
HAL Id: hal-01312239
https://hal.sorbonne-universite.fr/hal-01312239

Submitted on 5 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inference of ranking functions for proving temporal
properties by abstract interpretation

Caterina Urban, Antoine Miné

To cite this version:
Caterina Urban, Antoine Miné. Inference of ranking functions for proving temporal properties by ab-
stract interpretation. Computer Languages, Systems and Structures, 2015, �10.1016/j.cl.2015.10.001�.
�hal-01312239�

https://hal.sorbonne-universite.fr/hal-01312239
https://hal.archives-ouvertes.fr

Inference of Ranking Functions for Proving
Temporal Properties by Abstract InterpretationI

Caterina Urbana,b, Antoine Minéa,c

aÉcole Normale Supérieure, Paris, France
bETH Zürich, Zurich, Switzerland

cLIP6 - UPMC, Paris, France

Abstract

We present new static analysis methods for proving liveness properties of pro-
grams. In particular, with reference to the hierarchy of temporal properties
proposed by Manna and Pnueli, we focus on guarantee (i.e., “something good
occurs at least once”) and recurrence (i.e., “something good occurs infinitely
often”) temporal properties.

We generalize the abstract interpretation framework for termination pre-
sented by Cousot and Cousot. Specifically, static analyses of guarantee and
recurrence temporal properties are systematically derived by abstraction of the
program operational trace semantics.

These methods automatically infer sufficient preconditions for the temporal
properties by reusing existing numerical abstract domains based on piecewise-
defined ranking functions. We augment these abstract domains with new abstract
operators, including a dual widening.

To illustrate the potential of the proposed methods, we have implemented
a research prototype static analyzer, for programs written in a C-like syntax,
that yielded interesting preliminary results.

Keywords: static analysis, abstract
interpretation, liveness, temporal properties, ranking functions, termination

1. Introduction

Software verification addresses the problem of checking that programs satisfy
certain properties. Leslie Lamport, in the late 1970s, suggested a classification
of program properties into the classes of safety and liveness properties [1]. The
class of safety properties is informally characterized as the class of properties
stating that “something bad never happens”, that is, a program never reaches an

IDedicated to the memory of Radhia Cousot.
Email addresses:

caterina.urban@inf.ethz.ch (Caterina Urban), antoine.mine@lip6.fr (Antoine Miné)

Preprint submitted to Elsevier September 17, 2015

unacceptable state. The class of liveness properties is informally characterized as
the class of properties stating that “something good eventually happens”, that
is, a program eventually reaches a desirable state.

Zohar Manna and Amir Pnueli, in the late 1980s, suggested a more fine grained
classification of program properties into a hierarchy [2], which distinguishes four
basic classes making different claims about the frequency or occurrence of “some-
thing good” mentioned in the informal characterizations proposed by Lamport:

• safety properties: “something good always happens”, i.e., the program
never reaches an unacceptable state (e.g., partial correctness, mutual
exclusion);

• guarantee properties: “something good happens at least once”, i.e., the
program eventually reaches a desirable state (e.g., total correctness, ter-
mination);

• recurrence properties: “something good happens infinitely often”, i.e., the
program reaches a desirable state infinitely often (e.g., starvation freedom);

• persistence properties: “something good eventually always happens”, i.e.,
the program eventually reaches and stays in a desirable state (e.g., stabi-
lization).

This paper concerns the verification of programs by static analysis. We set
our work in the framework of Abstract Interpretation [3], a general theory of
semantic approximation that provides a basis for various successful industrial-
scale tools (e.g., Astrée [4]). Abstract Interpretation has to a large extent been
concerned with safety properties and has only recently been extended to program
termination [5], which is just a particular guarantee property.

In this paper, we generalize the framework proposed by Patrick Cousot and
Radhia Cousot for termination [5] and we propose an abstract interpretation
framework for proving guarantee and recurrence temporal properties of programs.
Moreover, we present new static analysis methods for inferring sufficient precon-
ditions for these temporal properties. Let us consider the program SIMPLE in
Figure 1, where the program variables are interpreted in the set of mathematical
integers. The first loop is an infinite loop for the values of the variable x greater
than or equal to zero: at each iteration the value of x is increased by one. The sec-
ond loop is an infinite loop for any value of the variable x: at each iteration, the
value of x is increased by one or negated when it becomes greater than ten. Given
the guarantee property “x=3 at least once”, where x=3 is the desirable state,
our approach is able to automatically infer that the property is true if the initial
value of x is smaller than or equal to three. Given the recurrence property “x=3
infinitely often”, our approach is able to automatically infer that the property is
true if the initial value of x is strictly negative (i.e., if the first loop is not entered).

Our approach follows the traditional method for proving liveness properties
by means of a well-founded argument (i.e., a function from the states of a
program to a well-ordered set whose value decreases during program execution).
More precisely, we build a well-founded argument for guarantee and recurrence

2

while 1(0≤x) do 2x := x+1 od

while 3(true) do
if 4(x≤10) then 5x := x+1 else 6x := −x fi

od7

Figure 1: Program SIMPLE.

properties in an incremental way: we start from the desirable program states,
where the function has value zero (and is undefined elsewhere); then, we add states
to the domain of the function, retracing the program backwards and counting
the maximum number of performed program steps as value of the function.
Additionally, for recurrence properties, this process is iteratively repeated in
order to construct an argument that is also invariant with respect to program
execution steps so that even after reaching a desirable state we know that the
execution will reach a desirable state again. We formalize these intuitions into
sound and complete guarantee and recurrence semantics that are systematically
derived by abstract interpretation of the program operational trace semantics.

In order to achieve effective static analyses, we further abstract these se-
mantics. Specifically, we leverage existing numerical abstract domains based
on piecewise-defined ranking functions [6, 7, 8] by introducing new abstract
operators, including a dual widening. The piecewise-defined ranking functions
are attached to the program control points and represent an upper bound on
the number of program execution steps before the program reaches a desirable
state. They are automatically inferred through backward analysis and yield
sufficient preconditions for the guarantee and recurrence temporal properties.
We prove the soundness of the analysis, meaning that all program executions
respecting these preconditions indeed satisfy the temporal properties, while a
program execution that does not respect these preconditions might or might not
satisfy the temporal properties.

To illustrate the potential of our approach, let us consider again the program
SIMPLE in Figure 1. Given the guarantee property “x= 3 at least once”, the
piecewise-defined ranking function inferred at program control point 1 is:

λx.


−3x+10 x<0

−2x+6 0≤x∧x≤3

undefined otherwise

which bounds the wait (from the program control point 1) for the desirable state
x=3 by −3x+10 program execution steps when x<0, and by −2x+6 execution
steps when 0≤x∧x≤3. The analysis is inconclusive when 3<x. In this case,
when 3<x, the guarantee property is never satisfied. Thus, the precondition
x≤3 induced by the domain of the ranking function is the weakest precondition
for “x=3 at least once”. Given the recurrence property “x=3 infinitely often”,
the piecewise-defined ranking function at program point 1 bounds the wait for the

3

next occurrence of the desirable state x=3 by −3x+10 program execution steps:

λx.

{
−3x+10 x<0

undefined otherwise

which induces the precondition x<0. Indeed, when 0≤x∧x≤3, the desirable
state x= 3 does not occur infinitely often but only once. Again x < 0 is the
weakest precondition for “x=3 at least once”. At program point 3 (i.e., at the
beginning of the second while loop), for both “x=3 infinitely at least” and “x=3
infinitely often”, we get the following piecewise-defined ranking function:

λx.


−3x+9 x≤3

−3x+72 3<x≤10

3x+12 10<x

which bounds the wait (from the program point 3) for the next occurrence of
x=3 by −3x+9 execution steps when x≤3, by −3x+72 execution steps when
3<x≤10, and by 3x+12 execution steps when 10<x.

Our Contribution.. In summary, this paper makes the following contributions.
First, we present an abstract interpretation framework for proving guarantee and
recurrence program temporal properties. In particular, we generalize the frame-
work proposed by Cousot and Cousot for termination [5]. Moreover, by means of
piecewise-defined ranking function abstract domains [6, 7, 8], we design new static
analysis methods to effectively infer sufficient preconditions for these temporal
properties, and provide upper bounds in terms of program execution steps on
the waiting time before a program reaches a desirable state. Finally, we provide
a research prototype static analyzer for programs written in a C-like syntax.

Limitations.. In general, liveness properties are used to specify the behavior of
concurrent programs and are satisfied only under fairness hypotheses. In this
paper, we model concurrent programs as non-deterministic sequential programs
and we assume that the fair scheduler is explicitly represented within the program
(e.g., see [9] and Example 16 in Section 9). We plan, as part of our future work, to
extend our framework in order to explicitly express and handle fairness properties.

Outline of the Paper.. Section 2 introduces the preliminary notions used in the
paper. In Section 3, we give a brief overview of Cousot and Cousot’s abstract
interpretation framework for termination. In Section 4 and Section 5, we propose
a small idealized programming language used to illustrate our work, and a small
specification language used to describe guarantee and recurrence properties.
The next two sections are devoted to the main contribution of the paper: we
formalize our framework for guarantee and recurrence properties in Section 6
and in Section 7, respectively. In Section 8, we present decidable guarantee
and recurrence abstractions based on piecewise-defined ranking functions. We
describe our prototype static analyzer in Section 9. Finally, Section 10 discusses
related work and Section 11 concludes.

4

Note.. The results described in this paper have been published in [10] and are
presented here with many extensions as well as complete proofs. More specif-
ically, with respect to [10], Section 6 and Section 7 have been extended with the
complete denotational definitions for the guarantee and recurrence semantics
with respect to the programming language proposed in Section 4. Moreover,
Section 2 has been extended in order to provide additional background on the
notions that are at the foundation of our work, and many additional examples
have been supplied throughout the paper to better illustrate our method.

2. Trace Semantics

In order to be independent from the choice of a particular programming
language, following [11, 3], we formalize programs as transition systems:

Definition 1 (Transition System). A transition system is a pair 〈Σ,τ〉 where
Σ is a (potentially infinite) set of states and the transition relation τ ⊆Σ×Σ
describes the possible transitions between states.

Note that this model allows representing programs with (possibly unbounded)
non-determinism. In some cases, a set I⊆Σ is designated as the set of initial

states. The set of blocking or final states is Ω
def
= {s∈Σ | ∀s′∈Σ: 〈s,s′〉 6∈τ}.

We define the following functions to manipulate sets of program states.

Definition 2. Given a transition system 〈Σ,τ〉, pre : P(Σ)→P(Σ) maps a set
of program states X∈P(Σ) to the set of their predecessors with respect to the
program transition relation τ :

pre(X)
def
= {s∈Σ | ∃s′∈X :〈s,s′〉∈τ} (1)

Definition 3. Given a transition system 〈Σ,τ〉, p̃re : P(Σ)→P(Σ) maps a set
of states X ∈ P(Σ) to the set of states whose successors with respect to the
program transition relation τ are all in the set X:

p̃re(X)
def
= {s∈Σ | ∀s′∈Σ:〈s,s′〉∈τ⇒s′∈X} (2)

The semantics of a program is a mathematical characterization of all pos-
sible behaviors of the program when executed for all possible input data. The
semantics generated by a transition system is the set of computations described
by the transition system. We formally define this notion below.

Given a set S, the set Sn def
= {s0···sn−1 | ∀i<n :si∈S} is the set of all sequences

of exactly n elements from S. We write ε to denote the empty sequence, i.e.,

S0 , {ε}. In the following, let S∗ def
=
⋃
n∈N Sn be the set of all finite sequences,

S+ def
= S∗\S0 be the set of all non-empty finite sequences, Sω be the set of all

infinite sequences, S+∞ def
=S+∪Sω be the set of all non-empty finite or infinite

sequences and S∗∞ def
= S∗ ∪ Sω be the set of all finite or infinite sequences of

elements from S. In the following, in order to ease the notation, sequences of a

5

single element s∈S are often written omitting the curly brackets, e.g., we write sω

and s+∞ instead of {s}ω and {s}+∞. We write σσ′ for the concatenation of two

sequences σ,σ′∈S+∞ (with σε=εσ=σ, and σσ′=σ when σ∈Sω), T + def
= T ∩S+

for the selection of the non-empty finite sequences of T ⊆S+∞, T ω def
= T ∩Sω

for the selection of the infinite sequences of T ⊆S+∞ and T ;T ′ def= {σsσ′ | s∈
S ∧ σs∈T ∧ sσ′∈T ′} for the merging of sets of sequences T ⊆S+ and T ′⊆S+∞,
when a finite sequence in T terminates with the initial state of a sequence in T ′.

