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Abstract

We discuss the principles of static analysis by abstract interpretation
and report on the automatic verification of the absence of runtime
errors in large embedded aerospace software by static analysis based
on abstract interpretation. The first industrial applications concerned
synchronous control/command software in open loop. Recent advances
consider imperfectly synchronous programs, parallel programs, and tar-
get code validation as well. Future research directions on abstract in-
terpretation are also discussed in the context of aerospace software.

J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival. Static Analysis and Verification of Aerospace Software by Abstract
Interpretation. Foundations and TrendsR© in Programming Languages, vol. 2,
no. 2-3, pp. 171–291, 2015.
DOI: 10.1561/2500000002.



Nomenclature

1S identity on S (also t0)
t ◦ r composition

of relations t and r
tn powers of relation t
t? reflexive transitive

closure of relation t
lfp⊆F least fixpoint of F for ⊆
℘(S) parts of set S (also 2S)

x program variable
V set of all program variables
S program states
I initial states
t state transition relation
CJtKI collecting semantics
T JtKI trace semantics
RJtKI reachability semantics
PJtKI prefix trace semantics

FP prefix trace transformer
Fι interval transformer
FR reachability transformer
α abstraction function
γ concretization function
X] abstract counterpart of X
ρ reduction
` widening
a narrowing
Z integers
N naturals
R reals
|x| absolute value of x
q quaternion
||q|| norm of quaternion q
q conjugate of quaternion q
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1
Introduction

The validation of software checks informally (e.g., by code reviews or
tests) the conformance of the software executions to a specification.
More rigorously, the verification of software proves formally the con-
formance of the software semantics (that is, the set of all possible ex-
ecutions in all possible environments) to a specification. It is of course
difficult to design a sound semantics, to get a rigorous description of all
execution environments, to derive an automatically exploitable specifi-
cation from informal natural language requirements, and to completely
automatize the formal conformance proof (which is undecidable). In
model-based design, the software is often generated automatically from
the model so that the certification of the software requires the valida-
tion or verification of the model plus that of the translation into an
executable software (through compiler verification or translation vali-
dation). Moreover, the model is often considered to be the specification,
so there is no specification of the specification, hence no other possible
conformance check. These difficulties show that fully automatic rigor-
ous verification of complex software is very challenging and perfection
is impossible.

3



4 Introduction

We present abstract interpretation [Cousot and Cousot, 1977] and
show how its principles can be successfully applied to cope with the
above-mentioned difficulties inherent to formal verification.

First, semantics and execution environments can be precisely for-
malized at different levels of abstraction, so as to correspond to a per-
tinent level of description as required for the formal verification.

Second, semantics and execution environments can be over-
approximated, since it is always sound to consider, in the verification
process, more executions and environments than actually occurring in
real executions of the software. It is crucial for soundness, however,
to never omit any of them, even rare events. For example, floating-
point operations incur rounding (to nearest, towards 0, plus or minus
infinity) and, in the absence of precise knowledge of the execution en-
vironment, one must consider the worst case for each floating-point
operation. Another example is the range of inputs, like voltages, that
can be overestimated by the full range of the hardware register where
the value is sampled (anyway, a well-designed software should be defen-
sive, i.e., have appropriate protections to cope with erroneous or failing
sensors and be prepared to accept any value from the registers).

In the absence of an explicit formal specification or to avoid the
additional cost of translating the specification into a format under-
standable by the verification tool, one can consider implicit specifica-
tions. For example, memory leaks, buffer overruns, undesired modulo
in integer arithmetics, floating-point overflows, data-races, deadlocks,
live-locks, etc. are all frequent symptoms of software bugs, the absence
of which can be easily incorporated as a valid but incomplete specifi-
cation in a verification tool, maybe using user-defined parameters to
choose among several plausible alternatives.

Because of undecidability issues (which make fully automatic proofs
on all programs ultimately impossible) and the desire not to rely on
end-user interactive help (which can add a heavy, or even intractable
cost), abstract interpretation makes an intensive use of the idea of ab-
straction, either to restrict the properties to be considered (which in-
troduces the possibility to have efficient computer representations and
algorithms to manipulate them) or to approximate the solutions of the
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equations involved in the definition of the abstract semantics. Thus,
proofs can be automated in a way that is always sound but may be im-
precise, so that some questions about the program behaviors and the
conformance to the specification cannot be definitely answered neither
affirmatively nor negatively. So, for soundness, an alarm will be raised
which may be false. Intensive research work is done to discover appro-
priate abstractions eliminating this uncertainty about false alarms for
domain-specific applications.

In this article, we report on the successful scalable and cost-effective
application of abstract interpretation to the verification of the absence
of runtime errors in aerospace control software by the Astrée static
analyzer [Cousot et al., 2007a], illustrated first by the verification of
the fly-by-wire primary software of commercial airplanes [Delmas and
Souyris, 2007] and then by the validation of the Monitoring and Saf-
ing Unit (MSU) of the Jules Vernes ATV docking software [Bouissou
et al., 2009]. We also discuss on-going extensions to imperfectly syn-
chronous software, parallel software, and target code validation, and
conclude with more prospective goals for rigorously verifying and vali-
dating aerospace software.

An early version of this article appeared in [Bertrane et al., 2010].
We extend that version with more thorough explanations, additional
examples, and updated experimental results.



2
Theoretical Background on Abstract

Interpretation

The static analysis of a program consists in automatically determin-
ing properties of its executions at compile time, by examination of
its source code without actually executing it. A sound static analysis
discovers properties that are true of all its possible executions, in all
possible execution environments (possibly constrained by user-provided
knowledge, such as the range of inputs). Hence, sound static analysis
differs from testing, symbolic execution, and hybrid methods (such as
concolic execution) which cannot guarantee that all the behaviors of
every program are covered. Sound static analysis provides formal guar-
antees and can be used in program verification activities requiring a
high level of confidence, such as program certification of critical em-
bedded software.

Static analysis is based on a formal semantics, which is a math-
ematical model of the executions of the program. Many such models
exist, with varying levels of details and usefulness for a given problem.
A key component of the abstract interpretation theory is the study
of the relationships between different semantics, and the derivation of
new semantics in a systematic way. One particular semantics, the col-
lecting semantics, is a mathematical model of the strongest property

6
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of interest. For instance, if we are interested in proving that a program
never reaches an error state, the collecting semantics consists of the
set of states reachable during the execution while, if we are interested
in temporal properties, the collecting semantics consists instead in the
set of execution traces (a trace being a sequence of states). By setting
the flavor of properties we can reason about, the collecting semantics
plays a similar role as does the choice of a logic in other formal meth-
ods (such as first-order logic in deductive methods, or temporal logic
in model-checking), but in semantics, set theoretical form rather than
syntactic, logical form.

Program verification consists in proving that the program collect-
ing semantics implies a given specification, which can be given explic-
itly by the user, or provided implicitly by a language specification (for
instance, the absence of run-time error). We are interested in design-
ing sound automatic static analyzers able to perform such verification.
By “automatic,” we mean without any human assistance during the
analysis and the verification processes. This is in contrast to deductive
methods which employ theorem provers that, despite some automation,
ultimately rely on human assistance. Note that, as verification prob-
lems are undecidable, any static analyzer or verifier is either unsound
(its conclusion may be wrong), incomplete (it is inconclusive), may not
terminate, or all of the above, and this on infinitely many programs.
The static analyzers we consider are sound on all programs and always
terminate on all programs, but are incomplete.

In a nutshell, abstract interpretation is a theory of approximation
of mathematical structures. It can thus formalize the fact that reacha-
bility semantics are less precise (more abstract) than trace-base seman-
tics. It can also be applied to the systematic design of static analyzers
and verifiers by abstraction of the collecting semantics into efficiently
computable, approximate ones. For instance, one may only focus on
the type, the sign or the range of the variables instead of their precise
value. After the intellectual process (not automated, but guided by the
theory) of choosing an abstraction and deriving the abstract seman-
tics of the target programming language from the collecting semantics,
an analyzer able to compute automatically the abstract semantics of
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arbitrary programs in that language is effectively implemented. The
derived static analyzer is always sound and always terminates, and so
is necessarily incomplete: it either returns in finite time “yes,” meaning
that the program indeed satisfies its specification, or returns in finite
time “don’t know,” meaning that the program may or may not satisfy
its specification. As a result of incompleteness, abstract interpretation-
based static analyzers will fail and return “don’t known” on infinitely
many correct programs. Fortunately, they will also succeed in prov-
ing the correctness of infinitely many correct programs, while never
considering any incorrect program as correct.

The art of the designer of such tools is to make them succeed most
often on the programs of interest to end-users. Such tools are thus often
specific to a particular application domain.

The rest of this chapter presents some basic concepts of abstract
interpretation as well as the formal principles underlying the design of
sound static analysis, in a very general way, not tied to a specific pro-
gram, language or application. The following chapters will then present,
in a less formal way, applications, tools, and results on specific verifi-
cation problems.

2.1 Semantics

Following Cousot [1978], we model programs using a small-step oper-
ational semantics. More precisely, a program is a transition systems
(S, t, I) defined by:

• a set S of program states;

• a transition relation t ⊆ S × S;

• a subset of initial states I ⊆ S.

A program state s ∈ S represents a snapshot of the whole memory,
including the value of variables, stacks, program counters, registers,
etc. Program execution is discrete, and proceeds in steps. A transi-
tion 〈s, s′〉 ∈ t models an atomic step of execution, such as the effect
of a single instruction, that allows transitioning from one state s to
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the next one s′. Additionally, we consider a subset I ⊆ S of states
denoting the initial program states, i.e., the possible program states
in which the execution can begin. The transition relation is generally
non-deterministic, i.e., some states s ∈ S may have many possible suc-
cessors. This is particularly useful to model inputs, that are out of the
control of the program (such as reading a file or a sensor). Note that
the transition systems corresponding to actual programs are very large
or even, in certain cases, infinite (such as for parameterized programs,
or for programs with unbounded memory). Transition systems are in-
tended as a mathematical model, not as an actual data-structure to be
manipulated directly by an analyzer.

Example 2.1. A very simple, finite example of transition system can be
defined as S , {a, b, c}, I , {a}, and t , {〈a, b〉, 〈b, b〉, 〈b, c〉}: starting
in state a, we can transition from a to b, and then from b to either b
or c. For the sake of simplicity, we will use this transition system to
illustrate our definitions in the rest of the chapter.

Given a transition system, we can define an execution of the pro-
gram as a sequence of states 〈s0 s1 . . . sn〉. An execution starts in an
initial state s0 ∈ I. It continues with a successor state s1, such that
〈s0, s1〉 ∈ t, and so on and so forth. The i + 1-th state si+1 ∈ S is
such that 〈si, si+1〉 ∈ t. The execution goes on until it reaches a state
sn which is final, i.e., that has no possible successor: ∀s′ ∈ S : 〈sn,
s′〉 6∈ t. Alternatively, the execution can go on forever, which we de-
note as 〈s0 s1 . . .〉. The latter case corresponds to non-termination,
while the former case corresponds to either correct or erroneous pro-
gram termination. Due to the non-determinism in the transition re-
lation and the choice of an initial state, there may be many such
executions. We call the set of execution traces spawned by a tran-
sition system with initial states I and transition relation t its max-
imal trace semantics, and denote it as T JtKI. It is defined formally
as: T JtKI , {〈s0 . . . sn〉 | n > 0 ∧ s0 ∈ I ∧ ∀i ∈ [0, n) : 〈si,
si+1〉 ∈ t ∧ ∀s′ ∈ S : 〈sn, s′〉 6∈ t} ∪ {〈s0 . . .〉 | s0 ∈ I ∧ ∀i ≥ 0 : 〈si,
si+1〉 ∈ t}. It is the set of maximal sequences of states starting from an
initial state, either ending in some final state or infinite, and satisfying
the transition relation.
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Example 2.2. Our finite transition system example features a sin-
gle final state c. The maximal trace semantics is T JtKI = {〈ab . . . c〉,
〈ab . . .〉}. It is composed of the finite traces starting with a followed by
one or more b and ending with a c, as well as the infinite trace staring
with a followed by an infinite sequence of b.

