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We report the experimental investigation and theoretical modeling of a rotating polariton super-
fluid relying on an innovative method for the injection of angular momentum. This novel, multi-
pump injection method uses four coherent lasers arranged in a square, resonantly creating four
polariton populations propagating inwards. The control available over the direction of propagation
of the superflows allows injecting a controllable non-quantized amount of optical angular momen-
tum. When the density at the center is low enough to neglect polariton-polariton interactions,
optical singularities, associated to an interference pattern, are visible in the phase. In the superfluid
regime resulting from the strong nonlinear polariton-polariton interaction, the interference pattern
disappears and only vortices with the same sign are persisting in the system. Remarkably the num-
ber of vortices inside the superfluid region can be controlled by controlling the angular momentum
injected by the pumps.

Introduction. In planar semiconductor microcavi-
ties, the strong coupling between light (photons) and
matter (excitons) [1] gives rise to exciton-polaritons,
with specific properties such as a low effective mass,
inherited from their photonic component, and strong
nonlinear interactions due to their excitonic part. These
quasi-particles offer a great opportunity to revisit in
solid state materials the interaction between light and
matter, first explored in atomic physics. Polaritonic
systems are easily controllable by optical techniques
and, due to their finite lifetimes, are ideal systems for
studying out-of-equilibrium phenomena [2, 3]. In anal-
ogy with the atomic case [4, 5], the superfluid behavior
of polariton quantum fluids has been theoretically pre-
dicted [6] and experimentally confirmed [7–9].

Quantized vortices are topological excitations charac-
terized by the vanishing of the field density at a given
point (the vortex core) and the quantized winding of the
field phase from 0 to 2π around it. Together with soli-
tons, they have been extensively studied and observed
in nonlinear optical systems [10], superconductors [11],
superfluid 4He [12] and more recently in cold atoms [13–
15]. Even though vortices have already been theoreti-
cally proposed [16] and experimentally observed [17–21]
in polariton fluids, more detailed studies of vortices and
vortex arrays are still needed in order to achieve a better
understanding of polariton superfluidity and of vortex
dynamics, as well as to achieve the implementation of
quantum technologies [22–24].

Polariton systems have been shown to reveal a large
variety of effects with the formation of stable vor-
tices [20, 25] and half vortices [26, 27] as well as
the formation of single vortex-antivortex (V–AV) pairs
[17, 18, 28], and spin-vortices [29]. The formation of
lattices of vortices and of V–AV pairs has been theo-
retically predicted for cavity-polaritons [30–32] and ob-
served in the case of patterns induced by metallic depo-

sition on the surface of the cavity [33]. Such lattices are
also observable when the interplay between the excita-
tion shape and the underlying disorder pins the vortices,
allowing their detection in time-integrated experiments
[21].

In the present work, we use four laser beams arranged
in a square to resonantly inject polaritons going towards
the center of the square. By slightly tilting the pumping
direction of the laser beams the four convergent polari-
ton populations can be made to propagate with a small
angle with the direction to the center (see Fig. 1), there-
fore injecting a controlled angular momentum into the
polariton fluid. At the same time the resonant pump-
ing configuration allows a fine tuning of the polariton
density without generating an excitonic reservoir, and
consequently a precise control of the nonlinearities in
the system, in contrast with the case of out-of-resonant
schemes [25, 34, 35].

With this setup, we demonstrate a new technique
for the injection of topological charges in polaritons
superfluids, a problem of major relevance in driven-
dissipative open systems strongly coupled to the en-
vironment. Moreover, our study indicates that, in the
steady-state regime, the angular momentum continu-
ously injected by the pumps compensates the loss of
angular momentum by the system.