Given a transition system 〈Σ,τ〉, a trace is a non-empty sequence of states
in Σ determined by the transition relation τ , that is, 〈s,s′〉∈τ for each pair of
consecutive states s,s′∈Σ in the sequence. Note that, the set of final states Ω
and the transition relation τ can be understood as a set of traces of length one
and a set of traces of length two, respectively. The set of all traces generated
by a transition system is called partial trace semantics:

Definition 4 (Partial Trace Semantics). The partial trace semantics τ̇+∞∈
P(Σ+∞) generated by a transition system 〈Σ,τ〉 is defined as follows:

τ̇+∞
def
= τ̇+∪τω

where τ̇+∈P(Σ+) is the set of finite traces:

τ̇+
def
=
⋃
n>0

{s0···sn−1∈Σn | ∀i<n−1:〈si,si+1〉∈τ}

and τω∈P(Σω) is the set of infinte traces:

τω
def
= {s0s1···∈Σω | ∀i∈N :〈si,si+1〉∈τ}

Example 1. Let Σ ={a,b} and τ ={〈a,a〉,〈a,b〉}. The partial trace semantics
generated by 〈Σ,τ〉 is the set of traces a+∞∪a∗b. �

In practice, given a transition system 〈Σ,τ〉, and possibly a set of initial
states I⊆Σ, the traces worth of consideration (start by an initial state in I and)
either are infinite or terminate with a final state in Ω. These traces define the
maximal trace semantics τ+∞∈P(Σ+∞) and represent infinite computations or
completed finite computations:

Definition 5 (Maximal Trace Semantics). The maximal trace semantics τ+∞∈
P(Σ+∞) generated by a transition system 〈Σ,τ〉 is defined as:

τ+∞
def
= τ+∪τω

where τ+∈P(Σ+) is the set of finite traces terminating with a final state in Ω:

τ+
def
=
⋃
n>0

{s0···sn−1∈Σn | ∀i<n−1:〈si,si+1〉∈τ, sn−1∈Ω}

6

T0 =

{
Σω

}

T1 =

{
Ω
}
∪

{
τ1 Σω

}

T2 =

{
Ω
}
∪
{

τ2 Ω
}
∪

{
τ2 τ1 Σω

}

T3 =

{
Ω
}
∪
{

τ2 Ω
}
∪
{

τ3 τ2 Ω
}
∪

{
τ3 τ2 τ1 Σω

}
...

Figure 2: Fixpoint iterates of the maximal trace semantics.

Example 2. The maximal trace semantics generated by the transition system
〈Σ,τ〉 of Example 1 is the set of traces aω ∪a∗b. Note that, unlike the partial
trace semantics of Example 1, the maximal trace semantics does not include
partial computations, i.e., finite sequences of a∈Σ. �

In practice, in case a set of initial states I ⊆ Σ is given, only the traces
starting from an initial state s∈I are considered: {sσ∈τ+∞ | s∈I}.

In the following, we consider the fixpoint definition of the maximal trace
semantics proposed by Patrick Cousot [11]:

τ+∞ = lfpv φ+∞

φ+∞(T)
def
= Ω∪(τ ;T)

(3)

where 〈P(Σ+∞),v,t,u,Σω,Σ+〉 is a complete lattice for the computational
order is T1vT2 ⇔ T+

1 ⊆T
+
2 ∧Tω1 ⊇Tω2 . In Figure 2, we illustrate the fixpoint

iterates. Intuitively, the traces belonging to the maximal trace semantics are built
backwards by prepending transitions to them: the finite traces are built extending
other finite traces from the set of final states Ω, and the infinite traces are obtained
by selecting infinite sequences with increasingly longer prefixes forming traces.
In particular, the i-th iterate builds all finite traces of length less than or equal
to i, and selects all infinite sequences whose prefixes of length i form traces. At
the limit we obtain all infinite traces and all finite traces that terminate in Ω.

The maximal trace semantics carries all information about a program. It
is the most precise semantics and it fully describes the behavior of a program.

7

However, to reason about a particular program property, it is not necessary
to consider all aspects and details of the program behavior. In fact, reasoning
is facilitated by the design of a semantics that abstracts away from irrelevant
details about program executions. In particular, rather than deriving program se-
mantics by intuition and justifying them a posteriori, Abstract Interpretation [3]
offers an elegant and constructive way to systematically derive different program
semantics by successive abstractions of the same maximal trace semantics.

We illustrate such idea in the following. We first systematically derive a
well-adapted semantics for program termination. Then, we derive new program
semantics dedicated to guarantee and recurrence properties.

3. Termination Semantics

The traditional method for proving program termination dates back to Alan
Turing [12] and Robert W. Floyd [13]. It consists in inferring ranking functions,
namely functions from program states to elements of a well-ordered set whose
value decreases during program execution.

Definition 6 (Ranking Function). Given a transition system 〈Σ,τ〉, a rank-
ing function is a partial function f : Σ ⇀W from the set of states Σ into a
well-ordered set 〈W,≤〉 whose value decreases through transitions between states,
that is ∀s,s′∈dom(f) :〈s,s′〉∈τ⇒f(s′)<f(s).

The best known well-ordered sets are the natural numbers 〈N,≤〉 and the
ordinals 〈O,≤〉, and the most obvious ranking function maps each program state
to the number of program execution steps until termination, or some well-chosen
upper bound on this numbers.

In [5], Patrick Cousot and Radhia Cousot prove the existence of a most precise
ranking function τt∈Σ⇀O that can be derived by abstract interpretation of the
program maximal trace semantics and can be expressed as a least fixpoint as:

τt = lfpv
∅̇
φt

φt(f)
def
= λs.


0 s∈Ω

sup{f(s′)+1 | 〈s,s′〉∈τ} s∈ p̃re(dom(f))

undefined otherwise

(4)

where 〈Σ ⇀ O,v〉 forms a partially ordered set for the computational order
f1vf2 ⇔ dom(f1)⊆dom(f2)∧∀x∈dom(f1) :f1(x)≤f2(x) and lfp∅̇ denotes the
least fixpoint greater than or equal to the totally undefined (ranking) function

∅̇. The most precise ranking function τt is defined starting from the final states
in Ω, where the function has value zero, and retracing the program backwards
while mapping each program state in Σ definitely leading to a final state (i.e.,
a program state such that all program traces to which it belong are terminating)
to an ordinal in O representing an upper bound on the number of program
execution steps remaining to termination.

8

Example 3. Let us consider the following trace semantics:

The fixpoint iterates of the most precise ranking function τt are:

0

0

1 0

0

2
1 0

0

2
1 0

0

where unlabelled states are outside the domain of the function. �

The domain of τt is the set of states from which all program executions
terminate; all traces branching from a state s∈dom(τt) terminate in at most
τt(s) execution steps, while at least one trace branching from a state s 6∈dom(τt)
does not terminate:

Theorem 1. A program terminates for all traces starting from a given set of
initial states I if and only if I⊆dom(τt).

Proof. See [5].

Intuitively, a ranking function f1 is more precise than another ranking func-
tion f2 when it is defined over a larger set of program states, that is, it can prove
termination for more program states, and when its value is always smaller, that
is, the maximum number of program execution steps required for termination
is smaller. Thus, we define the approximation order between ranking functions
as f14 f2 ⇔ dom(f1)⊇dom(f2)∧∀x∈dom(f2) : f1(x)≤ f2(x). Observe that,
the computational order used to define fixpoints and the approximation order
often coincide but, in the general case, they are distinct and totally unrelated
[14]. We will need to maintain this distinction throughout the rest of this paper.

In [5], Patrick Cousot and Radhia Cousot derive τt ∈ Σ ⇀ O (cf. Equa-
tion 4) by means of successive abstractions of the maximal trace semantics
τ+∞∈P(Σ+∞) (cf. Equation 3). In the following, we briefly retrace their steps.

We define the neighborhood of a sequence σ ∈ Σ+∞ in a set of sequences
T ⊆Σ+∞ as the set of sequences σ′∈T with a common prefix with σ:

nbhd(σ,T)
def
= {σ′∈T | pf(σ)∩pf(σ′) 6=∅} (5)

where pf∈Σ+∞→P(Σ+∞) yields the set of prefixes of a sequence σ∈Σ+∞:

pf(σ)
def
= {σ′∈Σ+∞ | ∃σ′′∈Σ∗∞ : σ=σ′σ′′}. (6)

9

A program trace is terminating if and only if it is finite and its neighborhood in
the program semantics consists only of finite traces, i.e., the trace terminates in-
dependently from the non-deterministic choices made during execution. The cor-
responding termination abstraction αt : P(Σ+∞)→P(Σ+) is defined as follows:

αt(T)
def
= {σ∈T+ | nhbd(σ,Tω)=∅}. (7)

Example 4. Let T ={ab,aba,ba,bb,baω} be a set of sequences. Then, its termina-
tion abstraction is αt(T)={ab,aba} since nbhd(ab,Tω)=∅ and nbhd(aba,Tω)=∅.
In fact, nbhd(ab,Tω) = nbhd(ab,{baω}) =∅ (i.e., pf(ab)∩pf(baω) =∅, cf. Equa-
tion 5) and nbhd(aba,Tω) = nbhd(aba,{baω}) = ∅ (i.e., pf(aba) ∩ pf(baω) = ∅),
while nbhd(ba,Tω)=nbhd(ab,{baω})={ba} 6=∅ (i.e., pf(ba)∩pf(baω)={ba} 6=∅)
and nbhd(bb,Tω)=nbhd(bb,{baω})={b} 6=∅ (i.e., pf(bb)∩pf(baω)={b} 6=∅). �

The termination semantics τt ∈ Σ ⇀ O can now be explicitly defined as
abstract interpretation of the maximal trace semantics τ+∞∈P(Σ+∞):

τt
def
= αrk(αt(τ+∞)) (8)

where the ranking abstraction αrk : P(Σ+)→(Σ⇀O) is:

αrk(T)
def
= αv(

→
α (T)) (9)

where the function
→
α : P(Σ+∞)→P(Σ×Σ) extracts from a set of sequences

T ⊆Σ+∞ the smallest transition relation r⊆Σ×Σ that generates T :

→
α (T)

def
= {〈s,s′〉 | ∃σ∈Σ∗,σ′∈Σ∗∞ : σss′σ′∈T}

and where the function αv : P(Σ×Σ) → (Σ ⇀ O) provides the rank of the
elements in the domain of a relation r⊆Σ×Σ:

αv(r)s
def
=

{
0 ∀s′∈Σ:〈s,s′〉 6∈r
sup
{
αv(r)s′+1

∣∣∣ s′∈dom(αv(r))∧〈s,s′〉∈r
}

otherwise

In Section 6.1 and Section 7.1, we will follow the same abstract interpretation
approach in order to systematically derive sound and complete semantics for
proving guarantee and recurrence temporal properties of programs.

4. A Small Imperative Language

The formal treatment given in the previous chapter is language indepen-
dent. In the following, for simplicity we consider a while language with some
non-deterministic assignments and tests . The variables are statically allocated
and the only data type is the set Z of mathematical integers. Note that our
implementation, described in Section 9, actually supports a subset of the C
language sufficient to handle real examples from actual benchmarks (e.g., the
benchmarks of the International Competition on Software Verification1).

1http://sv-comp.sosy-lab.org

10

http://sv-comp.sosy-lab.org

aexp ::= X X∈X
| [i1,i2] i1∈Z∪{−∞}, i2∈Z∪{+∞}, i1≤ i2
| − aexp
| aexp � aexp �∈{+,−,∗,/}

bexp ::= ?

| not bexp
| bexp and bexp
| bexp or bexp
| aexp ./ aexpr ./ ∈{<,≤,=,6=}

stmt ::= lskip

| lX := aexp l∈L, X∈X
| if lbexp then stmt else stmt fi l∈L
| while lbexp do stmt od l∈L
| stmt stmt

prog ::= stmt l l∈L

Figure 3: Syntax of our programming language.

4.1. Language Syntax

In Figure 3, we define inductively the syntax of our programming language.
A program prog consists of an instruction followed by a unique label l∈L.

Another unique label appears within each instruction. An instruction stmt is
either a skip instruction, a variable assignment, a conditional if statement, a
while loop or a sequential composition of instructions.

Arithmetic expressions aexp involve variables X∈X , numeric intervals [a,b]
and the arithmetic operators +, −, ∗, / for addition, subtraction, multiplication,
and division. Numeric intervals have constant and possibly infinite bounds, and
denote a random choice of a number in the interval. This provides a notion of non-
determinism useful to model user input or to approximate arithmetic expressions
that cannot be represented exactly in the language. Numeric constants are a par-
ticular case of numeric interval. We often write the constant c for the interval [c,c].

Boolean expressions bexp are built by comparing arithmetic expressions, and
are combined using the boolean not, and, and or operators. The boolean expres-
sion ? represents a non-deterministic choice and is useful to provide a sequential
encoding of concurrent programs by modeling a (possibly, but not necessarily,
fair) scheduler. Whenever clear from the context, we frequently abuse notation
and use the symbol ? to also denote the numeric interval [−∞,+∞].

4.2. Language Semantics

In the following, we instantiate the definition of transition system (cf. Def-
inition 1) with respect to programs written in our small imperative language.

11

Expression Semantics. An environment ρ : X →Z maps each program variable
X∈X to its value ρ(X)∈Z. Let E denote the set of all environments.

The semantics of an arithmetic expression aexp is a function JaexpK : E→P(Z)
mapping an environment ρ∈E to the possible values for the expression aexp in the
environment. Such semantics is standard, for the sake of completeness its formal
definition is given in Appendix A. Note that the set of values for an expression
may contain several elements because of the non-determinism in the expressions.
It might also be empty due to undefined results (e.g., in case of divisions by zero).

Similarly, the semantics JbexpK : E→P({true,false}) of boolean expressions
bexp maps an environment ρ∈E to the set of all possible truth values for the ex-
pression bexp in the environment. Such semantics is also standard, and its formal
definition is given in Appendix A. In the following, we write true and false to
represent a boolean expression that is always true and always false, respectively.

Transition Systems. A program state s∈L×E is a pair consisting of a label l∈L
and an environment ρ∈E , where the ρ defines the values of the program variables
at the program point designated by l. Let Σ denote the set of all program states.

The initial control point iJstmtK ∈ L (resp. iJprogK ∈ L) of an instruction
stmt (resp. a program prog) defines where the execution of the instruction (resp.
program) starts, and the final control point fJstmtK ∈ L (resp. fJprogK ∈ L)
defines where the execution of the instruction stmt (resp. program prog) ends.
The formal definitions are given in Appendix A. A program execution starts at its
initial program control point with any possible value for the program variables.