2.2 Collecting semantics

In practice, the maximal trace semantics T JtKI of a program modeled
by a transition system 〈S, t, I〉 is not computable and even not observ-
able by a machine or a human being, because it can contain infinite
executions. However, we can observe program executions for a finite
time. Looking at all the finite parts of all executions (including the
finite parts of infinite executions) is actually sufficient to reason about
safety properties, which informally state that “nothing bad happens.”
However, it prevents us from reasoning about program termination
and, more generally, about liveness properties (informally stating that
“something good happens”).

Finite observations of program executions PJtKI can be formally
defined as PJtKI , {〈s0 . . . sn〉 | n > 0 ∧ s0 ∈ I ∧ ∀i ∈ [0, n) : 〈si,
si+1〉 ∈ t} ⊆ S∗, where S∗ is the set of finite sequences of states from S.
PJtKI is called the finite prefix trace semantics. This semantics is simpler
than the maximal trace semantics, because it is only composed of finite
traces. Nevertheless, it is sufficient to answer any safety question about
program behaviors, i.e., properties the failure of which is checkable
by monitoring the program. Thus, it will be our collecting semantics
in that it is the strongest program property of interest and defines
precisely the static analyses we are interested in.

Example 2.3. In our finite transition system example, the prefix trace
semantics is PJtKI = {〈a〉, 〈ab . . . b〉, 〈ab . . . c〉}. It contains the one-
element trace a, as well as traces starting in a followed by a finite
sequence of b and ending in b, and traces starting in a followed by
a finite (non-empty) sequence of b and ending in c. An example of
safety property would be that c cannot occur unless b has occurred
before during the execution. The property can be checked by consid-
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ering only PJtKI, and it is not necessary to consider T JtKI. However,
observing PJtKI only, it is impossible to deduce whether the program
always terminates or not, as any finite trace in PJtKI may actually be
the beginning of a longer (possibly infinite) trace.

Ideally, computing this collecting semantics would answer all safety
questions. Unfortunately, this is not possible: although each trace is
now finite and can, individually, be checked automatically, the prefix
trace semantics may contain an infinite (or impracticably large) number
of such finite traces. Hence, we will use further abstractions of this
semantics to provide sound but incomplete answers.

The choice of the program properties of interest, hence of the col-
lecting semantics, is problem dependent. It depends on the level of
observation of program behaviors required to solve the problem. We il-
lustrate this point with another example of collecting semantics. When
only interested in invariance properties, a possible choice for the col-
lecting semantics would be the reachability semantics RJtKI, which col-
lects the set of states that can be reached during any (finite or infinite)
program execution. The reachability semantics is defined formally as:
RJtKI , {s′ | ∃s ∈ I : 〈s, s′〉 ∈ t?} ⊆ S, where the reflexive transi-
tive closure t? ⊆ S × S of a relation t ⊆ S × S is defined classically
as t? , {〈s, s′〉 | ∃n > 0 : ∃s0 . . . sn : s0 = s ∧ ∀i ∈ [0, n) : 〈si,
si+1〉 ∈ t ∧ sn = s′}. Alternatively, t? can be defined as t? =

⋃
n≥0 t

n

where, for all n > 0, the n−th iterate of t is defined as tn , {〈s,
s′〉 | ∃s0 . . . sn : s0 = s ∧ ∀i ∈ [0, n) : 〈si, si+1〉 ∈ t ∧ sn = s′} ⊆ S × S.

As an invariance property is defined as a set of states in which all
program executions must stay, computing the reachability semantics
is indeed sufficient to check the property. It reduces to checking that
RJtKI is included in the state set of the property. The reachability se-
mantics is more abstract than the prefix trace semantics since, although
we know exactly which states can be reached during execution, we no
longer know in which order. This is a basic example of abstraction.
Assume we are asked the question “does state s1 always appear before
state s2 in all executions” and we only know the reachability semantics
RJtKI. If s1 6∈ RJtKI or s2 6∈ RJtKI, then we can answer “no” for sure.
Otherwise s1, s2 ∈ RJtKI, so, we can only answer “I don’t know,” which
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is an example of incompleteness which is inherent to reachability with
respect to the prefix trace semantics.

Example 2.4. For our finite transition system example, the reachability
semantics is RJtKI = {a, b, c}, i.e., all the states can be reached. An
example of invariance property would be that the execution stays in
the state set {a, b, c}, which can be checked obviously by only looking
at RJtKI.

2.3 Fixpoint semantics

A major observation underlying the abstract interpretation framework
is that program semantics can be expressed as fixpoints of functions
over ordered mathematical structures [Cousot and Cousot, 1977].

As a simple example of fixpoint, consider the computation of the
transitive closure t? ⊆ S × S of a relation t ⊆ S × S, used in the
definition of the reachability semantics RJtKI in the previous section.
By defining the identity relation 1S on S as 1S , {〈s, s〉 | s ∈ S}, and
the composition ◦ of relations as t ◦ r , {〈s, s′′〉 | ∃s′ : 〈s, s′〉 ∈ t ∧ 〈s′,
s′′〉 ∈ r}, we can state that t∗ is the smallest relation X satisfying the
equation X = 1S∪(X ◦ t). Indeed, t∗ must contain the identity relation
and be closed by an application of t. Moreover, as a relation is a subset
of S × S, the notion of “smallest” corresponds to the notion of set
inclusion ⊆: we reason in the partially ordered set (P(S×S),⊆). Note
that t∗ is also the smallest relation satisfying the alternate equation
X = 1S ∪ (t ◦ X).

Formally, a fixpoint of a function F is any element X satisfying
F (X) = X. We denote by lfp⊆F the least fixpoint of F with respect
to ⊆, i.e., not only F (lfp⊆F ) = lfp⊆F , but also, for any Y such that
F (Y ) = Y , then lfp⊆F ⊆ Y . Being smaller than any other fixpoint,
the least fixpoint is unique, if it exists. Based on the equations sat-
isfied by the transitive closure t?, we have that t? = lfp⊆F where
F (X) , 1S∪(X ◦ t). Moreover, t? = lfp⊆B where B(X) , 1S∪(t ◦ X).
The mathematical theory of partial orders features a rich collection of
fixpoint theorems. In our example, the existence of lfp⊆F and lfp⊆B
follows from Tarski’s theorem [Tarski, 1955]. The two hypotheses of the
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theorem are satisfied: firstly, the set of relations ordered by set inclu-
sion forms a complete lattice (℘(S∗),⊆,∪,∩, ∅, S∗), i.e., a mathematical
structure where every collection of elements has a least upper bound
∪ and a greatest lower bound ∩; secondly, the functions F and B are
monotonic in this complete lattice, i.e., X ⊆ Y implies F (X) ⊆ F (Y )
and B(X) ⊆ B(Y ).

Although it states the existence of fixpoints, Tarksi’s theorem does
not provide any guideline on how to compute them effectively. Thank-
fully, other results [Cousot and Cousot, 1979a] state that least fixpoints
can be computed as limits of iterations. In our example, the iteration
starts from ∅ and iterates F i+1(∅) = F (F i(∅)) by applying F repeat-
edly. We get, after one iteration: X0 , 1S ∪ (∅ ◦ t) = 1S = t0. The
second iteration gives: X1 , 1S ∪ (X0 ◦ t) = 1S ∪ t. We then get:
X2 , 1S ∪ (X1 ◦ t) = 1S ∪ t ∪ t2, etc. We see a pattern emerging, and
we can prove by recurrence that the iterates are ∀n > 0 : Xn =

⋃n
i=0 t

i.
Indeed, if, by recurrence hypothesis, Xn =

⋃n
i=0 t

i, we get Xn+1 ,
1S ∪ (Xn ◦ t) = 1S ∪

((⋃n
i=0 t

i
)
◦ t
)

= 1S ∪
(⋃n

i=0 t
i+1) =

⋃n+1
i=0 t

i.
Passing to the limit in the complete lattice of relations (i.e., joining
the infinite sequence of iterates with ∪), we get: X? ,

⋃
n≥0X

n =⋃
n≥0

⋃n
i=0 t

i =
⋃
n≥0 t

n, which is precisely t?.
Recall that t? = lfp⊆F = lfp⊆B. In fact, lfp⊆F and lfp⊆B provide

alternate ways to compute t? by iteration. More precisely, F (X) oper-
ates forwards as each application of F extends traces in X with new
transitions at the end, while B(X) operates backwards as each appli-
cation of B prepends traces in X with transitions at the beginning.
After abstraction, they lead to alternate (and often complementary),
forwards and backwards static analysis techniques.

Based on these results, we can now see that the reachability seman-
tics defined in the previous section can indeed be expressed in fixpoint
form, as RJtKI = lfp⊆FR where FR(X) , I ∪ {s′ | ∃s ∈ X : 〈s,
s′〉 ∈ t}. Likewise, the prefix trace semantics can be expressed as
PJtKI = lfp⊆FP where FP (X) , {〈s0〉 | s0 ∈ I} ∪ {〈s0 . . . snsn+1〉 |
〈s0 . . . sn〉 ∈ X ∧ 〈sn, sn+1〉 ∈ t}. The maximal trace semantics T JtKI
can also be expressed in fixpoint form, although the presence of infinite
traces complicates the formulation [Cousot, 2002].
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Example 2.5. To compute the reachability semantics of our finite tran-
sition system example, we iterate FR from ∅ and get:X0 = FR(∅) = I =
{a}, then X1 = FR(X0) = {a, b}, and finally X2 = FR(X1) = {a, b, c}.
We then observe that X3 = FR(X2) = X2 and, as a consequence, all
the iterates Xn for n ≥ 2 are equal. We have reached our fixpoint,
which is indeed RJtKI = {a, b, c}. The iterates of FP involved in the
computation of the prefix trace semantics PJtKI are more complex. At
the n−th iterate, we obtain the set Xn of execution traces of length at
most n+ 1: Xn = {〈abk〉, 〈abk+1c〉 | 0 ≤ k ≤ n}. The sequence Xn does
not converge in finite time, but we can check that the limit

⋃
i≥0X

n

indeed equals PJtKI.

2.4 Abstraction functions

We have seen several semantics and stated informally that some of
them provide more information than others. This relation between se-
mantics can be formalized by the notion of abstraction. An abstraction
[Cousot and Cousot, 1977] is a mathematical relationship between two
semantics, a so-called concrete (more precise) semantics and a so-called
abstract (less precise) semantics. The key property of abstractions is
soundness, which states that any program property proved to hold in
the abstract semantics also holds in the concrete one. Generally, how-
ever, not all properties provable in the concrete semantics (such as the
correctness of a specific program) can be proved in the abstract seman-
tics: this is incompleteness, which causes false alarms. Another property
of the abstract semantics, which is important when considering effective
static analyzers, is termination; it is discussed in §2.14.

An example abstraction is the correspondence between the (con-
crete) prefix trace semantics and the (abstract) reachability semantics.
It is defined as the reachability abstraction function αR : ℘(S∗)→ ℘(S),
such that αR(X) , {s | ∃〈s0 . . . sn〉 ∈ X : s = sn}: given a set of finite
sequences in ℘(S∗) as input, it outputs the set of states in ℘(S) that
can appear at the last position of the sequence. We can then check that
RJtKI = αR(PJtKI). Indeed, the prefix trace semantics collects all the
finite observations of a program execution and, by only remembering
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the last state of every such finite observation, it collects the whole set
of states reached along all (finite and infinite) executions. The abstrac-
tion records the reachable states but no longer the order in which these
states appear during execution. Note that the abstraction function is
monotonic, i.e., we have that X ⊆ Y implies αR(X) ⊆ αR(Y ): pro-
grams with larger sets of prefix execution traces necessarily have larger
sets of reachable states.

Another example of abstraction is the correspondence between
the (concrete) maximal trace semantics and the (abstract) prefix
trace semantics. We define the prefix abstraction function αP (X) ,
{〈s0 . . . sn〉 | ∃m > 0 : ∃〈sn+1 . . . sn+m〉 : 〈s0 . . . sn+m〉 ∈ X ∨
∃〈sn+1 . . .〉 : 〈s0 . . . snsn+1 . . .〉 ∈ X} which, given a set of finite or
infinite sequences of states, returns the set of all the finite prefixes of
these sequences. We can then check that PJtKI = αP (T JtKI).