Experiment. The sample is a 2λ-GaAs planar micro-
cavity containing three In0.05Ga0.95As quantum wells.
The finesse is about 3000, which amounts to a polari-
ton linewidth smaller than 0.1 meV and a Rabi split-
ing ΩR = 5.1 meV. A wedge between the two cavity
Bragg mirrors allows controlling the photon-exciton en-
ergy detuning at normal incidence δ, by choosing the
appropriate region on the cavity. All measurements
presented here were done in a region where the nat-
ural cavity disorder is minimum. This region has a
slightly positive detuning (δ = +0.5 meV), which pro-
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Figure 1. Schematic representation of the four pumps arriv-
ing on the sample. The laser beam is focused on a pinhole
before being divided into four equal beams. They are fo-
cused on the sample (a = 12 µm waist) so that they form
four polariton fluids propagating towards each other. θ is the
incidence angle, giving the norm of the polariton wavevec-
tor k. The in-plane polariton propagation direction is set
by the azimuthal angle ϕ. The blue dashed lines show the
direction to the center (ϕ = 0) while the red arrows show
the polariton direction of propagation for θ 6= 0. R is the
distance of the pumps to the center (R = 25(3) µm).

vides a good balance between strong interactions and
long propagation distance. The lower-polariton reso-
nance at |k| = 0 and δ = 0 is at 837 nm. The cavity is
pumped resonantly with a single mode CW Ti:Sa laser,
frequency-locked to an optical cavity.

The laser is spatially filtered by a 50 µm pinhole so
that the Gaussian tail is cut to minimize pumps overlap.
Three beamsplitters divide the laser into four beams of
equal intensities, as shown in figure 1. The four arms
are sent along similar trajectories by dielectric mirrors.
Each laser beam is then focused on the sample with a
single condenser lens. The pumps are circularly polar-
ized by a quarter-wave plate before hitting the sample.
In this way we obtain only one kind of polariton popula-
tion and avoid any effect due to spin-dependent interac-
tions [36]. For each pump, the real space positions and
the angle of incidence can be controlled independently.

The four resonant pumps are spatially arranged on
the sample to form a square and are described by
F (r) =

∑4

j=1
Fj(r) exp (−ikj · r), where the Fj(r) are

the four spatial profiles. Their position in k-space is
chosen so that polaritons from each pump propagate
towards the square center. The four in-plane wavevec-
tors are chosen with the same norm |kj | = |k|, meaning
that all four pumps hit the sample with the same an-
gle of incidence θ. For a fixed θ, we tilt the in-plane
direction of propagation by an angle ϕ relative to the
direction of the center (see Fig. 1). This allows sending
onto the cavity a continuous orbital angular momen-
tum (OAM) per photon [37, 38], in unit of ~ that can
be evaluated as:

L

~
=

1

N

∫∫

dx dy F ∗(r)L̂zF (r) = R|k| sinϕ, (1)

where L̂z = ~

(

x ∂
∂y

− y ∂
∂x

)

is the z component of the

angular momentum, R is the pump distance to the

square center and N =
∫∫

drF ∗(r)F (r) is the normal-
ization constant. Equation (1) has been derived consid-
ering a perfectly symmetric system and non-overlapping
pumps with circular profiles induced by the pinhole. As
shown in the Supplementary material, in the steady-
state regime, the average angular momentum per pho-
ton injected by the pumps is equal to the average an-
gular momentum per polariton inside the cavity. Note
that since the spatial independance of the injected fields
lifts the constrain of the phase circulation quantization,
a non-integer (i.e. real-valued) OAM can be injected,
which is impossible for a single Laguerre-Gauss field.

The separation between the pumps is small enough so
that the four polariton populations can meet, resulting
in a significant density at the square center. Cutting
the beam Gaussian tails results in negligible direct il-
lumination in the central region of the square. This
ensures that in the central region polaritons are free to
evolve. If both θ and ϕ are non-zero, the four polariton
populations meet in the system center and an angular
momentum is injected.

An objective collects the sample emission and
the time-averaged detection is made simultaneously
through direct imaging with CCD cameras in real space
and momentum space. The energy is measured with a
spectrometer. We only collect circularly-polarized light,
therefore filtering out any spin-flip effect. The polari-
ton phase is measured with an off-axis interferometry
setup: a beam splitter divides the real space image into
two parts, one of which is expanded to generate a flat
phase reference beam, used to make an off-axis interfer-
ence pattern. With this method, the vortex position on
the image is independent of the phase of the reference
beam [39]. The actual phase map is then numerically
reconstructed with a phase retrieval algorithm.