The set of initial states of a program prog is I def
= {〈iJprogK,ρ〉 | ρ∈E}. The

set of final states is Qdef
= {〈fJprogK,ρ〉 | ρ∈E}.

Remark 1. In Section 2 we defined the final states to have no successors with
respect to the transition relation, meaning that the program halts: Ω

def
= {s∈

Σ | ∀s′∈Σ: 〈s,s′〉 6∈τ}. This is the case when the program successfully terminates
by reaching its final label, or when a run-time error occurs. For the sake of
simplicity, the definition of program final states given in this section ignores
possible run-time errors silently halting the program.

Example 5. Let us consider again the program SIMPLE from Figure 1. The
set of program environments E contains functions ρ : {x} → Z mapping the

program variable x to any possible value ρ(x)∈Z. The set of program states Σ
def
=

{1,2,3,4,5,6,7}×E consists of all pairs of numerical labels and environments; the

initial states are I def
= {〈1,ρ〉 | ρ∈E} and the final states are Qdef

= {〈7,ρ〉 | ρ∈E}.�

We now define the transition relation τ ∈Σ×Σ. In particular, in Figure 4,
we define the transition semantics τJstmtK∈Σ×Σ of each program instruction
stmt. Given an environment ρ∈E , a program variable X∈X and a value v∈Z,
we denote by ρ[X←v] the environment obtained by writing v into X in ρ:

ρ[X←v](x)=

{
v x=X

ρ(x) x 6=X

12

τJlskipK def
= {〈l,ρ〉→〈fJlskipK,ρ〉 | ρ∈E}

τJlX :=aexpK def
= {〈l,ρ〉→〈fJlX :=aexpK,ρ[X←v]〉 | ρ∈E , v∈JaexpKρ}

τJif lbexp then stmt1 else stmt2 fiK def
=

{〈l,ρ〉→〈iJstmt1K,ρ〉 | ρ∈E , true∈JbexpKρ}∪τJstmt1K∪
{〈l,ρ〉→〈iJstmt2K,ρ〉 | ρ∈E , false∈JbexpKρ}∪τJstmt2K

τJwhile lbexp do stmt odK def
=

{〈l,ρ〉→〈iJstmtK,ρ〉 | ρ∈E , true∈JbexpKρ}∪τJstmtK∪
{〈l,ρ〉→〈fJwhile lbexp do stmt odK,ρ〉 | ρ∈E , false∈JbexpKρ}

τJstmt1 stmt2K
def
= τJstmt1K∪τJstmt2K

Figure 4: Transition semantics of instructions stmt.

The semantics of a skip instruction simply moves control from the initial label
of the instruction to its final label. The execution of a variable assignment
lX := aexp moves control from the initial label of the instruction to its final
label, and modifies the current environment in order to assign any of the possible
values of aexp to the variable X. The semantics of a conditional statement
if lbexp then stmt1 else stmt2 fi moves control from the initial label of the
instruction to the initial label of stmt1, if true is a possible value for bexp, and to
the initial label of stmt2, if false is a possible value for bexp; then, stmt1 and stmt2
are executed. Similarly, the execution of a while statement while lbexp do stmt od
moves control from the initial label of the instruction to its final label, if false
is a possible value for bexp, and to the initial label of stmt1, if true is a possible
value for bexp; then stmt is executed. Note that, control moves from the end
of stmt to the initial label l of the while loop. Finally, the semantics of the
sequential combination of instructions stmt1 stmt2 executes stmt1 and stmt2.

The transition relation τ ∈Σ×Σ of a program prog is defined by the semantics

τJprogK∈Σ×Σ of the program as τJprogK = τJstmt lK def
= τJstmtK.

Example 6. Let us consider again the program SIMPLE from Figure 1. The
program transition relation τ ∈Σ×Σ is defined as follows:

τ
def
= {〈1,ρ〉→〈2,ρ〉 | ρ∈E ∧true∈J0≤xKρ}
∪{〈2,ρ〉→〈1,ρ[x←ρ(x)−1]〉 | ρ∈E}
∪{〈1,ρ〉→〈3,ρ〉 | ρ∈E ∧ false∈J0≤xKρ}
∪{〈3,ρ〉→〈4,ρ〉 | ρ∈E}
∪{〈4,ρ〉→〈5,ρ〉 | ρ∈E ∧true∈Jx≤10Kρ}
∪{〈5,ρ〉→〈3,ρ[x←ρ(x)+1]〉 | ρ∈E}
∪{〈4,ρ〉→〈6,ρ〉 | ρ∈E ∧ false∈Jx≤10Kρ}
∪{〈6,ρ〉→〈3,ρ[x←−ρ(x)]〉 | ρ∈E}

4.3. Denotational Termination Semantics

In the following, we provide a structural definition of the fixpoint termination
semantics τt∈Σ⇀O (cf. Equation 4) by induction on the syntax of programs

13

written in our small imperative language.
We partition τt with respect to the program control points: τt∈L→(E⇀O).

In this way, to each program control point l ∈ L corresponds a partial func-
tion f : E ⇀ O, and to each program instruction stmt corresponds a termi-
nation semantics transformer τtJ stmt K : (E ⇀ O) → (E ⇀ O). Analogously
to Equation 4, the ranking function is built backwards: each transformer
τtJstmtK : (E ⇀ O) → (E ⇀ O) takes as input a ranking function whose do-
main represents the terminating environments at the final control point of stmt,
and determines a ranking function whose domain represents the terminating
environments at the initial control point of stmt, and whose value represents an
upper bound on the number of program execution steps remaining to termination.

Skip Instruction. The termination semantics of a skip instruction takes as input
a ranking function f : E⇀O whose domain represents the terminating environ-
ments at the final label of the instruction, and increases its value by one to take
into account that from the environments at the initial label of the instruction
another program execution step is necessary before termination:

τtJlskipKf
def
= λρ∈dom(f). f(ρ)+1 (10)

Assignment Instruction. Similarly, the termination semantics of a variable as-
signment lX :=aexp takes as input a ranking function f : E⇀O whose domain
represent the terminating environments at the final label of the instruction. The
resulting ranking function is defined over the environments that when subject
to the variable assignment always belong to the domain of the input ranking
function. The value of the input ranking function for these environments is
increased by one, to take into account another execution step before termination,
and the value of the resulting ranking function is the least upper bound of these
values, in order to take non-determinism into account:

τtJlX :=aexpKf def
= λρ.


sup{f(ρ[X←v])+1 | v∈JaexpKρ}

JaexpKρ 6=∅∧∀v′∈JaexpKρ : ρ[X←v′]∈dom(f)

undefined otherwise

(11)
Note that all environments yielding a run-time error due to a division by zero
do not belong to the domain of the termination semantics of the assignment.

Example 7. Let us consider again the program SIMPLE from Figure 1. We
assume that the following ranking function f : E⇀O is valid at program point
3 during some iterate of the termination semantics:

f
def
= λρ.

{
0 ρ(x)=3

undefined otherwise

and we consider the assignment x :=x+1 at program point 5. The termination
semantics of the assignment, given the ranking function, is:

τtJx :=x+1Kf def
= λρ.

{
1 ρ(x)=2

undefined otherwise

14

In particular, note that the function is only defined when ρ(x)=2. In fact, when
for example ρ(x) = 1, we have Jx+1Kρ={2} and ρ[x←2] 6∈dom(f). Similarly,
when for example ρ(x)=3, we have Jx+1Kρ={4} and ρ[x←4] 6∈dom(f).

Conditional Instruction. Given a conditional if lbexp then stmt1 else stmt2 fi,
its termination semantics takes as input a ranking function f : E⇀O, whose
value represents an upper bound on the number of execution steps to termi-
nation from the final control point of the instruction. Then, it derives the
termination semantics τtJstmt1Kf of stmt1, in the following denoted by S1, and
the termination semantics τtJstmt2Kf of stmt2, in the following denoted by S2.
The value of S1 (respectively, S2) represents an upper bound on the number
of execution steps from the initial control of stmt1 (respectively, stmt2). The
termination semantics of the conditional instruction is defined by means of the
ranking function F1 : E⇀O whose domain is the set of environments ρ∈E that
belong to the domain of S1 and that must satisfy bexp:

F1
def
= λρ∈dom(S1).

{
S1(ρ)+1 JbexpKρ={true}
undefined otherwise

and the ranking function F2 : E⇀O whose domain is the set of environments
that belong to the domain of S2 and that cannot satisfy bexp:

F2
def
= λρ∈dom(S2).

{
S2(ρ)+1 JbexpKρ={false}
undefined otherwise

and the ranking function F : E⇀O whose domain is the set of environments
that belong to the domain of S1 and to the domain of S2, and that due to
non-determinism may both satisfy and not satisfy the boolean expression bexp:

F
def
= λρ∈dom(S1)∩dom(S2).

{
sup{S1(ρ)+1,S2(ρ)+1} JbexpKρ={true,false}
undefined otherwise

The value of F1, F2, and F represents an upper bound on the execution steps
to termination from the initial control point of the conditional instruction when
only the first branch is taken, when only the second branch is takes, or when
(due to non-determinism) both branches are taken, respectively. The resulting
ranking function is defined joining F1, F2, and F :

τtJif lbexp then stmt1 else stmt2 fiKf def
= F1 ∪̇F2 ∪̇F (12)

where ∪̇ joins partial functions with disjoint domains: given f1 : A⇀ B and
f2 : A ⇀ B such that dom(f1) ∩ dom(f2) = ∅, (f1 ∪̇ f2)(x) = f1(x), when
x∈dom(f1), and (f1 ∪̇f2)(x)=f2(x), when x∈dom(f2).

Example 8. Let us consider again the program SIMPLE from Figure 1. We
consider the conditional statement if bexp then stmt1 else stmt2 fi at program

15

point 4. We assume, given a ranking function f : E⇀O valid at program point
3 during some iterate, that the termination semantics of stmt1 is defined as:

τtJstmt1Kf
def
= λρ.

{
1 ρ(x)≤0

undefined otherwise

and that the termination semantics of stmt2 is defined as

τtJstmt2Kf
def
= λρ.

{
3 0≤ρ(x)

undefined otherwise

Then, since the boolean expression bexp is x≤10, the termination semantics of
the conditional statement is:

τtJif lbexp then stmt1 else stmt2 fiKf def
= λρ.


2 ρ(x)≤0

4 3<ρ(x)

undefined otherwise

Instead, if bexp is for example the non-deterministic choice ?, we have:

τtJif lbexp then stmt1 else stmt2 fiKf def
= λρ.

{
4 ρ(x)=0

undefined otherwise

Loop Instruction. The termination semantics of a loop while lbexp do stmt od
takes as input a ranking function f : E⇀O the domain of which represents the
terminating environments at the final label of the instruction (i.e., after exiting
the loop), and outputs the ranking function which is defined as a least fixpoint of
the function φt : (E⇀O)→(E⇀O) within 〈E⇀O,v〉, analogously to Equation 4:

τtJwhile lbexp do stmt odKf def
= lfpv

∅̇
φt (13)

The function φt : (E⇀O)→(E⇀O) takes as input a ranking function x : E⇀O
and adds to its domain the environments for which one more loop iteration is
needed before termination. In the following, the termination semantics τtJstmtKx
of the loop body is denoted by S. The function φt is defined by means of the
ranking function F1 : E⇀O whose domain is the set of environments ρ∈E that
belong to the domain of S and that must satisfy bexp:

F1
def
= λρ∈dom(S).

{
S(ρ)+1 JbexpKρ={true}
undefined otherwise

and the ranking function F2 : E⇀O whose domain is the set of environments
that belong to the domain of the input function f and that cannot satisfy bexp:

F2
def
= λρ∈dom(f).

{
f(ρ)+1 JbexpKρ={false}
undefined otherwise

16

and the ranking function F : E⇀O whose domain is the set of environments
that belong to the domain of S and to the domain of the input function f , and
that may both satisfy and not satisfy the boolean expression bexp:

F
def
= λρ∈dom(S)∩dom(f).

{
sup{S(ρ)+1,f(ρ)+1} JbexpKρ={true,false}
undefined otherwise

The resulting ranking function is defined joining F1, F2, and F :

φt(x)
def
= F1 ∪̇F2 ∪̇F (14)

Composition Instruction. Finally, the termination semantics of the sequential
combination of instructions stmt1 stmt2, takes as input a ranking function
f : E⇀O at the final control point of stmt2, determines from f the termination
semantics τtJstmt2Kf of stmt2, and feeds it as input to the termination semantics
of stmt1 in order to get a ranking function at the initial control point of stmt1:

τtJstmt1 stmt2Kf
def
= τtJstmt1K(τtJstmt2Kf) (15)

Program Termination Semantics. The termination semantics τtJprogK∈E⇀O of
a program prog is a ranking function whose domain represents the terminating
environments, which is determined taking as input the zero function:

τtJprogK = τtJstmt lK def
= τtJstmtK(λρ. 0). (16)

Note that, as pointed out in Remark 1, possible run-time errors silently halting
the program are ignored. More specifically, all environments leading to run-time
errors are discarded and do not belong to the domain of the termination semantics.

In Section 6.2 and Section 7.2, we provide a similar denotation for the guaran-
tee properties semantics defined in Section 6.1 and for the recurrence properties
semantics defined in Section 7.1.

5. Program Properties

In general, we define a program property as a set of sequences of program
states. A program has a certain property if all its traces belong to the property.
In this paper, with respect to the hierarchy of program properties proposed in [2],
we focus on guarantee (“something good happens at least once”) and recurrence
(“something good happens infinitely often”) properties. In particular, we consider
guarantee and recurrence properties that are expressible by temporal logic.