Abstractions can be composed, which is useful in practice to design
complex abstractions from simpler ones. In our example, the reachabil-
ity semantics can be obtained directly from the maximal trace seman-
tics by applying αR ◦ αP , which is the composition of the reachability
and prefix abstraction functions, and is an abstraction function in its
own right. We have indeed RJtKI = (αR ◦ αP )(T JtKI).

2.5 Concretization functions

An abstraction function converts a semantic information from a more
concrete semantic world to a more abstract semantic world. We can also
consider a reverse function, called concretization function, to convert
from an abstract world back to a concrete one.

For instance, the counterpart of the reachability abstraction func-
tion αR is the concretization function γR : ℘(S) → ℘(S∗) defined as
γR(X) , {〈s0 . . . sn〉 ∈ X | ∀i ∈ [0, n] : si ∈ X} and that, given
a set of states in ℘(S) outputs a set of finite sequences of states in
℘(S∗). The concretization rebuilds the prefix execution traces from
the reachable states, but considers that they can appear in any order
since the order of appearance has been abstracted away. It follows that
PJtKI ⊆ γR(RJtKI), and we say that the abstract, RJtKI = αR(PJtKI),
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is an over-approximation of the concrete, PJtKI, in that the concretiza-
tion of the abstract γR(RJtKI) has more possible program behaviors
than the concrete PJtKI. This ensures soundness in that, if a property
is true of the executions in the abstract, then it is true in the con-
crete. For example, if a behavior does not appear in the abstract, it
certainly cannot appear in the concrete, which has fewer possible be-
haviors. However incompleteness appears in that, if we want to prove
that a program behavior is possible and it does exist in the abstract, we
cannot conclude that it exists in the concrete. Concretization functions
are also monotonic: they map more approximate abstract semantics
(such as larger sets of reachable states) to more approximate concrete
semantics (such as larger sets of prefix execution traces).

Example 2.6. Recall that the reachability semantics of our finite tran-
sition system is RJtKI = {a, b, c}, while its prefix trace semantics is
PJtKI = {〈a〉, 〈ab . . . b〉, 〈ab . . . c〉}. We can check that αR(PJtKI) =
RJtKI. The concretization of the reachability semantics is however
γR(RJtKI) = S∗, i.e., it contains the finite traces of arbitrary lengths
composed of elements from {a, b, c}. Naturally, PJtKI ⊆ γR(RJtKI), but
the equality does not hold. Consider now the problem of proving that no
c can occur in an execution without a b occurring before. The property
is true in PJtKI, but not in γR(RJtKI) as the latter contains the trace
〈c〉. Hence, the property can be proved using the prefix trace semantics,
while the proof using the reachability semantics is inconclusive.

2.6 Galois connections

Intuitively, the abstraction and the concretization functions are “in-
verse” of one another. This intuition is formalized by the notion of
Galois connection 〈α, γ〉 [Cousot and Cousot, 1979b]. Formally, a Ga-
lois connection 〈α, γ〉 is a pair of functions between two ordered sets: a
concrete set (C,⊆) equipped with some partial order ⊆, and an abstract
set (A,⊆]), equipped with another partial order ⊆], such that:

1. α : C → A converts a concrete element into an abstract one;

2. γ : A→ C converts an abstract element into a concrete one;
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3. ∀T ∈ C,R ∈ A : α(T ) ⊆] R if and only if T ⊆ γ(R), which is the
core property of Galois connections.

The pair 〈αR, γR〉 is an example of Galois connection, linking the prefix
trace (concrete) semantics to the reachability (abstract) semantics. The
concrete (respectively, abstract) order ⊆ (respectively, ⊆]) denotes a
notion of over-approximation on C (respectively, A). For instance, both
the prefix trace semantics, in (℘(S∗),⊆), and the reachability seman-
tics, in (℘(S),⊆), use set inclusion ⊆ as partial order, since programs
with more execution traces (respectively, more reachable states) satisfy
less properties. Note that, in general, the abstract and the concrete par-
tial order may differ. The core property α(T ) ⊆] R ⇐⇒ T ⊆ γ(R)
ensures that α and γ are monotonic functions; in particular, x ⊆] y
implies γ(x) ⊆ γ(y), so that ⊆] is the abstract version of the con-
crete order ⊆: a less precise abstract information also represents, in
the concrete, a less precise information. Moreover, proving in the ab-
stract that a program semantics P ] satisfies a specification S], i.e.,
that P ] ⊆] S], implies that it also holds in the concrete γ(P ]) ⊆ γ(S]),
which is the definition of soundness. Additionally, the existence of a
Galois connection ensures that any concrete property T ∈ C has a best
abstraction in A. This best abstraction is exactly α(T ). This means that
α(T ) is an over-approximation of T in that T ⊆ γ(α(T )) — we have
α(T ) ⊆] α(T ) so that, by the “if” part of the definition with R = α(T ),
we get T ⊆ γ(α(T )). Moreover, if R is another over-approximation of
T in that T ⊆ γ(R), then α(T ) is more precise, since α(T ) ⊆] R — if
T ⊆ γ(R) then, by the “only” if part of the definition, it follows that
α(T ) ⊆] R.

Another example of Galois connection is the Cartesian abstraction,
where a set of pairs is abstracted into a pair of sets by projection:

Cartesian abstraction αc Cartesian concretization γc
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Given a set X of pairs 〈x, y〉 ∈ X (in blue in the figure above on the
left), its abstraction is αc(X) , 〈{x | ∃y : 〈x, y〉 ∈ X}, {y | ∃x : 〈x,
y〉 ∈ X}〉 (i.e., the red lines on the x and y axes in the figures above).
The concretization is γc(〈X,Y 〉) , {〈x, y〉 | x ∈ X ∧ y ∈ Y } (i.e., the
red boxes above on the right). The abstract order ⊆c is componentwise
inclusion (i.e., 〈X,Y 〉 ⊆c 〈X ′, Y ′〉 ⇐⇒ X ⊆ X ′ ∧ Y ⊆ Y ′). Observe
that αc is surjective (onto) and γc is injective (one to one). This is
characteristic of Galois surjections, which are Galois connections 〈α,
γ〉 such that α is surjective or equivalently γ is injective or equivalently
α ◦ γ = 1 (where 1 is the identity function: 1(x) = x).

Example 2.7. Consider the set of pairs X , {〈0, 0〉, 〈1, 1〉}. Then, its
best abstraction as a pair of sets is, through the Cartesian abstraction,
X] = αc(X) = 〈{0, 1}, {0, 1}〉. This abstract pair represents the set of
pairs γc(X]) = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}. We have X ⊆ γc(X]).

Not all abstractions are Galois connections, in which case one can
always use a concretization function [Cousot and Cousot, 1992a]: the
existence of a best abstraction is useful but not necessary to design a
static analysis. A counter-example is provided by the polyhedra domain
[Cousot and Halbwachs, 1978] which abstracts a set of points as a
(possibly unbounded) convex polyhedron. Not every set of points has
a best (i.e., smallest) over-approximation as a convex polyhedron; for
instance, a disc does not, as shown by Euclid of Alexandria [fl. 300
BC]. Hence no total abstraction function α exists from sets of points
to convex polyhedra.

2.7 The lattice of abstractions

We have seen that the reachability semantics is more abstract than
the prefix trace semantics, which is more abstract than the maximal
trace semantics. Some abstractions are, however, not comparable. This
is for instance the case when abstracting a natural number with its sign
(positive, negative, or zero) and with its parity (even or odd): each one
gives some information that cannot be recovered using the other ab-
straction only. It is natural to then ask whether it is possible, given two
or more abstractions, to define an abstraction that contains as much
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information as all of them together, or that losses as much information
as all of them. This is indeed the case: one can always define the most
precise abstraction coarser than a set of abstractions, and the coarsest
abstraction more precise than a set of abstractions. Abstract properties
thus form a lattice with respect to the relation “is more abstract than”
[Cousot and Cousot, 1977, 1979b]. Exploring the world of (collecting)
semantics and their lattice of abstractions is one of the main research
subjects in abstract interpretation. In particular “finding the appropri-
ate level of abstraction required to answer a question” is a recurrent
fundamental and practical question. Additionally, the ability to build
more precise abstractions by combining more basic abstractions with
lattice operations helps the scalable design of modular static analyzers,
as shown in §2.15.

Example 2.8. The coarsest abstraction more precise than both sign
and parity represents, as properties, all combinations of being positive
or negative with being even or odd, as well as the property “is zero.”
There is no property that can be exactly represented both as a sign
and a parity property, so that the more precise abstraction less precise
than both sign and parity abstractions is the trivial abstraction (i.e.,
no information).

2.8 Sound (and complete) abstract semantics

Given a concrete semantics S and an abstraction specified by a con-
cretization function γ (respectively, an abstraction function α), we are
interested in an abstract semantics S] which is sound in that S ⊆ γ(S])
(respectively, α(S) ⊆] S], which is equivalent for Galois connections).
This corresponds to the intuition that no concrete case is ever forgotten
in the abstract (so there can be no false negative). It may also hap-
pen that the abstract semantics is complete, meaning that S ⊇ γ(S])
(respectively, α(S) ⊇] S], which in general is not equivalent, even for
Galois connections). This corresponds to the intuition that no abstract
case is ever absent in the concrete (so there can be no false positive).
The ideal case is that of a sound and complete semantics such that
S = γ(S]) (respectively, α(S) = S]).
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As stated above, static analyzers are sound but incomplete. Never-
theless, abstract interpretation is not limited to reasoning about static
analyzers, and we can find examples of complete abstractions in other
fields of computer science. In particular, classic program proof methods
can also be understood as reasoning on abstractions of the program se-
mantics. For instance, Burstall’s intermittent assertions proof method
[Burstall, 1974] is based on the prefix abstraction [Cousot and Cousot,
1993] αP , while Floyd’s invariant assertions proof method [Floyd, 1967]
is based on the reachability abstraction [Cousot and Cousot, 1987] αR.
The abstractions used in program proof methods are usually sound
and complete. By undecidability, these abstractions yield proof meth-
ods that are not fully mechanizable. As a consequence, tools based
on program proofs are not fully automatic, and may rely heavily on
user help. By contrast, the abstractions used in static program analy-
sis (such as the Cartesian abstraction in §2.6, the interval abstraction
in §2.12, or type systems that do reject programs that can never go
wrong [Cousot, 1997]) are usually sound and incomplete, in order to
be fully mechanizable and lead to effective automatic analysis tools.