Numerical method. To describe the configuration
under study, we numerically solve the driven-dissipative
scalar Gross-Pitaevskii equation. The field variable
ψ ≡ ψ(r) =

〈

ψ̂(r)
〉

is the mean value of the real-space

polariton field operator ψ̂(r). This equation describes
the mean field for bi-dimensional interacting particles
with a pump and a decay term as

i~
∂ψ

∂t
=

(

−
~
2∇2

2m∗
−
i~γ

2
+ g|ψ|2

)

ψ + ~γ F (r)ei∆t,

(2)
where m∗ is the polariton effective mass equal
to 9.7 · 10−5 the electron mass, γ is the decay rate de-
duced from the polariton lifetime (here 1/γ = 12 ps),
g = 5 µeVµm2 is the polariton-polariton interaction
and ∆ = ωl − ωLP(|k|) is the energy detuning between
the pump laser frequency (ωl) and the lower polari-
ton branch at |k|, here 0.3 meV. This detuning al-
lows to compensate for the shift of the lower polari-
ton branch appearing at higher intensities and to have
high densities in the superfluid regime. Direct com-
parison with the experiment is performed by extracting
the steady-state density |ψ|2 and phase arg(ψ). In these
conditions, the simulations give a non-turbulent steady-
state regime. Therefore, the resulting density and phase
maps shown in figure 2 are equivalent to time-averaged
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Figure 2. Experimental (up) and theoretical (down) density and phase maps for θ = 3.5◦, ϕ = 21◦ (L = 4.0(5)) and ϕ = 26◦

(L = 4.9(6)) in the low density regime. An interference pattern is visible together with phase singularities of both signs.
Since the injected angular momentum is not zero the number of (+) singularities (red circles) is different from the number
of (−) singularities (green circles).

maps, as in the experiment.

Results. To highlight the role of polariton–polariton
interactions, we study the system as a function of the
polariton density. We identify two different regimes:
a linear regime at low polariton density, where inter-
actions can be neglected, and a nonlinear regime at
high density, were polaritons have a superfluid behav-
ior [8, 40, 41]. Moreover, in the superfluid state we
observe the vanishing of the interference visible in the
linear regime when two or more fluids meet [42]. This
phenomenon was predicted and observed to be accom-
panied by the annihilation of all vortex-antivortex (V-
AV) pairs [43, 44].

For low densities, as shown in figure 2, a square inter-
ference pattern is visible. This is the behavior expected
for non-interacting polaritons, which are similar to cav-
ity photons. Moreover phase singularities of both signs
are visible. It is important to note that in the linear
regime, no healing length can be defined in the density.
Therefore the hydrodynamic definition of a vortex core
cannot be applied. In this regimes, we observe an un-
equal number of singularities of opposite signs. The dif-
ference between the number of vortices and anti-vortices
(N ≡ N+ −N−) is equal to the integer part of the an-
gular momentum L expected from equation (1). This
shows that our technique allows the injection of topolog-
ical charges by means of OAM. These observations are
in agreement with the fact that the sample disorder only
generates V-AV pairs [16, 18, 20, 32]. Figure 2 gives an
example of low density regime for ϕ = 21◦ and ϕ = 26◦

for a fixed incident angle θ = 3.5◦ (|k| = 0.45 µm−1),
corresponding to L = 4.0(5) and L = 4.9(6) respec-
tively (uncertainty based on the error in the evaluation
of R). Equation (2) provides qualitatively correct pre-
dictions in the linear regime. A difference in the number
of V-AV pairs between experiment and simulation can
be ascribed to imperfections of the sample, which at low
density play an important role. In this regime the sys-
tem reaches a steady state with vortices lying in fixed

positions. This is confirmed by the simulations, as said
before, and by high values of visibility (not shown here)
all over the pumped region, apart from the vortex cores.