We assume an underlying specification language, which is used to describe
properties of program states. For instance, for our small imperative language,
we define inductively the syntax of the state properties as follows:

ϕ ::= bexp | l :bexp | ϕ∧ϕ | ϕ∨ϕ l∈L

The predicate l :bexp allows specifying a program state property at a particular
program control point l∈L. When a program state s∈Σ satisfies the property ϕ,
we write s |=ϕ and we say that s is a ϕ-state. We also slightly abuse notation and
write ϕ to also denote the set {s∈Σ | s |=ϕ} of states that satisfy the property ϕ.

17

Example 9. Let us consider again the program SIMPLE from Figure 1. We write
{〈x,v〉} to denote the environment ρ : {x}→Z mapping the program variable
x to the value v∈Z. An example of state property allowed by the specification
language that we have defined is the property x=3. The set of states that satisfy
this property is {1,2,3,4,5,6,7}×{〈x,3〉}. Note however, that 〈7,{〈x,3〉}〉 is not
reachable from the initial states. Another examples of state property allowed
by the specification language is 7 :x=3, which is only satisfied by 〈7,{〈x,3〉}〉.�

The guarantee and recurrence properties within the hierarchy are then defined
by means of the temporal operators always � and eventually ♦.

5.1. Guarantee Properties

The class of guarantee properties is informally characterized as the class
of properties stating that “something good happens at least once”, that is, a
program eventually reaches a desirable state. The guarantee properties that we
consider are expressible by a temporal formula of the following form:

♦ϕ

where ϕ is a state property. The temporal formula expresses that at least one
program state in every program trace satisfies the property ϕ, but it does not
promise any repetition. In general, these guarantee properties are used to ensure
that some event happens once during a program execution.

A typical guarantee property is program termination, which ensures that all
computations are finite, expressible by the temporal formula ♦(le :true), where
le∈L denotes the program final control point.

Another typical guarantee property is program total correctness, which ensures
that all computations starting in a ϕ-state terminate in a ψ-state, expressible
by the temporal formula ♦(li :¬ϕ∨ le :ψ), where li,le ∈L respectively denote
the initial and final program control point.

Example 10. Let us consider again the program SIMPLE from Figure 1. An
example of guarantee property is the formula ♦(x=3), which is satisfied when
the program initial states are limited to the set {〈1,ρ〉∈Σ | ρ(x)≤3}. In par-
ticular, note that when the initial states are limited to {〈1,ρ〉∈Σ | 0≤ρ(x)≤3},
the guarantee property is satisfied within the first while loop. Instead, when
the initial states are limited to {〈1,ρ〉∈Σ | ρ(x)<0}, the guarantee property is
satisfied within the second while loop. Another example of guarantee property is
♦(3≤x), which is always satisfied by the program whatever its initial states.�

5.2. Recurrence Properties

The class of recurrence properties is informally characterized as the class
of properties stating that “something good happens infinitely often”, that is, a
program reaches a desirable state infinitely often. The recurrence properties that
we consider are expressible by a temporal formula of the following form:

�♦ϕ

18

where ϕ is a state property. The temporal formula expresses that infinitely many
program states in every program trace satisfy the property ϕ. In general, these
recurrence properties are used to ensure that some event happens infinitely many
times during a program execution.

A typical recurrence property is starvation freedom, which ensures that a
process will repeatedly enter its critical section, and which is expressible by the
temporal formula �♦(lc :true), where lc∈L represents the critical section.

Example 11. Let us consider again the program SIMPLE from Figure 1. The
recurrence property represented by the formula �♦x=3 is satisfied when the
program initial states are limited to the set {〈1,ρ〉∈Σ | ρ(x)<0}. In particular,
note that the recurrence property is satisfied only within the second while loop.
Instead, the recurrence property �♦3≤x is always satisfied by the program.�

6. Guarantee Semantics

In the following, we generalize Section 3 from termination to guarantee
properties. We define a sound and complete semantics for proving guarantee
temporal properties by abstract interpretation of the program maximal trace
semantics. The generalization is straightforward but provides a building block
for proving recurrence temporal properties in the next Section 7.

6.1. Fixpoint Guarantee Semantics

The guarantee semantics, given a set of desirable states S⊆Σ, is a ranking
function τg[S]∈Σ⇀O defined starting from the states in S, where the function
has value zero, and retracing the program backwards while mapping every state
in Σ definitely leading to a state in S (i.e., a state such that all the traces to
which it belongs eventually reach a state in S) to an ordinal in O representing
an upper bound on the number of program execution steps remaining to S. The
domain dom(τg[S]) of τg[S] is the set of states definitely leading to a desirable
state in S: all traces branching from a state s∈dom(τg[S]) reach a state in S in
at most τg[S]s execution steps, while at least one trace branching from a state
s 6∈dom(τg[S]) never reaches S.

Note that, the program traces that satisfy a guarantee property can also
be infinite traces. In particular, guarantee properties are satisfied by finite
subsequences of possibly infinite traces. Thus, in order to reason about subse-
quences, we define the function sq: P(Σ+∞)→P(Σ+), which extracts the finite
subsequences of a set of sequences T ⊆Σ+∞:

sq(T)
def
= {σ∈Σ+ | ∃σ′∈Σ∗,σ′′∈Σ∗∞ :σ′σσ′′∈T} (17)

We recall that the neighborhood of a sequence σ∈Σ+∞ in a set of sequences
T ⊆Σ+∞ is the set of sequences σ′∈T with a common prefix with σ (cf. Equa-
tion 5). A finite subsequence of a program trace satisfies a guarantee property
if and only if it terminates in the desirable set of states (and never encounter a
desirable state before), and its neighborhood in the subsequences of the program

19

semantics consists only of sequences that are terminating in the desirable set
of states (and never encounter a desirable state before). The corresponding
guarantee abstraction αg[S] : P(Σ+∞)→ P(Σ+) is parameterized by a set of
desirable states S⊆Σ and it is defined as follows:

αg[S]T
def
=
{
σs∈sq(T)

∣∣ σ∈ S̄∗, s∈S, nhbd(σ,sf(T)∩ S̄+∞)=∅
}

(18)

where S̄
def
= Σ\S and the function sf : P(Σ+∞)→P(Σ+∞) yields the set of suffixes

of a set of sequences T ⊆Σ+∞:

sf(T)
def
=
⋃
{σ∈Σ+∞ | ∃σ′∈Σ∗ :σ′σ∈T}. (19)

Example 12. Let T
def
= {(abcd)ω, (cd)ω, aω, cdω} and let S

def
= {c}. We have

sf(T) ∩ S̄+∞ = {aω, dω}. Then, we have αg[S]T = {c, bc}. In fact, let us
consider the trace (abcd)ω: the subsequences of (abcd)ω that are terminating
with c and never encounter c before are {c, bc, abc, dabc}; for abc, we have
pf(ab)∩pf(aω)={a} 6=∅ and, for dabc, we have pf(dab)∩pf(dω)={d} 6=∅. Simi-
larly, let us consider (cd)ω: the subsequences of (cd)ω that are terminating with c
and never encounter c before are {c,dc}; for dc, we have pf(d)∩pf(dω)={d} 6=∅.�

We can now define the guarantee semantics τg[S]∈Σ⇀O:

Definition 7 (Guarantee Semantics). Given a desirable set of states S⊆Σ,
the guarantee semantics τg[S] ∈ Σ ⇀ O is an abstract interpretation of the
maximal trace semantics τ+∞∈P(Σ+∞) (cf. Equation 3):

τg[S]
def
= αrk(αg[S](τ+∞)) (20)

where αrk : P(Σ+)→(Σ⇀O) is the ranking abstraction (cf. Equation 9).

The guarantee semantics can be expressed as a least fixpoint within the
partially ordered set 〈Σ⇀O,v〉 as follows:

τg[S] = lfpv
∅̇
φg[S]

φg[S]f
def
= λs.


0 s∈S
sup{f(s′)+1 | 〈s,s′〉∈τ} s 6∈S∧s∈ p̃re(dom(f))

undefined otherwise

(21)

Example 13. Let us consider the following trace semantics:

where the highlighted states are the set S of desirable states.
The fixpoint iterates of the guarantee semantics τg[S]∈Σ⇀O are:

20

0

0

0

1
0

0

0

2
1

0

0

0

2
1

0

0

0

where unlabelled states are outside the domain of the function. �

Note that, when the set of desirable states S is the set of final states Ω,
unsurprisingly we rediscover the termination semantics presented in Section 3,
since φg[Ω]=φt (cf. Equation 4).

Let ϕ be a state property. The ϕ-guarantee semantics τϕg ∈Σ⇀O:

τϕg
def
= τg[ϕ] (22)

is sound and complete for proving a guarantee property ♦ϕ:

Theorem 2. A program satisfies a guarantee property♦ϕ for all traces starting
from a given set of initial states I if and only if I⊆dom(τϕg).

Proof. By Park’s Fixpoint Induction Principle [15]. See Appendix B.

6.2. Denotational Guarantee Semantics

In the following, we provide a structural definition of the fixpoint guarantee
semantics τϕg ∈Σ⇀O (cf. Equation 22) by induction on the syntax of programs
written in our small imperative language presented in Section 4.

We partition τϕg with respect to the program control points: τϕg ∈L→(E⇀O).
In this way, to each program control point l ∈ L corresponds a partial func-
tion f : E ⇀ O, and to each program instruction stmt corresponds a guar-
antee semantics transformer τϕg J stmt K : (E ⇀ O) → (E ⇀ O). Analogously
to Equation 21, the ranking function is built backwards: each transformer
τϕg JstmtK : (E⇀O)→(E⇀O) takes as input a ranking function whose domain rep-
resents the environments always leading to ϕ from the final control point of stmt,
and determines the ranking function whose domain represents the environments
always leading to ϕ from the initial control point of stmt, and whose value repre-
sents an upper bound on the number of program execution steps remaining to ϕ.

Skip Instruction. The guarantee semantics of a skip instruction resets the input
ranking function f : E⇀O for the environments that satisfy ϕ, and otherwise
it increases its value (as the skip termination semantics, cf. Equation 10):

τϕg JlskipKf def
= λρ.


0 〈l,ρ〉 |=ϕ

f(ρ)+1 〈l,ρ〉 6|=ϕ∧ρ∈dom(f)

undefined otherwise

(23)

21

Assignment Instruction. Similarly, the guarantee semantics of a variable assign-
ment lX :=aexp resets the value of the input ranking function f : E⇀O for the
environments that satisfy ϕ; otherwise, the resulting ranking function is defined
over the environments that when subject to the variable assignment always belong
to the domain of f (as the assignment termination semantics, cf. Equation 11):

τϕg JlX :=aexpKf def
= λρ.


0 〈l,ρ〉 |=ϕ

sup{f(ρ[X←v])+1 | v∈JaexpKρ} 〈l,ρ〉 6|=ϕ∧
JaexpKρ 6=∅∧∀v′∈JaexpKρ :ρ[X←v′]∈dom(f)

undefined otherwise

(24)

Example 14. Let us consider again the program SIMPLE from Figure 1. We
consider the following ranking function f : E⇀O valid at program point 3 during
the first iterate of the guarantee semantics:

f
def
= λρ.

{
0 ρ(x)=3

undefined otherwise

the assignment x :=x+1 at program point 5 and the guarantee property♦(x=3).
The guarantee semantics of the assignment, given the ranking function, is:

τx=3
g Jx :=x+1Kf def

= λρ.


1 ρ(x)=2

0 ρ(x)=3

undefined otherwise

Note that the function is defined when ρ(x)=3, even though Jx+1Kρ={4} and
ρ[x←4] 6∈dom(f). Indeed, the environment {〈x,3〉} satisfies the property x=3.�

Conditional Instruction. Given a conditional if lbexp then stmt1 else stmt2 fi,
its guarantee semantics takes as input a ranking function f : E⇀O and derives
the guarantee semantics τϕg Jstmt1Kf and τϕg Jstmt2Kf of stmt1, and stmt2, respec-
tively. Then, the guarantee semantics of the conditional instruction is defined
by joining F1, F2, and F (defined exactly as for the if termination semantics,
cf. Equation 12, where S1 is τϕg Jstmt1Kf and S2 is τϕg Jstmt2Kf), and resetting
the value of the function for the environments that satisfy ϕ:

τϕg Jif lbexp then stmt1 else stmt2 fiKf def
= λρ.


0 〈l,ρ〉 |=ϕ

G(ρ) 〈l,ρ〉 6|=ϕ∧ρ∈dom(G)

undefined otherwise

(25)

where G
def
=F1 ∪̇F2 ∪̇F .

Example 15. Let us consider again the program SIMPLE from Figure 1. We
consider the guarantee property ♦(x = 3) and the conditional statement

22

if bexp then stmt1 else stmt2 fi at program point 4. We assume, given
f : E ⇀ O valid at program point 3 during some iterate, that the guarantee
semantics of stmt1 is defined as:

τx=3
g Jstmt1Kf

def
= λρ.


1 ρ(x)≤0

0 ρ(x)=3

undefined otherwise

and that the guarantee semantics of stmt2 is defined as

τx=3
g Jstmt2Kf

def
= λρ.


3 0≤ρ(x)<3

0 ρ(x)=3

3 3<ρ(x)

undefined otherwise

Then, since the boolean expression bexp is x≤10, the guarantee semantics of
the conditional statement is:

τx=3
g Jif lbexp then stmt1 else stmt2 fiKf def

= λρ.


2 ρ(x)≤0

0 ρ(x)=3

4 3<ρ(x)

undefined otherwise

Instead, if bexp is for example the non-deterministic choice ?, we have:

τx=3
g Jif lbexp then stmt1 else stmt2 fiKf def

= λρ.