2.9 Abstract transformers

Recall that the concrete semantics S is usually expressed as the least
fixpoint of a concrete transformer F : S = lfp⊆F . Assuming now the
existence of an abstract domain linked to the concrete one through a
concretization γ, an abstraction α, or a Galois connection 〈α, γ〉, it is
natural to attempt to express the abstract semantics S] in a similar
fixpoint form, S] = lfp⊆]

F ], for some operator F ] to be determined.
The transformer F ] is said to be sound if F ◦ γ ⊆ γ ◦ F ]. Intu-

itively, it means that the result of a computation step performed in
the abstract (F ]) represents (by γ) an overapproximation of the cor-
responding computation step performed in the concrete (F ). When an
abstraction function is provided instead of a concretization, the sound-
ness criterion becomes α ◦ F ⊆] F ] ◦ α. Both are equivalent when 〈α,
γ〉 is a Galois connection and F and F ] are monotonic functions. In case
of a Galois connection, there is a “best” abstract transformer, which is
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F ] , α ◦ F ◦ γ. Intuitively, such an abstract transformer first evaluates
its argument using the concrete transformer F and then constructs its
best representation in the abstract domain using the abstraction func-
tion α. Note that this provides a mathematical definition of what the
abstract transformer should compute, but not an algorithm to com-
pute it (as F , α, and γ are generally not computable). Sometimes,
even though such a best abstract transformer exists and is well defined
mathematically, it may not be effectively or efficiently computable, in
which case we can settle for a sound, non-optimal abstract transformer
instead. In all cases, the main idea is that the abstract transformer F ]
always over-approximates the result of the concrete transformer F (the
“best” one, if any, providing the most precise over-approximation).
Example 2.9. Recall that the reachability semantics can be expressed
as RJtKI = lfp⊆FR, while the prefix trace semantics can be expressed
as PJtKI = lfp⊆FP . Given the Galois connection 〈αR, γR〉, we can check
that, indeed, FR = αR◦FP ◦γR holds. In fact, the stronger commutation
property αR ◦ FP = FR ◦ αR holds. We can retrieve FR = αR ◦FP ◦ γR
from the commutation by applying γR on the right of each member
to get αR ◦ FP ◦ γR = FR ◦ αR ◦ γR and noting that αR ◦ γR is the
identity.
Example 2.10. Anticipating on §2.12, we consider the interval abstrac-
tion that abstracts a set of integers X ⊆ Z into an interval, that is, a
(possibly infinite) lower and an upper bound: αι(X) , [minX,maxX].
The concretization of an interval [`, h] is the set of integers it contains:
γι([`, h]) , {x ∈ Z | ` ≤ x ≤ h }. The pair 〈αι, γι〉 forms a Galois con-
nection. Consider finally the concrete operator F (X) , {x+1 | x ∈ X }
that increments all the values in its argument by one. Then the best
abstraction F ] , αι ◦ F ◦ γι of F simply increases interval bounds
F ]([`, h]) = [` + 1, h + 1]. Note that not all sets X ⊆ Z are machine-
representable (as some contain infinitely may elements), but αι(X) is
always machine-representable (as a pair of integers). Likewise, neither
αι, γι not F is effectively computable, while F ] is easy to implement.

The alternate abstract operator defined as F ]([`, h]) = [−∞,+∞]
is sound, in that ∀[`, h] : (F ◦ γι)([`, h]) ⊆ (αι ◦ F ])([`, h]) =
αι([−∞,∞]) = Z. Naturally, this second F ] version is not optimal.
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2.10 Sound abstract fixpoint semantics

Given a concrete fixpoint semantics S = lfp⊆F and an abstract trans-
former F ] , α ◦ F ◦ γ (or F ] such that F ◦ γ ⊆ γ ◦ F ], in
the absence of a Galois connection or when α ◦ F ◦ γ cannot be
effectively or efficiently implemented), we can now consider the ab-
stract fixpoint S] = lfp⊆]

F ]. Under appropriate hypotheses [Cousot
and Cousot, 1979b], the abstract semantics is then guaranteed to be
sound: S = lfp⊆F ⊆ γ(S]) = γ(lfp⊆]

F ]). Otherwise stated, the ab-
stract fixpoint over-approximates the concrete fixpoint, hence preserves
the soundness: if S] ⊆] P ] then S ⊆ γ(P ]). Any abstract property P ]
which holds in the abstract also holds for the concrete semantics.

When considering static analysis, once an algorithm implement-
ing F ] is constructed, the effective computation or approximation of
S] = lfp⊆]

F ] can be achieved through iteration of F ] (described earlier
in §2.3), when such iteration converge in finite time, or using extrap-
olation operators when they do not, as described later in §2.14. This
effectively decouples the problem of abstracting the effect of elemen-
tary execution steps (in F ]), and the problem of considering program
executions comprised of an arbitrarily long sequence of such steps.

The fixpoint transfer theorems [Cousot and Cousot, 1979b] trans-
porting a soundness proof on operators into a soundness proof on fix-
points of operators also yield the basis to formally verify the soundness
of static analyzers using theorem provers or proof checkers [Besson
et al., 2009, Jourdan et al.].

2.11 Sound and complete abstract fixpoints semantics

In some circumstances, the soundness property discussed in the last
section (semantic inclusion) can be strengthened into a soundness
and completeness property (semantic equality). More precisely, un-
der the hypotheses of Tarski’s fixpoint theorem [Tarski, 1955] and
the additional commutation hypothesis [Cousot and Cousot, 1979b]
α ◦ F = F ] ◦ α for Galois connections, we have α(S) = α(lfp⊆F ) =
S] = lfp⊆]

F ]. Otherwise stated, the fact that the concrete semantics
is a least fixpoint is preserved in the abstract.
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Example 2.11. RJtKI = lfp⊆FR and αR ◦ FP = FR ◦ αR imply that
RJtKI , αR(PJtKI) = αR(lfp⊆FP ) = lfp⊆FR. The intuition is that,
in order to reason on reachable states, it is unnecessary to consider
execution traces.

Complete abstractions exactly answer the class of questions defined
by the abstraction of the collecting semantics. However, for most in-
teresting questions on programs, the answer is not algorithmic or very
severe restrictions have to be considered, such as finiteness.

2.12 Infinite abstraction example: interval abstraction

It may seem that, to be effectively computable, a semantics must be
abstracted into a finite semantic domain. This is not the case. It is pos-
sible, and desirable, to choose, as abstract set of properties, an infinite
set, only requiring that every abstract property is finitely representable.
One example is the set of intervals [`, h], where ` ∈ {−∞} ∪ Z and
h ∈ {+∞}∪Z, which is infinite but composed of finitely representable
elements (pairs of bounds).

Assume that a program has numerical (integer, floating-point, etc.)
variables x ∈ V, so that program states s ∈ S map each variable x ∈ V to
its numerical value s(x) in state s. An interesting problem on programs
is to determine the interval of variation of each variable x ∈ V during
any possible execution. This consists in abstracting the reachability
semantics first by the Cartesian abstraction (which maps each variable
to its value set), and then by the interval abstraction independently on
each variable:

y

x

y

x
Interval abstraction αc Interval concretization γc
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The abstract semantics is then αι(RJtKI), where αι(X)(x) =
[mins∈X s(x), maxs∈X s(x)], which can be ∅ when X is empty and may
have infinite bounds −∞ or +∞ in the absence of a minimum or a max-
imum. This abstraction is infinite in that, e.g., [0, 0] ⊆ [0, 1] ⊆ [0, 2] ⊆
· · · ⊆ [0,+∞). Assuming that numbers are discrete and bounded (e.g.,
−∞ = minint and +∞ = maxint for integers) yields a finite set of
states but this is of no help due to combinatorial explosion when consid-
ering all subsets of states in ℘(S), so that it is still useful, for efficiency
reasons, to consider intervals instead of state sets.

One may wonder why infinite abstractions are of any practical in-
terest since computers can only do finite computations anyway. The
answer comes from a very simple example: P ≡ x=0; while (x<=n)
{ x=x+1 }, where the symbol n > 0 stands for a numeric constant (so
that we have an infinite family of programs for all integer constants
n = 0, 1, 2, . . .) [Cousot and Cousot, 1992b]. For any given constant
value of n, an abstract interpretation-based analyzer using the inter-
val abstraction [Cousot and Cousot, 1976] will determine that, on loop
body entry, x ∈ [0, n] always holds. If we were restricted to a finite do-
main, we would have only finitely many such intervals, and so, we would
find the exact answer for only finitely many programs while missing the
answer for infinitely many programs in the family. An alternative would
be to use an infinite sequence of finite abstractions of increasing preci-
sion (e.g., by restricting abstract states to first {1}, then {1, 2}, then
{1, 2, 3}, etc.), and run finite analyses until a precise answer is found,
but this would be costly and, moreover, the analysis might not termi-
nate or would have to enforce the termination with exactly the same
techniques as those used for infinite abstractions (§2.14), without the
benefit of avoiding the combinatorial state explosion.

2.13 Abstract domains and functions

Encoding program properties uniformly (e.g., as terms in theorem
provers or BDDs [Bryant, 1986] in model-checking) greatly simplifies
the programming and reusability of verifiers. However, it severely re-
stricts the ability for programmers of these verifiers to choose very
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efficient computer representations of abstract properties and dedicated
high-performance algorithms to manipulate such abstract properties
in transformers. For example, an interval is better represented by the
pair of its bounds rather than the set of its points, whatever computer
encoding of sets is used.

So, abstract interpretation-based static analyzers and verifiers do
not use a uniform encoding of abstract properties. Instead, they use
many different abstract domains which are algebras (for mathemati-
cians) or modules (for computer scientists) with data structures to
encode abstract properties (e.g., for intervals: either ∅ or a pair [`, h]
of numbers or infinities with ` ≤ h). Abstract functions are elemen-
tary functions on abstract properties which are used to express the
abstraction of the fixpoint transformers FP , FR, etc.

For example, the interval transformer Fι will use interval inclusion
(∅ ⊆ ∅ ⊆ [a, b], [a, b] ⊆ [c, d] if and only if c 6 a and b 6 d), addition
(∅ + ∅ = ∅ + [a, b] = [a, b] + ∅ = ∅ and [a, b] + [c, d] = [a + c, b + d]),
union (∅ ∪ ∅ = ∅, ∅ ∪ [a, b] = [a, b] ∪ ∅ = [a, b] and [a, b] ∪ [c, d] =
[min(a, c),max(b, d)]), etc., which will be basic operations available in
the abstract domain. Public implementations of abstract domains are
available such as Apron [Jeannet and Miné, 2007, 2009] for numerical
abstract domains — abstracting (possibly infinite) sets of points in
vector spaces.

2.14 Convergence acceleration by extrapolation and inter-
polation

Even when an effective abstraction F ] of the concrete transformer F
is known, it may not be possible or practical to compute its fixpoint
S] = lfp⊆]

F ], necessary to abstract the concrete semantics S = lfp⊆F .
Convergence acceleration methods [Cousot and Cousot, 1976] have
been proposed in order to approximate effectively and efficiently such
abstract fixpoints.
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2.14.1 Widening

Let us consider the program x=1; while (true) { x=x+2 }. The in-
terval of variation of variable x is the least interval solution to the
equation X = Fι(X) where Fι(X) , [1, 1] ∪ (X + [2, 2]). Solving it-
eratively from X0 = ∅, we have X1 = [1, 1] ∪ (X0 + [2, 2]) = [1, 1],
X2 = [1, 1] ∪ (X1 + [2, 2]) = [1, 1] ∪ [3, 3] = [1, 3], X3 = [1, 1] ∪ (X2 +
[2, 2]) = [1, 1] ∪ [3, 5] = [1, 5], which, after infinitely many iterates and
passing to the limit, yields [1,+∞). Obviously, no computer can com-
pute infinitely many iterates, nor perform the reasoning by recurrence
and automatically pass to the limit as humans would do.

An idea is to accelerate the convergence by an extrapolation oper-
ator called a widening [Cousot and Cousot, 1976, 1977, Cousot, 1978],
solving X = X

`
Fι(X) instead of X = Fι(X). The widening ` uses

two consecutive iterates Xn and Fι(Xn) in order to extrapolate the
next one Xn+1. This extrapolation should be an over-approximation
(Xn ⊆ Xn+1 and Fι(Xn) ⊆ Xn+1) for soundness and enforce conver-
gence for termination. In finite abstract domains, widenings are useless
and can be replaced with the union ∪.

An example widening for intervals is x ` ∅ = x, ∅ `
x = x, [a, b] `

[c, d] , [`, h], where ` = −∞ when c < a and ` = a when a 6 c.
Similarly, h = +∞ when b < d and h = b when d 6 b. The widened
interval is always larger (soundness) and avoids infinitely increasing
iterations (e.g., [0,0], [0,1], [0,2], etc.) by pushing to infinity limits that
are unstable (termination).

Example 2.12. For the equation X = X
`
Fι(X) where Fι(X) , [1, 1]∪

(X + [2, 2]), the iteration is now X0 = ∅, X1 = X0 ` ([1, 1] ∪ (X0 +
[2, 2])) = ∅ ` [1, 1] = [1, 1], X2 = X1 ` ([1, 1] ∪ (X1 + [2, 2])) = [1, 1] `

[1, 3] = [1,+∞), X3 = X2 `([1, 1]∪(X2+[2, 2])) = [1,+∞)`[1,+∞) =
[1,+∞) = X2, which converges to a fixpoint in only three steps.

