p,du
and when particle size is smaller (i.e., dp < d∗

p,du
), the diffusive-

unsteady heat transfer needs to be calculated using the convolution history integral as Eq. (15),
while for dp > d∗

p,du
, the simplified non-integral form, Eq. (62), can be used.

C. Conclusions on the importance of unsteady heat transfer in forward energy coupling

The ratio between the magnitudes of unsteady and quasi-steady contributions of heat transfer is
used to evaluate the importance of the unsteady heat transfer in the energy equation of the particles.
Scaling estimates of the ratios are obtained and the key conclusions include the following:

• Unsteady heat transfer is important in evaluating the thermal evolution of particles when the
fluid-to-particle volumetric heat capacity ratio is large, i.e., βθ & 1.

• Conventionally, unsteady contributions to heat transfer are neglected in gas-particle flows based
on the assumption that these contributions are small compared to quasi-steady heat transfer as
the fluid-to-particle volumetric heat capacity ratio is small. However, the present scaling analysis
shows that for gas-particle flows (ρpCp ≫ ρ fCf ) the importance of the unsteady heat transfer
depends on the ratio between the particle size and the Kolmogorov length scale and not on the
particle-to-fluid volumetric heat capacity ratio.

• In DNS of turbulent multiphase flows, the intent is to accurately compute all the turbulent length
scales and their influence on particle motion and thermal evolution. When the particle size is
comparable or larger than the Kolmogorov scale (i.e., smallest fluid length scale), unsteady heat
transfer due to the smallest eddies is important in accurately evaluating the particle temperature.

D. Conclusions on the importance of inter-phase heat transfer and work done
by inter-phase forces in the energy balance of the fluid

We define the energy coupling parameter as the ratio between the contribution of inter-phase heat
transfer (or work done by the inter-phase coupling forces) to the fluid thermal inertia term, which
serves as a measure of their relative importance in backward energy coupling. The key conclusions
of the scaling argument are as follows:

• It is shown that the energy coupling parameter of quasi-steady heat transfer depends on YpCp/
(YfCf ) and φp/φ f for gas-particle and bubbly flows, respectively. The energy coupling param-
eter is also modified by a correction function Jqqs, which is equal to 1/Stθ,L for particles with
thermal time scale larger than the Kolmogorov time scale. The correction function can be larger
than unity when the particle thermal time scale is larger than the turbulence integral time scale
(τpθ > τL).

• The energy coupling parameters of undisturbed-unsteady and diffusive-unsteady heat transfer
are similar, which are related to the particle volume fraction. Similar to the quasi-steady heat
transfer, the energy coupling parameter of the diffusive-unsteady heat transfer is also related to
a correction function, which can be larger than unity for particles with τpθ > τL.

• For gas-particle flows, the energy coupling parameters corresponding to the work done by the
quasi-steady and viscous-unsteady forces are related to the particle-to-fluid mass fraction and
volume fraction ratios, respectively. The energy coupling parameters of the quasi-steady (Γfqs)
and viscous-unsteady forces (Γf vu) are similar to those of the quasi-steady (Γqqs) and diffusive-
unsteady heat transfer (Γqdu), respectively. The ratios between Γfqs and Γqqs and between Γf vu
and Γqdu are both proportional to the Eckert number.
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