4 ρ(x)=0

0 ρ(x)=3

undefined otherwise

Note that, unlike Example 8, both functions are also defined when ρ(x)=3, since
the environment {〈x,3〉} satisfies the property x=3. �

Loop Instruction. The guarantee semantics of a loop while lbexp do stmt od takes
as input a ranking function f : E⇀O whose domain represents the environments
leading to ϕ from the final label of the instruction (i.e., after exiting the loop),
and outputs the ranking function which is defined as the least fixpoint of the
function φϕg : (E⇀O)→(E⇀O) within 〈E⇀O,v〉, analogously to Equation 21:

τϕg Jwhile lbexp do stmt odKf def
= lfpv

∅̇
φϕg (26)

The function φϕg : (E⇀O)→(E⇀O) takes as input a ranking function x : E⇀O,
resets its value for the environments that satisfy ϕ, and adds to its domain the
environments for which one more loop iteration is needed before ϕ. The function
φϕg is defined by joining the ranking functions F1, F2, and F (defined exactly as
for the while termination semantics, cf. Equation 14, where S is the guarantee

23

semantics τϕg JstmtKx of the loop body), and resetting the value of the function
for the environments that satisfy ϕ:

φϕg (x)
def
= λρ.


0 〈l,ρ〉 |=ϕ

G(ρ) 〈l,ρ〉 6|=ϕ∧ρ∈dom(G)

undefined otherwise

(27)

where G
def
=F1 ∪̇F2 ∪̇F .

Composition Instruction. Finally, the guarantee semantics of the sequential com-
bination of instructions stmt1 stmt2, takes as input a ranking function f : E⇀O
at the final control point of stmt2, determines from f the guarantee semantics
τϕg Jstmt2Kf of stmt2, and feeds it as input to the guarantee semantics of stmt1
in order to get a ranking function at the initial control point of stmt1:

τϕg Jstmt1 stmt2Kf
def
= τϕg Jstmt1K(τϕg Jstmt2Kf) (28)

Program Guarantee Semantics. The guarantee semantics τϕg JprogK∈E⇀O of a
program prog is a ranking function whose domain represents the environments
eventually leading to ϕ, which is determined by taking as input the constant func-
tion equal to zero for the environments that satisfy ϕ, and undefined otherwise:

τϕg JprogK = τϕg Jstmt lK def
= τϕg JstmtK

(
λρ.

{
0 〈l,ρ〉 |=ϕ

undefined otherwise

)
(29)

Note that, as pointed out in Remark 1, possible run-time errors are ignored.
More specifically, all environments leading to run-time errors are discarded and
do not belong to the domain of the guarantee semantics.

7. Recurrence Semantics

We now define a sound and complete semantics for proving recurrence tempo-
ral properties by abstract interpretation of the program maximal trace semantics,
following the same approach used in Section 6 for guarantee properties.

7.1. Fixpoint Recurrence Semantics

The recurrence semantics, given a set of desirable states S⊆Σ, is a ranking
function τr[S]∈Σ⇀O defined starting from the states in S, where the function
has value zero, and retracing the program backwards while mapping every state
in Σ definitely leading infinitely often to a state in S (i.e., a state such that all
the traces to which it belongs reach a state in S infinitely often) to an ordinal
in O representing an upper bound on the number of program execution steps
remaining to the next state in S. The domain dom(τr[S]) of τr[S] is the set
of states definitely leading infinitely often to a desirable state in S: all traces
branching from a state s∈dom(τr[S]) reach the next state in S in at most τr[S]s

24

execution steps, while at least one trace branching from a state s 6∈dom(τr[S])
reaches S at most a finite number of times.

In particular, the recurrence semantics reuses the guarantee semantics of
Section 6 as a building block: from the guarantee that some desirable event
happens once during program execution, the recurrence semantics ensures that
the event happens infinitely often. We define the set of subsequences of a
program trace that satisfy a recurrence property using the set itself: a finite
subsequence of a program trace satisfies a recurrence property if and only if it
terminates in the desirable set of states (and never encounter a desirable state
before), and its neighborhood in the subsequences of the program semantics
consists only of sequences that are terminating in the desirable set of states (and
never encounter a desirable state before), and that are prefixes of traces in the
program semantics that reach infinitely often the desirable set of states. The
corresponding recurrence abstraction αr[S] : P(Σ+∞)→P(Σ+) is parameterized
by a set of desirable states S⊆Σ and it is defined as a fixpoint as follows:

αr[S]T
def
= gfp⊆αg[S]T ψr[T,S]

ψr[T,S]T ′
def
= αg[p̃re[T]T ′∩S]T

(30)

where p̃re[T]T ′
def
= {s∈Σ | ∀σ∈Σ∗,σ′∈Σ∗∞ :σsσ′∈T⇒pf(σ′)∩T ′ 6=∅} is the set

of states whose successors all belong to a given set of subsequences, and gfpαg[S]

denotes the greatest fixpoint less than or equal to the guarantee abstraction
αg[S] : P(Σ+∞)→P(Σ+) (cf. Equation 18) of T .

To explain intuitively Equation 30, we use the dual of Kleene’s Fixpoint
Theorem [11] to rephrase αr[S] as the following limit of a decreasing iteration:

αr[S]T =
⋂
i∈N

Ti+1

Ti+1
def
= [ψr[T,S]]

i
(αg[S]T)

Then, for i = 0, we get the set T1 = αg[S]T of subsequences of T that guar-
antee S at least once. For i= 1, starting from T1, we derive the set of states
S1 =p̃re[T]T1∩S (i.e., S1⊆S) whose successors all belong to the subsequences
in T1, and we get the set T2 =αg[S1]T of subsequences of T that guarantee S1

at least once and thus guarantee S at least twice. Note that all the subsequences
in T2 terminate with a state s′ ∈S1 and therefore are prefixes of subsequence
of T that reach S at least twice. More generally, for each i∈N, we get the set
Ti+1 of subsequences which are prefixes of subsequences of T that reach S at
least i+1 times, i.e., the subsequences that guarantee S at least i+1 times. The
limit thus guarantees S infinitely often.

Example 16. Let T
def
= {(cd)ω, caω,d(be)ω} and let S

def
= {b,c,d}. For i = 0,

we have T1 = αg[S]T = {b, eb, c, d}. For i = 1, we derive S1 = {b, d}, since
c(dc)ω ∈ T and pf((dc)ω)∩T1 = {d} 6= ∅ but caω ∈ T and pf(aω)∩T1 = ∅. We
get T2 = αg[S1]T = {b,eb,d}. For i = 2, we derive S2 = {b}, since d(be)ω ∈ T

25

and pf((be)ω)∩ T1 = {b} 6= ∅ but d(cd)ω ∈ T and pf((cd)ω)∩ T2 = ∅. We get
T3 =αg[S2]T ={b,eb} which is the greatest fixpoint: the only subsequences of
sequences in T that guarantee S infinitely often start with b or eb. �

We can now define the recurrence semantics τr[S]∈Σ⇀O:

Definition 8 (Recurrence Semantics). Given a desirable set of states S⊆Σ,
the recurrence semantics τr[S] ∈ Σ ⇀ O is an abstract interpretation of the
maximal trace semantics τ+∞∈P(Σ+∞) (cf. Equation 3):

τr[S]
def
= αrk(αr[S](τ+∞)) (31)

where αrk : P(Σ+)→(Σ⇀O) is the ranking abstraction (cf. Equation 9).

The recurrence semantics can be expressed as a least fixpoint within the
partially ordered set 〈Σ⇀O,v〉 as follows:

τr[S] = gfpvτg[S] φr[S]

φr[S]f
def
= λs.

{
f(s) s∈dom(τg[p̃re(dom(f))∩S])

undefined otherwise

(32)

Note that, the recurrence semantics can be equivalently simplified as:

τr[S]= gfpvτg[S] φr[S]

φr[S]f
def
= λs.

{
f(s) s∈ p̃re(dom(f))

undefined otherwise

(33)

Indeed, there is not need to redefine τg[S] at each iterate since we always have
dom(f)⊆dom(τg[S]) and ∀s∈dom(f) :f(s)=τg[S](s).

Example 17. Let us consider the following trace semantics:

where the highlighted states are the set S of desirable states.
The fixpoint iterates of the recurrence semantics τr[S]∈Σ⇀O are:

2

0
1

0
0

2

0
1

0

0
1

0
1

where unlabelled states are outside the domain of the function. �

26

Let ϕ be a state property. The ϕ-recurrence semantics τϕr ∈Σ⇀O:

τϕr
def
= τr[ϕ] (34)

is sound and complete for proving a recurrence property �♦ϕ:

Theorem 3. A program satisfies a recurrence property �♦ϕ for all traces starting
from a given set of states I if and only if I⊆dom(τϕr).

Proof. The proof follows from the dual of Park’s Fixpoint Induction Principle
[15] and from Theorem 2. See Appendix B.

7.2. Denotational Recurrence Semantics

In the following, we provide a structural definition of the fixpoint recurrence
semantics τϕr ∈Σ⇀O (cf. Equation 34) by induction on the syntax of programs
written in our idealized programming language of Section 4.

We partition τϕr with respect to the program control points: τϕr ∈L→(E⇀O).
In this way, to each program control point l∈L corresponds a partial function
f : E⇀O, and to each program instruction stmt corresponds a recurrence seman-
tics transformer τϕr JstmtK : (E⇀O)→(E⇀O). Analogously to Equation 33, the
ranking function is built backwards : each transformer τϕr JstmtK : (E⇀O)→(E⇀
O) takes as input a ranking function whose domain represents the environments
always leading infinitely often to ϕ from the final control point of stmt, and
determines a ranking function whose domain represents the environments always
leading infinitely often to ϕ from the initial control point of stmt, and whose value
represents an upper bound on the number of program execution steps remaining
to the next occurrence of ϕ. In particular, each transformer τϕr JstmtK∈ (E⇀
O)→(E⇀O) behaves as the guarantee semantics transformer τϕg JstmtK∈(E⇀
O)→(E⇀O) defined in Section 6.2 and also ensures that each time ϕ is satisfied,
it will be satisfied again in the future: the value of the input ranking function
is reset for the environments that satisfy ϕ only if all their successors by means
of the instruction stmt belong to the domain of the input ranking function.

Skip Instruction. The recurrence semantics of a skip instruction is defined
analogously to its guarantee semantics (cf. Equation 23), except that it resets
the value of the input ranking function f : E ⇀O for the environments that
satisfy ϕ only when they already belong to its domain:

τϕr JlskipKf def
= λρ.


0 〈l,ρ〉 |=ϕ∧ρ∈dom(f)

f(ρ)+1 〈l,ρ〉 6|=ϕ∧ρ∈dom(f)

undefined otherwise

(35)

27

Assignment Instruction. Similarly, the recurrence semantics of a variable assign-
ment lX :=aexp is defined analogously to the assignment guarantee semantics
(cf. Equation 24), except that it resets the value of the input ranking function
f : E⇀O only for the environments that satisfy ϕ and that when subject to the
assignment always belong to the domain of f :

τϕr JlX :=aexpKf def
= λρ.



0 〈l,ρ〉 |=ϕ∧
JaexpKρ 6=∅∧∀v′∈JaexpKρ :ρ[X←v′]∈dom(f)

sup{f(ρ[X←v])+1 | v∈JaexpKρ} 〈l,ρ〉 6|=ϕ∧
JaexpKρ 6=∅∧∀v′∈JaexpKρ :ρ[X←v′]∈dom(f)

undefined otherwise

(36)

Example 18. Let us consider again the program SIMPLE from Figure 1. We
consider the following ranking function f : E⇀O valid at program point 3 during
the first iterate of the recurrence semantics:

f
def
= λρ.

{
0 ρ(x)=3

undefined otherwise

the assignment x := x + 1 at program point 5 and the recurrence property
�♦(x=3). The recurrence semantics of the assignment is:

τx=3
r Jx :=x+1Kf def

= λρ.

{
1 ρ(x)=2

undefined otherwise

Note that, unlike Example 14, the function is not defined when ρ(x)=3, since
{〈x,3〉} satisfies the property x=3 but Jx+1Kρ={4} and ρ[x←4] 6∈dom(f). �

Conditional Instruction. The recurrence semantics of a conditional instruction
if lbexp then stmt1 else stmt2 fi, unlike its guarantee semantics (cf. Equa-
tion 25), resets the value of the function obtained by joining F1, F2, and F
(cf. Equation 12, where S1 is τϕr Jstmt1Kf and S2 is τϕr Jstmt2Kf) only for the
environments that satisfy ϕ and also belong to its domain:

τϕg Jif lbexp then stmt1 else stmt2 fiKf def
= λρ.


0 〈l,ρ〉 |=ϕ∧ρ∈dom(R)

R(ρ) 〈l,ρ〉 6|=ϕ∧ρ∈dom(R)

undefined otherwise

(37)

where R
def
=F1 ∪̇F2 ∪̇F .

Example 19. Let us consider again the program SIMPLE from Figure 1. We
consider the recurrence property �♦(x = 3) and the conditional statement
if bexp then stmt1 else stmt2 fi at program point 4. We assume, given

28

f : E ⇀O valid at program point 3 during some iterate, that the recurrence
semantics of stmt1 is defined as:

τx=3
r Jstmt1Kf

def
= λρ.

{
1 ρ(x)≤0

undefined otherwise

and that the recurrence semantics of stmt2 is defined as

τx=3
r Jstmt2Kf

def
= λρ.


3 0≤ρ(x)<3

0 ρ(x)=3

3 3<ρ(x)

undefined otherwise

Then, since the boolean expression bexp is x≤10, the recurrence semantics of
the conditional statement is:

τx=3
r Jif lbexp then stmt1 else stmt2 fiKf def

= λρ.