2.14.2 Narrowing

For the program, x=1; while (x<100) { x=x+2 }, we would compute
the interval of variation of x within the loop as X = X

`
Fι(X) where

Fι(X) , [1, 1] ∪ ((X + [2, 2]) ∩ (−∞, 99]) with iterates X0 = ∅, X1 =
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X0 ` ([1, 1] ∪ ((X0 + [2, 2]) ∩ (−∞, 99])) = ∅ ` [1, 1] = [1, 1], X2 =
X1 ` ([1, 1]∪ ((X1 + [2, 2])∩ (−∞, 99])) = [1, 1] ` [1, 3] = [1,+∞). This
result is clearly imprecise as, in the concrete, x is always less than 99
within the loop.

After that upwards iteration (where intervals are wider and wider),
we can go on with a downwards iteration (where intervals are narrower
and narrower, hence, more precise). To avoid infinite decreasing chains
(such as [0,+∞), [1,+∞), [2,+∞), . . . , which limit is ∅), we use an
interpolation operator called a narrowing [Cousot and Cousot, 1977,
Cousot, 1978] a for the equation X = X

a
Fι(X). The narrowing should

ensure both soundness and termination. In finite abstract domains,
narrowings are useless and can be replaced with the intersection ∩.

An example of narrowing for intervals is ∅ a
x = ∅, x a ∅ = ∅,

[a, b]a [c, d] = [`, h] where ` = c when a = −∞ and ` = a when a 6= −∞
and similarly h = d when b = +∞ and otherwise h = b. So, infinite
bounds are refined but not finite ones, so that the limit of [0,+∞),
[1,+∞), [2,+∞), . . . , ∅ will be very roughly over-approximated as
[0,+∞). This ensures the termination of the iteration process. The
narrowed interval [a, b] a [c, d] is wider than [a, b]∩ [c, d], which ensures
the soundness.

Example 2.13. For the program x=1; while (x<100) { x=x+2 }, the
downwards iteration is now Y = Y

a
Fι(Y ) starting from the fixpoint

obtained after widening: Y 0 = [1,+∞), Y 1 = Y 0a([1, 1]∪((Y 0+[2, 2])∩
(−∞, 99])) = [1,+∞) a ([1, 1] ∪ ([3,+∞) ∩ (−∞, 99])) = [1,+∞) a

[1, 99] = [1, 99]. The next iterate is Y 2 = Y 1 a ([1, 1] ∪ ((Y 1 + [2, 2]) ∩
(−∞, 99])) = [1, 99] a ([1, 1] ∪ ([3, 101] ∩ (−∞, 99])) = [1, 99] a [1, 99] =
[1, 99] = Y 1 so that a fixpoint is reached (although it may not be the
least one, in general).

Of course, for finite abstractions (where strictly increasing chains
are finite) no widening nor narrowing is needed since the brute-force
iteration in the finite abstract domain always terminates. However, to
avoid a time and space explosion, convergence acceleration with widen-
ing and narrowing may still be helpful (at the price of incompleteness in
the abstract, which is present anyway in the concrete except for finite
transition systems).
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Polyhedra Signs
[Cousot and Halbwachs, 1978]: [Cousot and Cousot, 1979b]:

too costly too imprecise

x

y

Linear congruences
[Granger, 1991]:
out of scope

Figure 2.1: Classic abstract domain examples not used in Astrée.

2.15 Combination of abstract domains

Abstract interpretation-based tools usually use several different ab-
stract domains, since the design of a complex one is best decomposed
into a combination of simpler abstract domains. Figure 2.2 presents
a few abstract domain examples used in the Astrée static analyzer
[Cousot et al., 2007a]. Such abstract domains (and more) are described
in more details in §3.9–3.10.

The classic abstract domains presented in Figure 2.1, however, are
not used in Astrée because they are either too imprecise, not scal-
able, difficult to implement correctly (for instance, soundness may be
an issue in the event of floating-point rounding), or out of scope (de-
termining program properties which are usually of no interest to prove
the specification).
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Collecting semantics Intervals
[Cousot and Cousot, 1977]: [Cousot and Cousot, 1976]:

prefix traces x ∈ [a, b]

x

y

x

y

Simple congruences Octagons
[Granger, 1989]: [Miné, 2006a]:
x ≡ a (mod b) ±x± y 6 a

x

y

t

y

Ellipses Exponentials
[Feret, 2004]: [Feret, 2005a]:

x2 + by2 − axy 6 d −abt 6 y(t) 6 abt

Figure 2.2: Example abstract domains used in the Astrée static analyzer. See
also Chapter 3.
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Because abstract domains do not use a uniform machine represen-
tation of the information they manipulate, combining them is not com-
pletely trivial. The conjunction of abstract program properties has to
be performed, ideally, by a reduced product [Cousot and Cousot, 1979b]
for Galois connection abstractions. In absence of a Galois connection or
for performance reasons, the conjunction is performed using an easily
computable but not optimal over-approximation of this combination of
abstract domains.

Assume that we have designed several abstract domains D1, . . . ,
Dn and computed lfp⊆F1 ∈ D1, . . . , lfp⊆Fn ∈ Dn in these abstract
domains, relative to a collecting semantics CJtKI. The combination of
these analyses is sound as CJtKI ⊆ γ1(lfp⊆F1)∩ · · · ∩ γn(lfp⊆Fn). How-
ever, only combining the analysis results is not very precise, as it does
not allow analyses to improve each other during the computation. Con-
sider, for instance, that interval and parity analyses find respectively
that x ∈ [0, 100] and x is odd at some iteration. Combining the re-
sults would enable the interval analysis to continue with the interval
x ∈ [1, 99] and, e.g., avoid a useless widening. This is not possible with
analyses carried out independently.

Combining the analyses by a reduced product, the proof be-
comes “let F (〈x1, . . . , xn〉) , ρ(〈F1(x1), . . . , Fn(xn)〉) and 〈r1, . . . , rn〉
= lfp⊆F in CJtKI ⊆ γ1(r1) ∩ · · · ∩ γn(rn)”, i.e., we perform a fixpoint
computation simultaneously on all the abstract domains and apply a
reduction function ρ to propagate information between the abstract do-
mains at each iteration of the fixpoint computation. Considering again
the combination of intervals and parity, the reduction function would
give: ρ(〈[0, 100], odd〉) = 〈[1, 99], odd〉.

To define ρ, first consider the case of two abstract domains D1 and
D2 with Galois connections 〈α1, γ1〉 and 〈α2, γ2〉. The conjunction of
p1 ∈ D1 and p2 ∈ D2 is γ1(p1) ∩ γ2(p2) in the concrete, which is over-
approximated as α1(γ1(p1) ∩ γ2(p2)) in D1 and α2(γ1(p1) ∩ γ2(p2)) in
D2. So, the reduced product of D1 and D2 is {ρ12(〈p1, p2〉) | p1 ∈ D1 ∧
p2 ∈ D2}, where the reduction is ρ12(〈p1, p2〉) , 〈α1(γ1(p1) ∩ γ2(p2)),
α2(γ1(p1) ∩ γ2(p2))〉.
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If more than two abstract domains are considered, a global re-
duction ρ can be defined by iterating the two-by-two reductions ρij ,
i 6= j until a fixpoint is reached. This two-by-two reduction may be less
precise than a global reduction [Cousot et al., 2011], but is definitely
easier to design and implement. For the sake of efficiency, an over-
approximation of the iterated pairwise reduction can be used, where
only some of the reductions ρij are applied, in a fixed order [Cousot
et al., 2006]. These reduction ideas also apply in the absence of Galois
connections. Detailed examples are given in §3.11.

2.16 Partitioning abstractions

Another useful tool to design complex abstractions from simpler ones
is partitioning [Cousot, 1981]. In its simplest form, it consists in consid-
ering a collecting semantics on a powerset concrete domain C = ℘(S),
and a finite partition (or covering) S1, . . . , Sn of the set S. Each part
℘(Si) is abstracted by an abstract domain Di (possibly the same for
all partitions). An abstract element is thus a tuple 〈d1, . . . , dn〉 ∈
D1×· · ·×Dn, with concretization γ(〈d1, . . . , dn〉) , (γ1(d1)∩S1)∪· · ·∪
(γn(dn) ∩ Sn) and abstraction α(X) , 〈α1(X ∩ S1), . . . , αn(X ∩ Sn)〉.

Example 2.14. Consider refining the interval domain by maintain-
ing a distinct interval for positive values and for negative values of
x: γ(〈[`+, h+], [`−, h−]〉) , ([`+, h+] ∩ [0,+∞)) ∪ ([`−, h−] ∩ (−∞, 0)).
Furthermore, α(X) = 〈[minX ∩ [0,+∞),maxX ∩ [0,+∞)], [minX ∩
(−∞, 0),maxX ∩ (−∞, 0)]〉. This domain can represent some disjoint
sets, such as the set of non-zero integers (−∞,−1]∪ [1,+∞), while the
non-partitioned interval domain cannot.

Instead of a partition S1, . . . , Sn of S, one can choose a covering of
S. In this case, several syntactically distinct abstract elements may rep-
resent the same concrete element, but this does not pose any difficulty
(redundant representations are a common and useful occurrence in ab-
stract domains, for instance representing the same polyhedron [Cousot
and Halbwachs, 1978] with various intersections of half-spaces). It is
also possible to choose an infinite family of sets (Si)i∈N covering S

such that each element of ℘(S) can be covered by finitely many parts
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in (Si)i∈N . A common technique [Bourdoncle, 1992] is to choose the
family (Si)i∈N as an abstract domain, so that, given two abstract do-
mains Ds and Dd, the partitioning of Dd over Ds is an abstract domain
containing finite (but possibly unbounded) sets of pairs inDs×Dd, with
concretization γ({〈s1, d1〉, . . . , 〈sn, dn〉}) ,

⋃n
i=1 γs(si) ∩ γd(di).

In contrast to (possibly reduced) products, which are useful to ex-
press conjunctions of heterogeneous properties coming from incompara-
ble abstractions (such as intervals and parity), partitioning abstractions
are useful to express disjunctive properties, where several elements of
the same domain express distinct disjuncts (such as a disjunction of dis-
joint intervals) instead of a single domain element. In general, a precise
analysis requires both reduced products and partitioning abstractions.

Later sections present examples of partitioning abstractions for pro-
gram control states (§3.4), program traces (§3.6), and program data
states (§3.9.5).

2.17 Static analysis

Static analysis consists in answering an implicit question of the form
“what can you tell me about the collecting semantics of this program?”,
e.g., “what are the reachable states?”. Because the problem is undecid-
able, we provide an over-approximation by automatically computing an
abstraction of the collecting semantics. For example, interval analysis
[Cousot and Cousot, 1976] over-approximates lfp⊆Fι using widening
and narrowing. The benefit of static analysis is to provide complex
information about program behaviors without requiring end-users to
provide specifications and execute their programs (which may not ter-
minate, while static analysis always does).

An abstract interpretation-based static analyzer is built by combin-
ing abstract domains, e.g., using a reduced product in order to auto-
matically compute abstract program properties in D = D1 × · · · ×Dn.
This consists in reading the program text from which an abstract trans-
former FD is computed using compilation techniques: complex state-
ments and expressions are broken into a simpler language with few
constructions, so that FD can be constructed by combining a small
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set of primitives directly handled by abstract domains (such as sim-
ple assignments and tests). Then, an over-approximation of lfp⊆FD is
computed by iteration with convergence acceleration by widening and
narrowing. This abstract property can be interactively reported to the
end-user through an interface or used to check an abstract specification.

2.18 Abstract specifications

A specification is a property of the program semantics. Because the
specification must be specified relative to a program semantics, we
understand it with respect to a collecting semantics. For example, a
reachability specification often takes the form of a set B ∈ ℘(S) of
bad states (so that the good states are the complement S \ B). The
specification is usually given at some level of abstraction. For example,
the interval of variation of the values of a variable x during execution
is always between two bounds [`x, hx].