By increasing the density to the point where, in the
central region, the polariton fluid reaches the superfluid
regime (see Fig. 3), the interference pattern disappears
and all V-AV pairs annihilate, showing the interaction-
driven nature of this phenomenon [42, 43]. The nonzero
angular momentum injected by the pumps results in the
presence of elementary vortices of the same sign remain-
ing in the superfluid. Their size is of the order of the
healing length (about 2 µm) that can be unambiguously
defined [7, 8, 42]. Up to five vortices were observed with-
out any antivortex. Figure 3 shows the experimental
results for ϕ = 5.5◦ (L = 1.1(1)), ϕ = 10◦ (L = 2.0(2))
and ϕ = 21◦ (L = 4.0(5)), for a fixed θ = 3.5◦ giving
|k| = 0.45 µm−1. As expected, the number of vortices
increases with ϕ.

A comparison between the observed number of vor-
tices N in the superfluid regime and the value of L
computed from the classical approach (1) is presented
in figure 4a. The agreement is good within the uncer-
tainty on ϕ and R, showing the validity of our approach
that allows the storage of quantized vortices by inject-
ing orbital angular momentum. The vortex position
is observed to depend strongly on each pump phase,
which suggests that the vortex lattice shape is related
to the geometry of the polariton superflow. This, to-
gether with the presence of disorder in the sample, can
explain the discrepancies in the vortex position in the
model and in the experiment. In the numerical simu-
lations, the pumps phase and position are set slightly
different in order to reproduce the asymmetry of the
experimental case.

Finally, in the high density case, it is interesting to
look at the Mach number map which is defined as the
ratio between the local velocity of the fluid and the lo-
cal speed of sound (proportional to the square root of
the polariton density). Figure 4b shows the Mach num-
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Figure 3. Experimental (left) and theoretical (right) density and phase maps for L = 1.1(1), 2.0(2), 4.0(5) (from top to
bottom) at high density. The vortex number N is equal to the integer part of L. The vortices are visible as black dots in the
density, each associated with a phase singularity. On average |k| = 0.45 µm−1 and (from top to bottom) ϕ = 5.5◦, 10◦, 21◦.
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Figure 4. (a) Plot of the observed number of vortices N

(red circles) and of the continuous angular momentum L

from equation (1) (blue line) as a fonction of the azimuthal
angle ϕ. (b) Experimental map of the Mach number for the
case of L = 4.0(5). The black zones signify areas outside
of the superfluid, where the polariton density is too low to
define a Mach number. In the blue zone, the fluid is sub-
sonic. However, polaritons within each vortex are strongly
supersonic. Note that the Mach number scale is limited be-
tween 0 and 2 while at the vortex core the Mach number
diverges and experimental values up to 100 are obtained.

ber map for L = 4.0(5) corresponding to the bottom
panels of figure 3. As expected from the absence of in-
terference pattern, the fluid is subsonic (M < 1), which
means that it is in the superfluid regime [7, 8]. Note
however that polaritons within each vortex are strongly
supersonic. Indeed, at the vortex core the Mach num-
ber is expected to diverge, and experimental values up
to M = 100 are obtained.

Conclusion. We designed a scheme that allows the
injection of a controlled angular momentum in a bi-
dimensional polariton superfluid. The scheme makes

use of four coherent polariton populations. While in
the linear regime interferences appear and phase sin-
gularities of opposite charges are clearly visible, the
vanishing of all possible pairs happens at sufficiently
high density, and only same sign vortices survive as
expected for a coherent superfluid. We therefore ob-
served the injection of angular momentum and the stor-
age of topological charges in a non-equilibrium super-
fluid of light. Together with the recent result obtained
in reference [42], this is an interesting achievement in
polariton physics. Up to now only vortex-antivortex
pairs [17, 18, 20, 21, 34], single vortex [9, 45] and vor-
tices with high L confined by an excitonic reservoir [25]
have been observed. Our method allows to very effi-
ciently imprint large values of orbital angular momen-
tum and observe several vortices with a topological
charge of 1. With a large number of vortices, this result
opens the way to the study of vortex-vortex interac-
tions, vortex lattices and their collective modes [46, 47].
The technique presented in this paper, coupled with the
use of a time-resolved set-up, could also lead to interest-
ing new studies in the physics of vortices in a turbulent
regime [18].
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