2 ρ(x)≤0

4 3<ρ(x)

undefined otherwise

Instead, if bexp is for example the non-deterministic choice ?, we have:

τx=3
r Jif lbexp then stmt1 else stmt2 fiKf def

= λρ.

{
4 ρ(x)=0

undefined otherwise

Note that, unlike Example 15, both functions are undefined when ρ(x)=3, even
though the property x=3 is satisfied by the environment {〈x,3〉}. In fact, the
ranking function for the then branch of the if is undefined when ρ(x)=3. �

Loop Instruction. The recurrence semantics of a loop while lbexp do stmt od
takes as input a ranking function f : E⇀O whose domain represents the envi-
ronments leading infinitely often to ϕ from the final label of the instruction (i.e.,
after exiting the loop), and outputs the ranking function which is defined as a
greatest fixpoint of the function φϕr : (E⇀O)→(E⇀O) within 〈E⇀O,v〉:

τϕr Jwhile lbexp do stmt odKf def
= gfpvG φϕr (38)

where G
def
= τϕg Jwhile lbexp do stmt odKf is the guarantee semantics of the loop

instruction defined in Equation 26. In essence, from the guarantee that some
desirable event eventually happens, the recurrence semantics ensures that the
event happens infinitely often. The function φϕr : (E⇀O)→ (E⇀O) takes as
input a ranking function x : E⇀O, resets its value for the environments that
belong to its domain and that satisfy ϕ, and adds to its domain the environments
for which one more loop iteration is needed before the next occurrence of ϕ.
The function φϕr , unlike φϕg (cf. Equation 27), resets the value of the function

29

obtained by joining F1, F2, and F (cf. Equation 14, where S is τϕr JstmtKx) only
for the environments that satisfy ϕ and also belong to its domain:

φϕr (x)
def
= λρ.


0 〈l,ρ〉 |=ϕ∧ρ∈dom(R)

R(ρ) 〈l,ρ〉 6|=ϕ∧ρ∈dom(R)

undefined otherwise

(39)

where R
def
=F1 ∪̇F2 ∪̇F .

Composition Instruction. Finally, the recurrence semantics of the sequential com-
bination of instructions stmt1 stmt2, takes as input a ranking function f : E⇀O
at the final control point of stmt2, determines from f the recurrence semantics
τϕr Jstmt2Kf of stmt2, and feeds it as input to the recurrence semantics of stmt1
in order to get a ranking function at the initial control point of stmt1:

τϕr Jstmt1 stmt2Kf
def
= τϕr Jstmt1K(τϕr Jstmt2Kf) (40)

Program Recurrence Semantics. The recurrence semantics τϕr JprogK∈E⇀O of
a program prog is a ranking function whose domain represents the environments
leading infinitely often to ϕ, which is determined by taking as input the totally
undefined function, since the program final states cannot satisfy a recurrence
property:

τϕr JprogK = τϕr Jstmt lK def
= τϕr JstmtK∅̇ (41)

As pointed out in Remark 1, possible run-time errors are ignored. Thus, all
environments leading to run-time errors are discarded and do not belong to the
domain of the recurrence semantics.

8. Piecewise-Defined Ranking Functions

The termination semantics τt of Section 3, the ϕ-guarantee semantics τϕg
of Section 6 and the ϕ-recurrence semantics τϕr of Section 7 are usually not
computable (i.e., when the program state space is infinite).

In [6, 7, 8], we present decidable abstractions of τt by means of piecewise-
defined ranking functions over natural numbers [6], over ordinals [7] and with
relational partitioning [8]. In the following, we will briefly recall the main char-
acteristics of these abstractions and we will show how to modify the abstract
domains in order to obtain decidable abstractions of τϕg and τϕr as well. We refer
to [6, 7, 8] for more detailed discussions on the abstract domains.

8.1. Abstract Termination Semantics

The abstract termination semantics τ \t ∈L→T maps each program control
point l∈L to an element t∈T of the decision trees abstract domain T .

30

x−11≥0

λx. 3x+12 x−4≥0

λx. −3x+72 λx. −3x+9

(a)

x

4 11

(b)

Figure 5: Decision tree representation (a) of the piecewise-defined ranking function (b) inferred
for proving ♦(x= 3) and �♦(x= 3) at program control point 3 of the program SIMPLE of
Figure 1 . The linear constraints within the decision nodes are satisfied by their left subtree,
while their right subtree satisfies their negation. The leaves of the decision tree represent partial
functions whose domain is determined by the constraints satisfied along the path to the leaf node.

Decision Trees Abstract Domain. The elements of the decision trees abstract
domain T are piecewise-defined ranking functions represented by decision trees,

where the decision nodes are labeled with linear constraints in C def
= {c1X1+···+

ckXk+ck+1≥0 | X1,...,Xk∈X , c1,...,ck,ck+1∈Z}, and the leaf nodes belong to
an auxiliary abstract domain F whose elements are natural-valued (or ordinal-
valued [7]) functions of the program variables. The paths along the decision trees
establish the shape of the pieces of the ranking functions, and the leaf nodes
represent the value of the ranking functions within their pieces. A special element
⊥ denotes an undefined value within a piece. In the following, we slightly abuse
notation and use ⊥ to also denote a decision tree with a single undefined leaf node.

The decision trees abstract domain is parametric in the choice between the
expressivity and the cost of the numerical abstract domain [16, 17, 18] which
underlies the linear constraints labeling the decision nodes, and the choice of
the auxiliary abstract domain for the leaf nodes. For example, in [6] we consider
piecewise-defined ranking functions represented using interval constraints based
on the intervals abstract domain [16] at the decision nodes, and affine functions
at the leaf nodes. We used the same parameterization to analyze the program
SIMPLE of Figure 1 for proving ♦(x= 3) and �♦(x= 3) and, in Figure 5a,
we depict the decision tree inferred at program control point 3. The graphical
representation of the ranking function is shown in Figure 5b.

Abstract Termination Semantics. A sound abstract termination semantics trans-
former τ \t JstmtK∈T →T corresponds to each program instruction stmt. We define

each function τ \t JstmtK in Figure 7 by means of the following operators in the
decision trees abstract domain: STEP, B-ASSIGNJX :=aexpK, FILTERJbexpK, the
join operator g, and the widening operator O. The operator STEP descends along
each path of a decision tree up to a leaf node, where it simply increments the value
of the ranking function (cf. Figure 6b) to count another program execution step.
The operator B-ASSIGNJX :=aexpK models a backward assignment by substitut-
ing the variable X with the expression aexp within the decision nodes as well as

31

x−4≥0

⊥ x−3≥0

λx. −3x+9 ⊥
(a)

x−4≥0

⊥ x−3≥0

λx. −3x+10 ⊥
(b)

x−3≥0

⊥ x−2≥0

λx. −3x+7 ⊥
(c)

x−4≥0

⊥ x−3≥0

λx. −3x+10 x−2≥0

λx. −3x+7 ⊥
(d)

Figure 6: The decision tree (a) is obtained by the FILTERJx=3K operator from Figure 5a. The
decision tree (b) is obtained by the STEP operator from (a). The decision tree (c) is the result
of the B-ASSIGNJx :=x+1K operator on (a). The decision tree (d) is the join of (b) and (c).

within the leaf nodes, and also increments the value of the ranking function within
the leaf nodes (cf. Figure 6c). The operator FILTERJbexpK discards all paths of
a decision tree that do not satisfy the expression bexp, possibly introducing new
decision nodes, and also increments the value of the ranking function within the
remaining leaf nodes (cf. Figure 6a). The join operator yields a piecewise-defined
ranking function defined over the coarsest partition refining both partitions of
the given decision trees (cf. Figure 6d). The widening operator instead imposes
the less refined partition of a given decision tree upon another given decision tree,
possibly inducing a loss of precision but enforcing termination of the analysis.
In Figure 7, lfp\ φ\t denotes the limit of the iteration sequence with widening:

y0
def
=⊥

yn+1
def
=

{
yn φ\t(yn)v\ yn∧φ\t(yn)4\ yn
ynOφ

\
t(yn) otherwise

(42)

where v\ and 4\ are the abstract counterparts of the computational v and
approximation 4 order, respectively. We refer to [6, 7, 8] for further details.

The transformers τ \t JstmtK are combined together to compute a piecewise-
defined ranking function for a program through backward analysis. The starting
point is the constant function equal to zero at the program final control point
fJprogK. This function is then propagated backwards towards the program initial

32

τ \t JlskipKt
def
= STEP(t)

τ \t JlX :=aexpKt def
= B-ASSIGNJX :=aexpKt

τ \t Jif lbexp then stmt1 else stmt2 fiKt def
=

FILTERJbexpK(τ \t Jstmt1Kt)gFILTERJnot bexpK(τ \t Jstmt2Kt)
τ \t Jwhile lbexp do stmt odKt def

= lfp\ φ\t
φ\t(x)

def
= FILTERJbexpK(τ \t JstmtKx)gFILTERJnot bexpKt

τ \t Jstmt1 stmt2Kt
def
= τ \t Jstmt1K(τ

\
t Jstmt2Kt)

Figure 7: Abstract termination semantics of instructions stmt.

τϕ\g JlskipKt def
= RESETJϕK(STEP(t))

τϕ\g JlX :=aexpKt def
= RESETJϕK(B-ASSIGNJX :=aexpKt)

τϕ\g Jif lbexp then stmt1 else stmt2 fiKt def
=

RESETJϕK(FILTERJbexpK(τϕ\g Jstmt1Kt)gFILTERJnot bexpK(τϕ\g Jstmt2Kt))
τϕ\g Jwhile lbexp do stmt odKt def

= lfp\ φϕ\g
φϕ\g (x)

def
= RESETJϕK(FILTERJbexpK(τϕ\g JstmtKx)gFILTERJnot bexpKt)

τϕ\g Jstmt1 stmt2Kt
def
= τϕ\g Jstmt1K(τϕ\g Jstmt2Kt)

Figure 8: Abstract guarantee semantics of instructions stmt.

control point iJprogK taking assignments and tests into account and, in case of
loops, solving least fixpoints by iteration with widening.

The abstract termination semantics is sound with respect to the approxi-
mation order v14 v2 ⇔ dom(v1)⊇ dom(v2) ∧ ∀x∈ dom(v2) : v1(x) ≤ v2(x)
(cf. Section 3). Thus, the backward analysis computes an over-approximation
of the value of the termination semantics τt and an under-approximation of its
domain of definition dom(τt). In this way, an abstraction provides sufficient
preconditions for program termination: if the abstraction is defined on a program
state, then all the program traces branching from that state are terminating, and
the value of the function provides an upper bound on the number of execution
steps before termination.

8.2. Abstract Guarantee Semantics

In the following, we describe how to reuse the decision trees abstract domain
[6, 7, 8] briefly recalled in the previous section, and what changes are required
in order to obtain decidable abstractions of τϕg (cf. Equation 22).

We define the abstract ϕ-guarantee semantics τϕ\g ∈L→T : to each program
control point l∈L corresponds a piecewise-defined ranking function t∈T , and
for each program instruction stmt a sound guarantee semantics transformer
τϕ\g JstmtK∈T →T is defined in Figure 8. In particular, we complement the oper-
ators briefly presented in the previous Section 8.1 with a new operator RESETJϕK,
which possibly splits a given piecewise-defined ranking function into more pieces
(by introducing new decision nodes in a decision tree) in order to distinguish the

33

x−4≥0

⊥ x−3≥0

λx. 0 x−2≥0

λx. −3x+7 ⊥

Figure 9: Decision tree obtained by the RESETJx=3K operator from Figure 6c.

x−4≥0

⊥ x≥0

λx. −2x+6 λx. −3x+10

(a)

x

0 4

(b)

Figure 10: Decision tree representation (a) of the piecewise-defined ranking function (b) inferred
for proving♦(x=3) at program control point 1 of Figure 1.

pieces that satisfy ϕ, and resets its value within those pieces (and leaves the other
pieces unchanged). We propose an example of use of the RESETJϕK operator in
Figure 9. Note that, RESETJϕK operates also on undefined leaf nodes.

The transformers τϕ\g JstmtK are again combined together through backward
analysis. The starting point is now the constant function equal to zero only
for the environments that satisfy the property ϕ, and undefined elsewhere (i.e.,
RESETJϕK⊥), at the program final control point fJprogK. The backward analysis
computes an over-approximation of the value of the ϕ-guarantee semantics τϕg
and an under-approximation of its domain of definition dom(τϕg). In this way,
an abstraction provides sufficient preconditions for the guarantee property ♦ϕ:
if the abstraction is defined on a program state, then all the program traces
branching from that state eventually reach a state with the property ϕ, and the
value of the function provides an upper bound on the number of execution steps
before such state with the property ϕ.

Example 20. In Figure 10a, we depict the decision tree inferred for proving the
guarantee property ♦(x=3) at program control point 1 of the program SIMPLE
of Figure 1. The graphical representation of the ranking function is shown in
Figure 10b. Its domain yields the sufficient precondition x≤3 for ♦(x=3). �

34

τϕ\r JlskipKt def
= RESETJϕK(STEP(t))

τϕ\r JlX :=aexpKt def
= RESETJϕK(B-ASSIGNJX :=aexpKt)

τϕ\r Jif lbexp then stmt1 else stmt2 fiKt def
=

RESETJϕK(FILTERJbexpK(τϕ\r Jstmt1Kt)gFILTERJnot bexpK(τϕ\r Jstmt2Kt))
τϕ\r Jwhile lbexp do stmt odKt def

= gfp\G(t) φ
ϕ\
r

G
def
= τϕ\g Jwhile lbexp do stmt odK

φϕ\r (x)
def
= RESETJϕK(FILTERJbexpK(τϕ\r JstmtKx)gFILTERJnot bexpKt)

τϕ\r Jstmt1 stmt2Kt
def
= τϕ\r Jstmt1K(τϕ\r Jstmt2Kt)

Figure 11: Abstract recurrence semantics of instructions stmt.