2.19 Verification

The verification consists in proving that the collecting semantics im-
plies the specification. For example the reachability specification with
bad states B ∈ ℘(S) is RJtKI ⊆ (S \ B), that is, “no execution can
reach a bad state”. Because the specification is given at some level of
abstraction, the verification needs not be done in the concrete.

For the interval example, we would have to check ∀x ∈ V :
αι(RJtKI)(x) ⊆ [`x, hx]. To do that, we might think of checking with the
abstract interval semantics IJtKI(x) ⊆ [`x, hx], where the abstract inter-
val semantics IJtK is an over-approximation in the intervals of the reach-
ability semantics RJtK. This means that IJtKI(x) ⊇ αι(RJtKI)(x). Ob-
serve that ∀x ∈ V : IJtKI(x) ⊆ [`x, hx] implies αι(RJtKI)(x) ⊆ [`x, hx],
proving ∀x ∈ V, ∀s ∈ RJtKI : s(x) ∈ [`x, hx] as required.

2.20 Verification in the abstract

Of course, as in mathematics, to prove a given result, a stronger one
is often needed. So, proving specifications at some level of abstraction
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often requires more precise abstractions of the collecting semantics.
An example is the rule of signs pos× pos = pos, neg× neg = pos,

pos × neg = neg, etc., where γ(pos) , {z ∈ Z | z > 0} and γ(neg) ,
{z ∈ Z | z 6 0}. The sign abstraction is complete for multiplication
(knowing the sign of the arguments is enough to determine the sign
of the result) but incomplete for addition (pos + neg is unknown).
However, if an interval is known for the arguments of an addition,
the interval of the result, hence its sign, can be determined for sure.
Indeed, intervals is the most abstract abstraction which is complete for
determining the sign of additions. As another example, we can consider
the Astrée static analyzer, described in details in Chapter 3. Indeed,
Astrée checks for run-time errors, such as overflows, which require
inferring intervals. Nevertheless, the interval domain is not sufficient for
this task: although it can express the optimal intervals, inferring precise
intervals requires more complex domains, such as the filter domain
illustrated in Figure 2.2 and explained in details in §3.10.1.

In general, a most abstract complete abstraction to prove a given
abstract specification does exist [Giacobazzi et al., 2000] but is unfor-
tunately uncomputable, even for a given program. In practice, one uses
a reduced product of different abstractions which are enriched by new
ones to solve incompleteness problems, a process which, by undecid-
ability, cannot be fully automatized — e.g., because designing efficient
data structures and algorithms for abstract domains is not automati-
zable — and out of the scope of automatic refinement of abstractions
[Cousot et al., 2007b]. The refinement process to build an analyzer such
as Astrée from an interval analyzer is thus a complex, manual one.



3
Verification of Synchronous Control/Command

Programs

We now present Astrée, a static analyzer for automatically verifying
the absence of runtime errors in synchronous control/command em-
bedded C programs [Blanchet et al., 2002, 2003, Cousot et al., 2005,
2006, 2007a, Mauborgne, 2004], successfully used in aeronautics [Del-
mas and Souyris, 2007] and aerospace [Bouissou et al., 2009] and now
industrialized by AbsInt [AbsInt, Angewandte Informatik].

3.1 Analyzed C subset

Astrée can analyze a fairly large subset of C99. The most notable un-
supported features are: non-local jumps (longjmp) and recursive pro-
cedures. Such features are most often unused (or even forbidden) in
embedded programming to keep a strict control over resource usage
and control-flow. Parallel programs are now supported as a recent ex-
tension, and thus discussed separately, in Chapter 6.

Although Astrée can analyze many programs, it cannot analyze
most of them precisely and efficiently. Astrée is specialized for con-
trol/command synchronous programs, as per the choice of included
abstractions. Some generic existing abstractions were chosen for their

35
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double acos(double x)
{

double r;
__ASTREE_assert(( x >= -1. && x <= 1. ));
__ASTREE_known_fact(( r >= 0. && r <= 3.2 ));
return r;

}

Figure 3.1: Stub for the arccos function.

relevance to the application domain (§3.9), while others were developed
specially for it (§3.10).

Astrée can only analyze stand-alone programs, without undefined
symbols. That is, if a program calls external libraries, the source-code
of the libraries must be provided. Alternatively, stubs may be provided
for library functions, to provide sufficient semantic information (range
of return values, side-effects, etc.) for the analysis to be carried out
soundly. A stub example for the arccos function is provided in Fig-
ure 3.1: using Astrée-specific directives, it checks that the argument
is a valid floating-point number in the range [−1, 1] (any violation of
this specification triggers an alarm) and states that the returned value
is in [0, 3.2] (to be on the safe side and allow implementations that over-
flow the mathematical interval [0, π]). Local variables without a specific
initializer (such as r in acos) are considered to be created uninitial-
ized (and so can take any initial value in their type). Moreover, input
variables set by the environment (such as variables mapped to hard-
ware registers updated asynchronously with sensor values) need to be
declared as volatile. Their range should also be specified (otherwise,
they are considered to have the full range of their type, including in-
finities and NaN for floating-point numbers).

3.2 Operational semantics of C

Astrée is based on the C ISO/IEC 9899:1999/Cor 3:2007 standard
[ISO/IEC JTC1/SC22/WG14 Working Group, 2007], which describes
precisely (if informally) a small-step operational semantics. However,
the standard semantics is high-level, leaving many behaviors not fully
specified, so that implementations are free to choose their semantics
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(ranging from producing a consistent, documented outcome, to consid-
ering the operation as undefined with catastrophic consequences when
executed). Sticking to the norm would not be of much practical use
for our purpose, that is, to analyze embedded programs that are gen-
erally not strictly conforming but rely instead on specific features of a
platform, processor, and compiler. Likewise, Astrée makes semantics
assumptions, e.g., on the binary representation of data-types (bit-size,
endianess), the layout of aggregate data-types in memory (structures,
arrays, unions), the effect of integer overflows, etc. These assumptions
are configurable by the end-user to match the actual target platform of
the analyzed program (within reasonable limits corresponding to mod-
ern mainstream C implementations), being understood that the result
of an analysis is only sound with respect to the chosen assumptions.

Astrée computes an abstraction of the semantics of the program
and emits an alarm whenever it potentially leads to a runtime error.
Runtime errors that are looked for include: overflows in unsigned or
signed integer or floating-point arithmetics, integer or floating-point di-
visions or modulos by zero, integer shifts by an invalid amount, values
outside the definition of an enumeration, out-of-bound array accesses,
dereferences of a NULL or dangling pointer, of a mis-aligned pointer,
or outside the space allocated for a variable. In case of an erroneous
execution, Astrée continues with the worst-case assumption, such as
considering that, after an arithmetic overflow, the result may be any
value allowed by the expression type (although, in this case, the user
can instruct Astrée to assume that a modular semantics should be
used instead). This allows Astrée to find all further errors following
any error, whatever the actual semantics of errors chosen by the im-
plementation. Sometimes, however, the worst possible scenario after
a runtime error is completely meaningless (e.g., accessing a dangling
pointer which destroys the program code), in which case Astrée emits
an alarm and continues the analysis for the non-erroneous cases only.
An execution of the program performing the erroneous operation may
not actually fail at the point reported by Astrée and, instead, exhibit
an erratic behavior and fail at some later program point not reported
by Astrée but, at least, the instruction at the root of this undefined
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void main ()
{

int i = 0;
while (i <= 10)

i = i + 1;
}

Figure 3.2: Correct program that can be proved free of run-time error by Astrée.

% astree loop.c --exec-fn main
/*
[...]
Executing <main>
Time spent in analysis of function main: 0.003305 s
The analysis ended without errors or warnings
/* Max heap size: 248.00 Mb, 4 major collections */
/* 1 procedure(s) executed */
%

Figure 3.3: Analysis with Astrée of the correct program in Figure 3.2.

behavior is faithfully reported by Astrée. In all cases, the program
has no runtime error if Astrée does not issue any alarm, or if all exe-
cutions leading to alarms reported by Astrée can be proved, by other
means, to be impossible.

3.3 Analysis examples

Figure 3.2 shows a very simple C program featuring a loop that incre-
ments i from 0 to 11. The command-line invocation of Astrée on this
example is presented in Figure 3.3: only the file name and entry point
need to be specified. The analysis result (with irrelevant parts omitted)

void main()
{

int i;
int a[10];
for (i=0;i<10;i++)

if (a[i]) break;
a[i] = 0;

}

Figure 3.4: Program with a possible runtime error.
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% astree alarm.c --exec-fn main
[...]
Executing <main>
alarm.c:5.2-6.19:up iteration #0
alarm.c:5.2-6.19:down iteration #0
alarm.c:7.4-5:[call#main@1:]: WARN: out-of-bound array index
[0, 10] not included in [0, 9]
alarm.c:7.2-6:[call#main@1:]: WARN: invalid dereference:
dereferencing 4 byte(s) at offset(s) 4*[0;10] may overflow
the variable a of byte-size 40
Time spent in analysis of function main: 0.009742 s
[...]
%

Figure 3.5: Analysis with Astrée of the erroneous program in Figure 3.4.

is also shown: in this simple case, Astrée is able to prove the absence
of runtime errors (in particular, the absence of integer overflow at line
5), as witnessed by the absence of any alarm message during the exe-
cution of main (i.e., between lines 4 and 5 of Figure 3.3).

Figure 3.4 presents a slightly more complex example: the first non-
zero element in the local array a is searched and set to zero. As the
array is local, its initial contents is random, and Astrée considers that
the loop can be exited by the break statement after 0, 1,. . . or 9 loop
iterations, or when the condition i<10 is false. In that last case, the in-
struction a[i] = 0 is erroneous as i = 10. The analysis by Astrée in
Figure 3.5 shows two alarms related to writing into a at line 7 (Astrée
can also report reading of uninitialized variables, but these alarms have
been omitted in the report to focus on the alarms at line 7). Each alarm,
recognizable by the WARN keyword, indicates the source code position
of the offending statement as well as the call context (here, in the func-
tion main, see §3.4 on the flow- and context-sensitivity of Astrée),
the nature of the alarm, and the exact specification that was violated
(e.g., a range computed by the analyzer not included in the range re-
quired to ensure the absence of alarm). The first alarm states that the
index i is invalid in the array a, and the second one that the access
to a[i] is a memory error, which is a direct consequence of the first
alarm (note that invalid array indices do not necessarily result in a
memory error, for instance when the array is embedded into a larger
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structure, as in t.a[10] where t has type struct { int a[10]; int
b; } t, hence the need for Astrée to distinguish between these two
kinds of alarms). Figure 3.5 also illustrates some information about
the analysis progress: each increasing and decreasing iteration in a fix-
point computation (here, caused by the for loop) is logged, which is
useful to judge the amount of work spent analyzing loops (which of-
ten dominates analysis time) and the effectiveness of the extrapolation
operators in reducing the number of abstract iterations (here, two ab-
stract iterations are sufficient, although the loop has ten iterates in the
concrete). If one corrects the program, for instance by iterating from 0
to 9 instead of 10, then both alarms disappear and Astrée is able to
prove the absence of runtime errors.

Figure 3.6 gives an example program performing an integer divi-
sion by x in a context where 7y2 − 1 = x2 and x ∈ [−32766, 32766],
y ∈ [−4680, 4680]. Its analysis is shown by Figure 3.7. In that case,
Astrée warns of a possible division by 0. However, there does not
exist any solution to the Diophantine equation 7y2 − 1 = x2 and, a
fortiori no solution such that x = 0 (to produce a division by zero) and
x ∈ [−32766, 32766], y ∈ [−4680, 4680] (a condition which was added
in order to prevent any arithmetic overflow in the test 7*y*y - 1 ==
x*x). Hence, this is an example of false alarm and incompleteness of
Astrée. There are good theoretical reasons for this incompleteness: the
theory of Diophantine equations is extremely complex and no general
algorithm to solve them can exist (Hilbert’s tenth problem, answered
negatively by Matiyasevich). Moreover, designing specific abstract do-
mains to solve restricted classes of equations would be time-consuming
for analysis designers and result in a slower analysis, for no practical
benefit as these equations do not actually appear in the synchronous
software targeted by Astrée (as opposed to other features for which
specific solutions have been designed, see §3.10).