8.3. Abstract Recurrence Semantics

We now describe the required changes to the decision trees abstract domains
in order to obtain a decidable abstraction of the ϕ-recurrence semantics τϕr (cf.
Equation 34).

We define the abstract ϕ-recurrence semantics τϕ\r ∈L→T : to each program
control point l∈L corresponds a piecewise-defined ranking function t∈T , and for
each program instruction stmt a sound abstract recurrence semantics transformer
τϕ\r JstmtK∈T →T is defined in Figure 11. In particular, we modify the operator
RESETJϕK presented in the previous Section 8.2 in order to reset the value of
a ranking function only when the ranking function is already defined within
the pieces that satisfy a given property ϕ. As an example, unlike Figure 9, the
decision tree in Figure 6c is unmodified by the RESETJx=3K operator.

The starting point of the recurrence backward analysis is now the totally
undefined function at the program final control point fJprogK, since the program
final states cannot satisfy a recurrence property. This function is then propagated
backwards towards the program initial control point iJprogK. In case of loops, a
first increasing iteration with widening yields their abstract guarantee semantics,
which is the starting point for the decreasing iteration with a new dual widening
operator Ō. The dual widening Ō obeys:

(i) xwx Ōy and ywx Ōy;

(ii) for all decreasing sequences X0wX1w···wXnw···, the decreasing sequence

Y0
def
= X0, Yn+1

def
= Yn ŌXn+1 stabilizes, that is, ∃l≥0:∀j≥ l :yj=yl.

Dual widenings are rather unknown and, up to our knowledge, only few practical
instance has been proposed, e.g., [19, 20]. In our case, the dual widening Ō
enforces the termination of the analysis by preventing the number of pieces of a
piecewise-defined ranking function from growing indefinitely: given two piecewise-
defined ranking functions t1∈T and t2∈T , it enforces the piecewise-definition
of the first function t1 on the second function t2. Then, for each piece of the
ranking functions, it maintains the value of the function only if both t1 and t2 are
defined on that piece. We propose an example of dual widening in Figure 12. In

35

x

4 11

(a)

x

1 4 11

(b)

x

4 11

(c)

x−11≥0

λx. 3x+12 x−4≥0

λx. −3x+72 x−1≥0

⊥ λx. −3x+9

(d)

x−11≥0

λx. 3x+12 x−4≥0

λx. −3x+72 ⊥
(e)

Figure 12: Dual widening between the piecewise-defined functions shown in (a) (from Figure 5b)
and (b), respectively. Their decision tree representation is depicted in Figure 5a and (d). The
graphical representation of the result is shown in (c) and its decision tree representation is
depicted in (e).

Figure 7, gfp\ φϕ\r denotes the limit of the iteration sequence with dual widening:

y0
def
=G(t)

yn+1
def
=

{
yn ynv\φϕ\r (yn)∧yn4\φϕ\r (yn)

yn Ōφϕ\r (yn) otherwise

(43)

The analysis computes an over-approximation of the value of the ϕ-recurrence
semantics τϕr and an under-approximation of its domain of definition dom(τϕr).
In this way, an abstraction provides sufficient preconditions for the recurrence
property �♦ϕ: if the abstraction is defined on a program state, then all the pro-
gram traces branching from that state always reach a state with the property ϕ
infinitely often, and the value of the function provides an upper bound on the num-
ber of execution steps before the next occurrence of a state with the property ϕ.

Example 21. In Figure 13a, we depict the decision tree inferred for proving
the recurrence property �♦(x=3) at program control point 1 of the program
SIMPLE of Figure 1. The graphical representation of the ranking function is shown
in Figure 13b. Its domain yields the sufficient precondition x<0 for �♦(x=3).�

36

x≥0

⊥ λx. −3x+10

(a)

x

0

(b)

Figure 13: Decision tree representation (a) of the piecewise-defined ranking function (b) inferred
for proving �♦(x=3) at program control point 1 of Figure 1.

9. Implementation

We have incorporated the static analysis methods for guarantee and recur-
rence temporal properties that we have presented into our prototype static
analyzer FuncTion based on piecewise-defined ranking functions.

The prototype accepts (non-deterministic) programs written in a C-like syn-
tax, without struct and union types. It provides only a limited support for
arrays and pointers. The mathematical integers are the only basic data type,
deviating from the standard semantics of C. When the guarantee or recurrence
analysis methods are selected, it accepts state properties written as C-like pure
expressions. The prototype is written in OCaml and, at the time of writing, the
available numerical abstractions to control the pieces of the ranking functions
are based on the intervals abstract domain [16], the convex polyhedra abstract
domain [17], and the octagons abstract domain [18], and the available abstraction
to represent the value of the ranking functions is based on affine functions. The
numerical abstract domains are provided by the APRON library [21]. It is also
possible to activate the extension to ordinal-valued ranking functions [7], and
tune the precision of the analysis by adjusting the widening delay.

To improve precision, we avoid trying to compute a ranking function for the
non-reachable states: FuncTion runs a forward analysis to over-approximate
the reachable states using a numerical abstract domain [16, 17, 18]. Then, it
runs the backward analysis to infer a ranking function, intersecting its domain
at each step with the states identified by the previous analysis.

The analysis proceeds by structural induction on the program syntax, iter-
ating loops with widening (and, for recurrence properties, both widening and
dual widening) until stabilization. In case of nested loops, the analysis stabilizes
the inner loop for each iteration of the outer loop, following [22].

To illustrate the effectiveness of our new static analysis methods, we consider
more examples besides the program SIMPLE of Figure 1, and we present the
results automatically produced by our analyzer.

Example 22. Let us consider the program COUNT-DOWN in Figure 14. Each
iteration of the outer loop assigns to the variable x the value of some counter c,

37

1c := 1
while 2(true) do

3x := c
while 4(0<x) do 5x := x−1 6c := c+1 od

od7

Figure 14: Program COUNT-DOWN.

while 1(true) do
2x := ?

while 3(x 6=0) do
if 4(0<x) then 5x := x−1 else 6x := x+1 fi

od

od7

Figure 15: Program SINK.

which initially has value one; then, the inner loop decreases the value of x and
increases the value of c until the value of x becomes less than or equal to zero.

FuncTion, parameterized by the intervals abstract domain [16] and using
affine functions to represent the value of the ranking functions, is able to prove
that the recurrence property �♦(x=0) is always satisfied by the program. The
piecewise-defined ranking function inferred at program control point 1 bounds
the wait for the next occurrence of the desirable state x= 0 by five program
execution steps (i.e., executing the variable assignment c :=1, testing the outer
loop condition, executing the assignment x :=c, testing the inner loop condition
and executing the assignment x :=x−1). The analysis infers a more interesting
raking function associated to program control point 4. The function bounds the
wait for the next occurrence of x=0 by 3c+2 execution steps when x<0∧0<c,
by 3 execution steps when x< 0∧ c= 0 (i.e., testing the inner loop condition,
testing the outer loop condition and executing the assignment x := c), by 1
execution step when x=0∧0≤c (i.e., testing the inner loop condition) and by
3x−1 execution steps when (x=1∧−1≤c)∨(2≤x∧−2≤c):

λx. λc.



3c+2 x<0∧0<c

3 x<0∧c=0

1 x=0∧0≤c
3x−1 (x=1∧−1≤c)∨(2≤x∧−2≤c)
undefined otherwise

In the last case there is a precision loss due to a lack of expressiveness of the
intervals abstract domain: if x is strictly positive at program control point 4, the
weakest precondition ensuring infinitely many occurrences of the desirable state
x=0 is −x≤c, which is not representable by the intervals abstract domain. �

38

1flag1 := 0
2flag2 := 0

while 3(true) do
4flag1 := 1
5turn := 2
while 6(flag2 6=0∧ turn 6=1) do

7skip

od
8 CRITICAL SECTION
9flag1 := 0

od10


‖



while 3(true) do
4flag2 := 1
5turn := 1
while 6(flag1 6=0∧ turn 6=2) do

7skip

od
8 CRITICAL SECTION
9flag2 := 0

od10


Figure 16: Program PETERSON (Peterson’s Algorithm).

Example 23. Let us consider the program SINK in Figure 15. Each iteration
of the outer loop resets the value of the program variable x with the non-
deterministic assignment x :=?; then, the inner loop decreases (when x is positive)
or increases (when x is negative) the value of x until it becomes equal to zero.

The recurrence property �♦(x = 0) is clearly satisfied by the program.
However, because of the non-deterministic assignment x := ?, the number of
execution steps between two occurrences of the desirable state x = 0 is un-
bounded. FuncTion, parameterized by the intervals abstract domain [16] and
using ordinal-valued affine functions [7] to represent the value of the ranking
functions, is able to prove that the property is satisfied. The ranking function
at program control point 1:

λx. ω+8

means that, whatever the value of x, the number of execution steps between two
occurrences of x=0 is unbounded but finite. Indeed, since ordinals are a well-
ordered set, any strictly decreasing sequence starting at ω+8 is necessarily finite.
Thus, the value ω+8 proves that x=0 necessarily happens infinitely often. �

Example 24. Let us consider the program PETERSON, Peterson’s algorithm
for mutual exclusion, in Figure 16. Note that weak fairness [9] assumptions
are required in order to guarantee bounded bypass (i.e., a process cannot be
bypassed by any other process in entering the critical section for more than a
finite number of times). At the moment our prototype FuncTion is not able
to directly analyze concurrent programs. Thus, we have modeled the algorithm
as a fair non-deterministic sequential program which interleaves execution steps
from both processes while enforcing 1-bounded bypass (i.e., a process cannot
be bypassed by any other process in entering the critical section for more than
once). FuncTion, parameterized by the intervals abstract domain [16] and using
affine functions to represent the value of the ranking functions, is able to prove
the recurrence property �♦(8 :true), meaning that both processes are allowed
to enter their critical section infinitely often. �

39

These and additional examples are available from FuncTion web interface:
http://www.di.ens.fr/~urban/FuncTion.html. We refer to [8, 23] for more
extensive experimental evaluations restricted to program termination.

10. Related Work

In the recent past, a large body of work has been devoted to proving liveness
properties of (concurrent) programs.

A successful approach for proving liveness properties is based on a transforma-
tion from model checking of liveness properties to model checking of safety prop-
erties [24]. The approach looks for and exploits lasso-shaped counterexamples. A
similar search for lasso-shaped counterexamples has been used to generalize the
model checking algorithm IC3 to deal with liveness properties [25]. However, in
general, counterexamples to liveness properties in infinite-state systems are not
necessarily lasso-shaped. Our approach is not counterexample-based and is meant
for proving liveness properties directly, without reduction to safety properties.

In [26], Andreas Podelski and Andrey Rybalchenko present a method for
the verification of liveness properties based on transition invariants [27]. The
approach, as in [28], reduces the proof of a liveness property to the proof of fair ter-
mination by means of a program transformation. It is at the basis of the industrial-
scale tool Terminator [29]. By contrast, our method is meant for proving
liveness properties directly, without reduction to termination (the same argument
applies to other approaches based on the size-change termination principle [30]).
Moreover, our method avoids the cost of explicit checking for the well-foundedness
of the transition invariants. In [31], transition invariants are computed by an
off-the-shelf forward abstract interpretation, while our abstract domains are
specifically dedicated to the inference of ranking functions via backward analysis.

A distinguishing aspect of our work is the use of infinite height abstract do-
mains, equipped with (dual) widening. We are aware of only one other such work:
in [32], Damien Massé proposes a method for proving arbitrary temporal proper-
ties based on abstract domains for lower closure operators. A small analyzer is
presented in [33] but the approach remains mainly theoretical. We believe that
our framework, albeit less general, is more straightforward and of practical use.

An emerging trend focuses on proving existential temporal properties (e.g.,
proving that there exists a particular execution trace). The most recent ap-
proaches [34, 35] are based on counterexample-guided abstraction refinement [36].
Our work is designed for proving universal temporal properties (i.e., valid for
all program execution traces). We leave proving existential temporal properties,
as well as proving more expressive temporal properties such as CTL and CTL*
properties [37, 38], as part of our future work.

Finally, to our knowledge, the inference of sufficient preconditions for guar-
antee and recurrence properties (as opposed to proving a temporal property
unconditionally), and the ability to provide upper bounds on the waiting time
before a program reaches a desirable state, are unique to our work. In particular,
the ability to infer preconditions is key to enable modular analyses, which allow

40

http://www.di.ens.fr/~urban/FuncTion.html

reasoning on a portion of the code at a time without any knowledge about its con-
text in the complete program. We are aware of only few works that have addressed
the problem of finding sufficient preconditions for program termination. In [39],
preconditions are acquired in order to strengthen a termination argument, while
our preconditions are inherently obtained from the inferred ranking functions
as the set of program states for which the ranking function is defined. Thus, our
preconditions are derived by under-approximation of the set of terminating states
as opposed to the approaches presented in [40, 41] where the preconditions are
derived by (complementing an) over-approximation of the non-terminating states.

11. Conclusion and Future Work

In this paper, we have presented an abstract interpretation framework for
proving guarantee and recurrence temporal properties of programs. We have
systematically derived by abstract interpretation new sound static analysis meth-
ods to effectively infer sufficient preconditions for these temporal properties, and
to provide upper bounds on the wait before a program reaches a desirable state.

It remains for future work to explicitly express and handle fairness properties.
Another natural future direction is analyzing concurrent programs directly, with-
out resorting to their sequential encoding. We also plan to extend the present
framework to the full hierarchy of temporal properties presented in [2] (to the
class of persistence properties, in particular) and more generally to arbitrary
(universal and existential) liveness properties.

Acknowledgements. The research leading to these results has received funding
from the French Agence Nationale de la Recherche (project ANR-11-INSE-014).

[1] L. Lamport, Proving the Correctness of Multiprocess Programs, IEEE
Transactions on Software Engineering 3 (2) (1977) 125–143.

[2] Z. Manna, A. Pnueli, A Hierarchy of Temporal Properties, in: PODC, 1990,
pp. 377–410.

[3] P. Cousot, R. Cousot, Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of
Fixpoints, in: POPL, 1977, pp. 238–252.

[4] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
X. Rival, Static Analysis and Verification of Aerospace Software by Abstract
Interpretation, in: AIAA, 2010, pp. 1–38.

[5] P. Cousot, R. Cousot, An Abstract Interpretation Framework for
Termination, in: POPL, 2012, pp. 245–258.

[6] C. Urban, The Abstract Domain of Segmented Ranking Functions, in: SAS,
2013, pp. 43–62.

[7] C. Urban, A. Miné, An Abstract Domain to Infer Ordinal-Valued Ranking
Functions, in: ESOP, 2014, pp. 412–431.

41

[8] C. Urban, A. Miné, A Decision Tree Abstract Domain for Proving
Conditional Termination, in: SAS, 2014, pp. 302–318.

[9] N. Francez, Fairness, Springer, 1986.

[10] C. Urban, A. Miné, Proving Guarantee and Recurrence Temporal Properties
by Abstract Interpretation, in: VMCAI, 2015, pp. 190–208.

[11] P. Cousot, Constructive Design of a Hierarchy of Semantics of a Transition
System by Abstract Interpretation, Electronic Notes in Theoretical
Computer Science 6 (1997) 77–102.

[12] A. Turing, Checking a Large Routine, in: Report of a Conference on High
Speed Automatic Calculating Machines, 1949, pp. 67–69.

[13] R. W. Floyd, Assigning Meanings to Programs, Proceedings of Symposium
on Applied Mathematics 19 (1967) 19–32.

[14] P. Cousot, R. Cousot, Higher Order Abstract Interpretation (and
Application to Comportment Analysis Generalizing Strictness, Termination,
Projection, and PER Analysis, in: ICCL, 1994, pp. 95–112.

[15] D. Park, Fixpoint Induction and Proofs of Program Properties, Machine
Intelligence 5 (1969) 59–78.

[16] P. Cousot, R. Cousot, Static Determination of Dynamic Properties of
Programs, in: Symposium on Programming, 1976, pp. 106–130.

[17] P. Cousot, N. Halbwachs, Automatic Discovery of Linear Restraints Among
Variables of a Program, in: POPL, 1978, pp. 84–96.

[18] A. Miné, The Octagon Abstract Domain, Higher-Order and Symbolic
Computation 19 (1) (2006) 31–100.

[19] A. Chakarov, S. Sankaranarayanan, Expectation Invariants for Probabilistic
Program Loops as Fixed Points, in: SAS, 2014, pp. 85–100.

[20] A. Miné, Inferring Sufficient Conditions with Backward Polyhedral
Under-Approximations, in: NSAD, Vol. 287 of Electronic Notes in
Theoretical Computer Science, 2012, pp. 89–100.

[21] B. Jeannet, A. Miné, Apron: A Library of Numerical Abstract Domains
for Static Analysis, in: CAV, 2009, pp. 661–667.

[22] F. Bourdoncle, Efficient Chaotic Iteration Strategies with Widenings, in:
FMPA, 1993, pp. 128–141.

[23] V. D’Silva, C. Urban, Conflict-Driven Conditional Termination, in: CAV
(II), 2015, pp. 271–286.

[24] A. Biere, C. Artho, V. Schuppan, Liveness Checking as Safety Checking,
Electronic Notes in Theoretical Computer Science 66 (2) (2002) 160–177.

42

[25] A. R. Bradley, F. Somenzi, Z. Hassan, Y. Zhang, An Incremental Approach
to Model Checking Progress Properties, in: FMCAD, 2011, pp. 144–153.

[26] A. Podelski, A. Rybalchenko, Transition Predicate Abstraction and Fair
Termination, in: POPL, 2005, pp. 132–144.

[27] A. Podelski, A. Rybalchenko, Transition Invariants, in: LICS, 2004, pp.
32–41.

[28] M. Y. Vardi, Verification of Concurrent Programs: The Automata-Theoretic
Framework, Annals of Pure and Applied Logic 51 (1-2) (1991) 79–98.

[29] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, M. Y. Vardi, Proving
that Programs Eventually do Something Good, in: POPL, 2007, pp.
265–276.

[30] C. S. Lee, N. D. Jones, A. M. Ben-Amram, The Size-Change Principle for
Program Termination, in: POPL, 2001, pp. 81–92.

[31] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, P. W. O’Hearn, Variance
Analyses from Invariance Analyses, in: POPL, 2007, pp. 211–224.

[32] D. Massé, Property Checking Driven Abstract Interpretation-Based Static
Analysis, in: VMCAI, 2003, pp. 56–69.

[33] D. Massé, Abstract Domains for Property Checking Driven Analysis of
Temporal Properties, in: AMAST, 2004, pp. 349–363.

[34] T. A. Beyene, C. Popeea, A. Rybalchenko, Solving Existentially Quantified
Horn Clauses, in: CAV, 2013, pp. 869–882.

[35] B. Cook, E. Koskinen, Reasoning About Nondeterminism in Programs, in:
PLDI, 2013, pp. 219–230.

[36] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-
Guided Abstraction Refinement for Symbolic Model Checking, Journal of
the ACM 50 (5) (2003) 752–794.

[37] B. Cook, H. Khlaaf, N. Piterman, Faster Temporal Reasoning for
Infinite-State Programs, in: FMCAD, 2014, pp. 75–82.

[38] B. Cook, H. Khlaaf, N. Piterman, On Automation of CTL* Verification
for Infinite-State Systems, in: CAV (I), 2015, pp. 13–29.

[39] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, M. Sagiv, Proving
Conditional Termination, in: CAV, 2008, pp. 328–340.

[40] P. Ganty, S. Genaim, Proving Termination Starting from the End, in: CAV,
2013, pp. 397–412.

[41] D. Massé, Policy Iteration-based Conditional Termination and Ranking
Functions, in: VMCAI, 2014, pp. 453–471.

43

JXKρ def
= {ρ(X)}

J[a,b]Kρ def
= {x | a≤x≤b}

J−aexpKρ def
= {−x | x∈JaexpKρ}

Jaexp1+aexp2Kρ
def
= {x+y | x∈Jaexp1K,y∈Jaexp2Kρ}

Jaexp1−aexp2Kρ
def
= {x−y | x∈Jaexp1K,y∈Jaexp2Kρ}

Jaexp1∗aexp2Kρ
def
= {x∗y | x∈Jaexp1K,y∈Jaexp2Kρ}

Jaexp1/aexp2Kρ
def
= {trnk(x/y) | x∈Jaexp1K,y∈Jaexp2Kρ,y 6=0}

where trnk : R→Z is defined as follows:

trnk(x)
def
=

{
max{y∈Z | y≤x} x≥0

min{y∈Z | y≥x} x<0

Figure A.17: Semantics of arithmetic expressions aexp.

J?Kρ def
= {true,false}

JnotbexpKρ def
= {¬x | x∈JbexpKρ}

Jbexp1andbexp2Kρ
def
= {x∧y | x∈Jbexp1K,y∈Jbexp2Kρ}

Jbexp1orbexp2Kρ
def
= {x∨y | x∈Jbexp1K,y∈Jbexp2Kρ}

Jaexp1<aexp2Kρ
def
= {x<y | x∈Jaexp1K,y∈Jaexp2Kρ}

Jaexp1≤aexp2Kρ
def
= {x≤y | x∈Jaexp1K,y∈Jaexp2Kρ}

Jaexp1=aexp2Kρ
def
= {x=y | x∈Jaexp1K,y∈Jaexp2Kρ}

Jaexp1 6=aexp2Kρ
def
= {x 6=y | x∈Jaexp1K,y∈Jaexp2Kρ}

Figure A.18: Semantics of boolean expressions bexp.

Appendix A. Language Semantics

The semantics JaexpK : E→P(Z) of an arithmetic expression aexp is defined
in Figure A.17. Similarly, the semantics JbexpK : E→P({true,false}) of a boolean
expression bexp is presented in Figure A.18. The initial control point iJstmtK∈L
(resp. iJprogK∈L) of an instruction stmt (resp. a program prog), and the final
control point fJstmtK∈L (resp. fJprogK∈L) of an instruction stmt (resp. a
program prog) are formally defined in Figure A.19 and Figure A.20, respectively.

Appendix B. Proofs

Theorem 2. A program satisfies a guarantee property♦ϕ for all traces starting
from a given set of initial states I if and only if I⊆dom(τϕg).

Proof. The proof follows by Park’s Fixpoint Induction Principle [15]. More
specifically, we have I⊆dom(τϕg) if and only if ∃v : Σ⇀O :τϕg vv∧I⊆dom(v).

44

stmt ::= lskip iJlskipK def
= l

| lX := aexp iJlX :=aexpK def
= l

| if lbexp then stmt1 else stmt2 fi

iJif lbexp then stmt1 else stmt2 fiK def
= l

| while lbexp do stmt1 od

iJwhile lbexp do stmt1 odK def
= l

| stmt1 stmt2 iJstmt1 stmt2K
def
= iJstmt1K

prog ::= stmt l iJstmt lK def
= iJstmtK

Figure A.19: Initial control point of instructions stmt and programs prog.

stmt ::= lskip fJlskipK def
= fJstmtK

| lX := aexp fJlX :=aexpK def
= fJstmtK

| if lbexp then stmt1 else stmt2 fi

fJif lbexp then stmt1 else stmt2 fiK def
= fJstmtK

fJstmt1K
def
= fJstmtK

fJstmt2K
def
= fJstmtK

| while lbexp do stmt1 od

fJwhile lbexp do stmt1 odK def
= fJstmtK

fJstmt1K
def
= l

| stmt1 stmt2 fJstmt1 stmt2K
def
= fJstmtK

fJstmt1K
def
= iJstmt2K

fJstmt2K
def
= fJstmtK

prog ::= stmt l fJstmt lK def
= l

Figure A.20: Final control point of instructions stmt and programs prog.

Then we have:

τϕg vv ⇔ lfpv
∅̇
φg[ϕ]vv (from Equation 22 and Equation 21)

⇔ ∃v′ : Σ⇀O : ∅̇vv′∧φg[ϕ](v′)vv′∧v′vv
(from Park’s Fixpoint Induction Principle [15])

⇔ φg[ϕ](v)vv (by definition of v and choosing v′=v)

⇔ dom(φg[ϕ](v))⊆dom(v)∧∀s∈dom(φg[ϕ](v)) :φg[ϕ](v)s≤v(s)
(by definition of v)

⇔ ∀s∈dom(v) : (∃s′∈dom(v) :〈s,s′〉∈τ)⇒
∀s′∈Σ:〈s,s′〉∈τ⇒s′∈dom(v)∧v(s′)<v(s)

(by definition of φg[ϕ], cf. Equation 21)

Now, from Definition 6, v : Σ ⇀ O is a ranking function. Thus, choosing
I⊆dom(v), concludes the proof.

Theorem 3. A program satisfies a recurrence property �♦ϕ for all traces starting

45

from a given set of states I if and only if I⊆dom(τϕr).

Proof. The proof follows from the dual of Park’s Fixpoint Induction Principle
[15] and from Theorem 2. More specifically, we have I ⊆dom(τϕr) if and only
if ∃v : Σ⇀O :vvτϕr ∧I⊆dom(v). Then we have:

vvτϕr ⇔ vvgfpvτg[ϕ] φr[ϕ] (from Equation 34 and Equation 33)

⇔ ∃v′ : Σ⇀O :v′vτg[ϕ]∧v′vφr[ϕ](v′)∧vvv′

(from the dual of Park’s Fixpoint Induction Principle [15])

⇔ vvφr[ϕ](v)vτg[ϕ] (by definition of v and choosing v′=v)

⇔ dom(v)⊆dom(φr[ϕ](v))⊆dom(τg[ϕ])

∧∀s∈dom(v) :v(s)≤φr[ϕ](v)s≤τg[ϕ](s) (by definition of v)

⇔ ∀s∈dom(v) : (∃s′∈dom(v) :〈s,s′〉∈τ)⇒
∀s′∈Σ:〈s,s′〉∈τ⇒s′∈dom(v)∧v(s′)≤τg[ϕ](s′)<v(s)≤τg[ϕ](s)

(by definition of φr[ϕ], cf. Equation 33)

Now, from Theorem 2 and Definition 6, v : Σ⇀O is a ranking function. Thus,
choosing I⊆dom(v), concludes the proof.

46

	Introduction
	Trace Semantics
	Termination Semantics
	A Small Imperative Language
	Language Syntax
	Language Semantics
	Denotational Termination Semantics

	Program Properties
	Guarantee Properties
	Recurrence Properties

	Guarantee Semantics
	Fixpoint Guarantee Semantics
	Denotational Guarantee Semantics

	Recurrence Semantics
	Fixpoint Recurrence Semantics
	Denotational Recurrence Semantics

	Piecewise-Defined Ranking Functions
	Abstract Termination Semantics
	Abstract Guarantee Semantics
	Abstract Recurrence Semantics

	Implementation
	Related Work
	Conclusion and Future Work
	Language Semantics
	Proofs