Finally, Astrée is also able to export all the properties (with var-
ious degrees of verbosity) inferred during the analysis to a binary file,
which can then be explored interactively at leisure using a graphical
interface. Figure 3.8 presents a screenshot of an academic graphical in-
terface prototype we designed at the end of Astrée’s development. It
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void main()
{

int x, y;
if (-4681 < y && y < 4681 && x < 32767 && -32767 < x &&

7*y*y - 1 == x*x)
{

y = 1 / x;
}

}

Figure 3.6: Another correct program.

% astree false-alarm.c --exec-fn main
[...]
Executing <main>
false-alarm.c:5.9-14:[call#main@1:]: WARN: integer division by
zero [-32766, 32766]
Time spent in analysis of function main: 0.002006 s
[...]
%

Figure 3.7: Analysis with Astrée of the correct program in Figure 3.6 showing a
false alarm.

Figure 3.8: Academic graphical interface for Astrée.
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displays the range (§3.9.1) of two variables at some hi-lighted point in
some call context (§3.4). This prototype GUI has served as the basis
for a mature, industrial-strength interface developed by AbsInt as part
of Astrée’s industrialisation process (§3.16).

3.4 Flow- and context-sensitive abstractions

Static analyses are often categorized as being either flow-sensitive or
flow-insensitive, and either context-sensitive or context-insensitive. The
former indicates whether the analysis can distinguish properties holding
at some control point and not other ones, while the later whether it can
distinguish properties at distinct call contexts of the same procedure.

Astrée is both flow- and context-sensitive, where a call context
means here the full sequence of nested callers. Indeed, in the collecting
semantics, the set of program states S is decomposed into a control
and a data component: S , C×D. The control component C contains
the syntactic program location of the next instruction to be executed,
as well as the stack of the program locations in the caller functions
indicating where to jump back after a return instruction. The data
component D contains a snapshot of the memory (value of global vari-
ables and local variables for each activation record). Full flow- and
context-sensitivity is achieved by partitioning (§2.16), i.e., keeping an
abstraction of the data state D (§3.7) for each reachable control state
in C. This simple partitioning simplifies the design of the analysis while
permitting a high precision. However, it limits the analyzer to programs
with a finite set of control states C, i.e., programs without unbounded
recursion. This is not a problem for embedded software, where the
control space is finite, and indeed rather small. More abstract control
partitioning abstractions must be considered in cases where C is infinite
or very large (e.g., for parallel programs, as discussed in Chapter 6).

3.5 Hierarchy of parameterized abstractions

Astrée is constructed in a modular way. In particular, it employs ab-
stractions parameterized by abstractions, which allows constructing a
complex abstraction from several simpler ones (often defined on a less
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trace abstraction of ℘((C × (V→ V))∗) (§3.6)
↓

memory abstraction of ℘(V→ V) (§3.7)
↓

scalar value abstraction of ℘(Vc → Vb) (§3.8)
↓

product of numerical abstractions of ℘(Vn → R) (§3.9–3.10)

Figure 3.9: Hierarchy of semantics and domains in Astrée.

rich concrete universe). Indeed, although Astrée ultimately abstracts
a collecting semantics of prefix traces, the trace abstraction is actually
a functor able to lift an abstraction of memory states (viewed as maps
from variables in V to values in V) to an abstraction of state traces
(viewed as sequences in (C × (V → V))∗). The functor handles all the
trace-specific aspects of the semantics, and delegates the abstraction
of states to the memory domain. The memory abstraction is in turn
parameterized by an abstraction of scalar values (i.e., pointers and nu-
merical values), itself parameterized by a purely numerical abstraction,
where each abstraction handles simpler and simpler data-types. This
hierarchy is shown in Figure 3.9

An improvement to any domain will also benefit other ones, and it
is easy to replace one module parameter with another. The numerical
abstraction is itself a large collection of abstract domain modules with
the same interface (i.e., abstracting the same concrete semantics) linked
through a reduced product functor (§3.11), which makes it easy to add
or remove such domains.

3.6 Trace abstraction

Floyd’s program proof method [Floyd, 1967] is complete in the sense
that all invariance properties can be proved using only state invariants,
that is, sets of states. However, this does not mean that it is always the
best solution, in the sense that such invariants are not always the eas-
iest way to represent concisely or compute efficiently these invariance
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properties. It is sometimes much easier to use intermittent invariants
as in Burstall’s proof method [Burstall, 1974] (i.e., an abstraction of
the prefix trace semantics [Cousot and Cousot, 1993]).

In particular, in many numerical abstract domains, all abstract val-
ues represent convex sets of states (for instance, this is the case of inter-
vals, octagons, polyhedra): this means that the abstract join operation
will induce a serious loss of precision in certain cases. For instance, if
the variable x may take any value except 0, and if the analysis should
establish this fact in order to prove the property of interest (e.g., that
a division by x will not cause a crash), then we need to prevent states
where x > 0 from being confused with states where x < 0. As a conse-
quence, the set of reachable states of the program should be partitioned
carefully so as to avoid certain subsets to be joined together. In other
words, context sensitivity (§3.4) is not enough to guarantee a high level
of precision, and some other mechanisms to distinguish sets of reachable
states should be implemented (such as path-sensitivity).

The main difficulty which needs to be solved in order to achieve
this is to compute automatically good partitions. In many cases, such
information can be derived from the control-flow of the program to
analyze (e.g., which branch of some if-statement was executed or how
many times the body of some loop was executed). In other cases, a
good choice of partitions can be provided by a condition at some point
in the execution of the program, such as the value of a variable at the
call site of a function.

To formalize this intuition, we can note that it amounts to parti-
tioning the set of reachable states at each control state, depending on
properties of the prefix executions up to that point. This is the reason
why Astrée abstracts prefix traces rather than just reachable states.
An element of the trace partitioning abstract domain [Mauborgne and
Rival, 2005, Rival and Mauborgne, 2007] should map each element of
a finite partition of the traces of the program to an abstract invariant.
Thus, it is a partitioning abstraction (§2.16), at the level of traces.

Let us consider a couple of examples illustrating the impact of trace
partitioning. Embedded software often need to compute interpolation
functions (in one, two, or more dimensions). In such functions, a fixed
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Figure 3.10: Regular and irregular interpolations.

float f(float x)
{

const float ys[5] = { 1., 10., 10., 20., 1. };
int i = floor(x);
if (i < 0) return ys[0];
if (i >= 4) return ys[4];
return ys[i] + (ys[i+1] - ys[i]) * (x - i);

}

Figure 3.11: One-dimensional regular linear interpolation function.

float f(float x)
{

const float xs[5] = { 0., 1., 8., 10., 15. };
const float ys[5] = { 1., 10., 10., 20., 1. };
int i = 0;
if (x < xs[0]) return ys[0];
if (x >= xs[4]) return ys[4];
while (i < 4 && x > xs[i+1]) i++;
return ys[i] + (ys[i+1] - ys[i]) *

(x - xs[i]) / (xs[i+1] - xs[i]);
}

Figure 3.12: One-dimensional irregular linear interpolation function.
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input grid is supplied together with output values for each point in the
grid. Typical interpolation algorithms first localize in which cell in the
grid the input is, and then apply linear or non-linear local interpolation
formulas. In the case of regular grids, as in Figure 3.10.(a), the localiza-
tion can be done using simple arithmetic. A simple, one-dimensional
regular linear interpolation implementation function is presented in
Figure 3.11, using a truncation to locate the cell i. In the more gen-
eral case of non-regular grids, as in Figure 3.10.(b), localizing the in-
put needs to be done using a search algorithm. An example imple-
mentation is shown in Figure 3.12 using a linear search loop. Using
plain interval arithmetic, the evaluation of the return expression at
line 7 of Figure 3.11 gives: ys[i] + (ys[i+1] − ys[i]) × (x − i) =
[1, 20] + ([1, 10]− [1, 20])× ([0, 5)− [0, 4]) = [−94, 96], which is far from
the optimal interval [1, 20] (i.e., the result of the interpolation should lie
between the lowest and highest tabulated function value). This low pre-
cision comes from the way each sub-expression is abstracted indepen-
dently into an interval, while implicit relationships between ys[i+1],
ys[i], x and i are completely forgotten. In Figure 3.12, a naive interval
analysis considers that the sub-expression xs[i+1] − xs[i] evaluates
to [1, 15]− [0, 10] = [−9, 15], which triggers a spurious division by zero
alarm. In both cases, the interpolation can be precisely analyzed only
if a close relationship between the input values x and the grid cells i
can be established, so that the interpolation formula can be applied to
the right (abstract) set of inputs. Trace partitioning allows expressing
such relations with invariants which consist in conjunctions of proper-
ties of the form “if the input is in cell i, then the current state satisfies
condition pi” (where pi relates i, i, x, xs[i], xs[i+1], ys[i], and
ys[i+1]) and using such relations when evaluating the return expres-
sion at line 7 (resp. line 9) of Figure 3.11 (respectively, Figure 3.12).
This is possible since the cell the input is contained in is an abstraction
of the history of the execution: in the regular case of Figure 3.11, an
adequate partition criterion is the value stored into i at line 4 while, in
the non-regular case of Figure 3.12, it is the number of iterations spent
in the loop at line 8. Astrée is able to partition the analysis (i.e., per-
form case analysis) based on these two kinds of criteria, as well as other
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criteria (such as control-flow splitting through “if” statements). Trace
partitioning generalizes the concept of path sensitivity sometimes used
in static analysis. However, to avoid a combinatorial explosion of the
number of cases, partitions are periodically merged (e.g., at the end of
functions): the partitioning is only local.

In practice, this abstraction consists in a functor, which lifts a mem-
ory abstract domain (i.e., abstracting elements of ℘(V → V)) into a
domain which abstracts elements of ℘((C× (V→ V))∗). Abstract oper-
ations implemented by this functor can be classified into the following
three categories:

• partition creation, by splitting existing partitions, e.g., at the en-
try of an “if” statement, or at each iteration in a loop;

• partition collapse, by merging (some or all) existing partitions;

• underlying operations, i.e., operations supported by the underly-
ing domain, such as assignments, which can be realized by apply-
ing the underlying operation independently on each partition.

Partition creation and collapse are usually guided by heuristics, which
point out cases where trace partitioning could be helpful: for example,
when several if statements test correlated conditions, partitioning the
first one may result in increased precision for the next ones. However,
the partitioning at the selected statements is itself dynamic, which
means that the sets of partitions are chosen during the analysis, and
not fixed statically. This ensures both precision and efficiency.

3.7 Memory abstraction

Given a concrete program state (c, d) ∈ S , C×D, its data part d ∈ D
represents a snapshot of the memory, i.e., it associates a value to each
variable live in the control state c ∈ C (including global variables and
local variables in all active stack frames). Let us denote by V(c) this
variable set, and by V the universe of variable values of any type. Then,
d ∈ V(c) → V. Note also that, for each c, V(c) is finite. As Astrée
partitions the memory state with respect to the control state, in order
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to design an abstraction of ℘(S) it is sufficient to design an abstraction
of ℘(V(c)→ V) for each V(c), i.e., the set of variables in each abstract
memory state is finite, fixed, and statically known. This simplification
is only possible because Astrée takes care not to abstract together
program states from different control locations.

The C language offers a rich type system that includes a few fixed
base types (machine integers of various size and signedness, floating-
point types of various size, pointers to data or functions) as well as
user-defined aggregate types (possibly nested structures and arrays) and
union types. Disregarding union types for now, variables of non-base
type can be decomposed recursively and statically into finite collections
of cells of base type occupying disjoint memory locations. The role of
the memory abstraction is to manage this mapping, and “dumb down”
expressions and pass them to a parameter domain abstracting sets in
℘(Vc → Vb) for any given finite cell set Vc, Vb being the set of integers,
floating-point, and pointer values (i.e., values of variables of base type).
One way to perform this decomposition is to recursively flatten all ag-
gregates, such as considering a variable struct { int a; char b; }
v[2] as four distinct cells Vc , { v0a, v0b, v1a, v1b }, where v0a stands
for v[0].a, v0b for v[0].b, v1a for v[1].a, and v1b for v[1].b. This
natural and most concrete choice achieves full field-sensitivity. How-
ever, it may become memory intensive for large data-structures, and it
is uselessly detailed to represent uniform arrays where all elements have
similar properties. Thus, Astrée allows representing several concrete
cells by a single abstract cell by folding arrays. Folding the variable v,
for instance, would give two cells V′c , { va, vb }, where va abstracts the
union of values of v[0].a and v[1].a, while vb abstracts the union of
values of v[0].b and v[1].b.

As the memory domain abstracts the mapping between variables
and cells, it is its responsibility to translate complex C lvalues appear-
ing in expressions into the set of cells they target. This translation is
dynamic and may depend on the computed (abstract) set of possible
variable values at the point of the expression, hence the necessary in-
teraction between the memory abstraction and its parameter abstract
domain. Consider, for instance, the assignment v[i].a = v[0].b + 1
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to be translated into the cell universe Vc , { v0a, v0b, v1a, v1b } (the
case of pointer access is considered in §3.8). Depending on the possible
abstract value of i (exemplified here in the interval domain), it can
be translated into either v0a = v0b + 1 (if i is [0, 0]), v1a = v0b + 1
(if i is [1, 1]), or if (?) v0a = v0b + 1 else v1a = v0b + 1 (if i
is [0, 1]). This last statement involves a non-deterministic choice (so-
called “weak update”), hence a loss of precision. Values of i outside the
range [0, 1] lead to runtime errors that stop the program. If the folded
memory abstraction V′c , { va, vb } is considered instead of Vc, then the
statement is interpreted as if (?) va = vb + 1 whatever the value of
i, which always involves a weak update (hence, it is less precise in the
case where i is fully determined).

We now discuss the case of union types. Union types in C allow
reusing the same memory block to represent values of different types.
Although not supported by the C99 standard (except in very restricted
cases), it is possible to write a value to a union field, and then read back
from another field of the same union; the effect is to reinterpret (part
of) the byte-representation of a value of the first field type as the byte-
representation of a value of the second type (so-called type punning).
This is used to some extent in embedded software, and so, we also need
to support it in Astrée. In a way similar to aggregate types, union
types are decomposed into cells of base type. Unlike aggregate types,
such cells are not actually disjoint, as modifying one union field also
has an effect on other union fields. However, the memory domain hides
this complexity from its parameter domain, which can consider them as
fully distinct entities. The memory domain will issue extra cell-based
statements to take aliasing into account [Miné, 2006b]. Consider, for
instance, the variable union { unsigned char c; unsigned int i;
} v with two cells: cc for v.c, and ci for v.i. Any write to v.i will
update ci and also generate the assignment cc = ci & 255 (assuming
the user configured the analyzer for a little endian architecture). The
memory domain of Astrée thus embeds a partial knowledge of the
bit-representation of integer and floating-point types. This knowledge
currently includes: how signed and unsigned integer types can be de-
composed into or recomposed from individual bytes, the equality of
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Figure 3.13: IEEE 754-1985 representation of 64-bit double precision floating-point
numbers. buf[0] and buf[1] denote respectively the high-order and low-order 32-bit
part of a double d1 on a big endian architecture (used in Figure 3.14).

double int_to_double(int x)
{

unsigned buf[2];
double d1, d2;
buf[0] = 0x43300000;
buf[1] = 0x80000000;
d1 = *((double*)buf);
buf[1] ^= (unsigned)x;
d2 = *((double*)buf);
return d2 - d1;

}

Figure 3.14: Manual cast from integer to double.

unsigned and (two’s complement) signed versions of the same integer
type modulo 2sizeof, and the decomposition of floating-point numbers
into their binary representation (sign, mantissa, and exponents fields)
according to the IEEE 754–1985 [IEEE Computer Society, 1985] norm
(see Figure 3.13).

The memory domain can also handle accesses through pointer casts,
which can simulate the effect of union types. For instance, given the
variable unsigned i, the expression *((unsigned char*)&i) refer-
ences the first byte of i (i.e., i & 255 on a little endian architec-
ture). The difference is that, for union types, the memory block of
a variable can be populated statically, at creation time, with a set of
(possibly overlapping) cells based on the type of the variable, while
pointer casts can dynamically reinterpret a variable according to some
new type never associated to the variable before. The decomposition of
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variables into cells is thus dynamic in Astrée and evolves according
to a variable use during the analysis. In particular, new cells can be
materialized, and their initial values are synthesized through a reduc-
tion process by exploiting information from preexisting cells overlap-
ping them. We end this section with another example, in Figure 3.14.
This complex function converts a 32-bit signed integer x into a 64-bit
floating-point number. A representation of the floating-point numbers
252 + 231 and 252 + 231 + x is first constructed using only integer and
bit-level operations. These are stored respectively in d1 and d2. Then, a
floating-point subtraction is used to recover x as a floating-point value.
Such code is very common (in C programs, C libraries, or directly in-
lined by compilers) when targeting PowerPC processors, as these lack a
proper conversion opcode implementing directly (double)x. A precise
handling of pointer casts and intimate knowledge of floating-point bi-
nary representations allows Astrée to analyze precisely such code and
deduce that the returned value has the same range as the argument.

3.8 Pointer abstraction

Pointers in C can be used to implement references as found in many
languages, but also generalized array access (through pointer arith-
metics) and type punning (through pointer conversion). To handle all
these aspects in our concrete operational semantics, a pointer value
is considered at a very low level as: either a pair 〈v, o〉 composed of
a variable identifier (or name) v and an integer offset o, or a special
NULL or dangling value. The offset o counts a number of bytes from the
beginning of the variable v, and ranges in [0, sizeof(v)).

A set of pointer values is then abstracted in Astrée as a pair of
flags indicating whether the pointer can be NULL or dangling, a set of
variable identifiers (represented in extension), and a set of offset values.
The pointer abstract domain maintains this information for each cell
of pointer type, except for the offset abstraction which is delegated
to a numerical domain through the creation of a cell of integer type.
Moreover, pointer arithmetics is converted into integer arithmetics on
offsets. Consider, for instance, the pointer assignment q = p + i +
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1, where p and q have type int*. Recall that such a statement is
translated into cq = cp + ci + 1 by the memory domain, where cp, cq,
and ci are the cells associated with respectively p, q, and i. The pointer
domain replaces the pointed-to variable set component of q with that
of p and passes down to the numerical abstraction the statement co(q)
= co(p) + ci * sizeof(int) + sizeof(int), where co(q) and co(p) are
the integer-valued cells corresponding to the offset of p and q.

Additionally, the pointer abstraction is used by the memory domain
to resolve dereferences in expressions. For instance, given the lvalue *(p
+ i), the memory domain relies on the pointer domain to provide the
target of cp + ci, which is returned as a set of variable/offset pairs
(involving offset computation in the parameter numerical domain) and
possibly NULL or dangling. To handle type punning, the memory ab-
straction is able to generate a cell for any combination of a variable,
an offset (smaller than the variable byte-size), and a base type, while
NULL and dangling accesses are considered runtime errors. Cells that
overlap in memory are handled as in the case of union types.

Following the C norm, Astrée assumes the base address &v of a
variable v to be a symbolic, unspecified value, and that the concrete
numeric value may change from execution to execution and cannot be
relied on. The only guarantee is that all addresses in a live variable v are
contiguous and distinct from any address of any other live variable. This
influences the semantics of pointer comparison operators: one assumes
that (char*)&v+i < (char*)&v+j if and only if i<j, while the truth
value of (char*)&v+i < (char*)&w+j is unspecified (i.e., it evaluates
to [0, 1]). Moreover, a local variable may not be given the same address
each time it is reallocated when entering its scope, hence, pointers to a
local variable are reset to dangling when the variable is destroyed. Ad-
ditionally, Astrée supports a notion of absolute pointer values, where
the address of a global variable is a user-specified integer constant,
which permits lossless conversions between pointers and integers and is
useful in some embedded software contexts (e.g., when variables corre-
spond to memory-mapped hardware registers and are addressed using
their known numeric address).
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3.9 General-purpose numerical abstractions

Through a sequence of trace, memory, and pointer abstractions, we are
left to the problem of abstracting concrete sets of the form ℘(Vn →
R), for any finite set Vn of numerical cells. This is achieved by using
a combination of several numerical abstract domains. Note that the
concrete semantics is expressed using reals R as they include all integers
and (non-special) floating-point values for all C implementations.

3.9.1 Intervals

The interval abstract domain [Cousot and Cousot, 1976, 1977] main-
tains a lower and an upper bound for every integer and floating-point
cell. This is one of the simplest domains, yet its information is crucial
to prove the absence of many kinds of runtime errors (overflows, out-of-
bound array accesses, invalid shifts). Most abstract operations on inter-
vals rely on well-known interval arithmetics [Moore, 1966]. Soundness
for abstract floating-point operations (considering all possible rounding
directions) is achieved by rounding lower bounds downwards and upper
bound upwards with the same bit-precision as that of the corresponding
concrete operation.

An important operation specific to abstract interpretation is the
widening ` used to accelerate loops. Astrée refines the basic interval
widening (presented in §2.14) by using thresholds: unstable bounds are
first enlarged to a finite sequence of coarser and coarser bounds before
bailing out to infinity. For many floating-point computations that are
naturally stable (for instance while (1) { X = X * α + [0, β]; },
which is stable at X ∈ [0, β/(1 − α)] when α ∈ [0, 1)), a simple ex-
ponential ramp is sufficient (X will be bounded by the next threshold
greater than β/(1−α)). Some thresholds can also be inferred from the
source code (such as array bounds, to use for integer cells used as ar-
ray indices). Finally, other abstract domains can dynamically hint at
(finitely many) new guessed thresholds.

One benefit of the interval domain is its very low cost: O(|Vc|) in
memory and time per abstract operation. Moreover, the worst-case
time O(|Vc|) can be significantly reduced to a practical O(log |Vc|) cost



54 Verification of Synchronous Control/Command Programs

by a judicious choice of data-structures. It is sufficient to note that
binary operations (such as ∪) are often applied to arguments with
only a few differing cells. Astrée uses a functional map data-structure
with sharing to exploit this property. This makes the interval domain
scalable to tens of thousands cells.

3.9.2 Congruences

The simple congruence domain [Granger, 1989] over-approximates the
value of each integer cell with a set of the form aZ+b , { ak+b | k ∈ Z }
where a ∈ N, b ∈ Z (also called “coset”). Congruence properties are ex-
tremely useful to express the alignment of pointer offsets expressed
in bytes. In C, each type t indeed has an alignment (often equal to
sizeof(t) for base types, and the largest alignment of fields for ag-
gregates) that constrains where objects of type t lie in memory. On
many processors (such as PowerPC), dereferencing a pointer of type
t* on an address that is not a multiple of the alignment of t causes
a runtime error. Assuming that the base address of variables respect
the alignment constraints of the target platform, it is necessary and
sufficient to check that the byte offset of each dereferenced pointer of
type t* is a multiple of the alignment of t to prove the absence of such
errors. Additionally, congruence information can refine interval bounds
through reduction (§2.15). For instance, 2Z ∩ [1, 5] = 2Z ∩ [2, 4]. The
congruence domain is a very simple and cheap domain: it is based on
straightforward arithmetic notions, such as greatest common divisors
and Bézout’s identity.

Congruences also appear naturally due to the limited precision
of machine integers. Given a n−bit word size, unsigned integers
range in [0, 2n − 1] while two’s complement signed integers range in
[−2n−1, 2n−1−1], and all arithmetic computations are performed mod-
ulo 2n. While Astrée can detect all overflows, i.e., all operations
that trigger the wrap-around effect of modular arithmetics, it can
also compute the precise modular result and continue the analysis
using this value. This is extremely useful to analyze precisely pro-
grams using modular arithmetics on purpose for special effect. Con-
sider, for instance, the statement x = (short) ((unsigned short)
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y + (unsigned short) z), where x, y, z are signed short variables.
Signed arguments are converted to unsigned so that the addition is
performed in the unsigned world, and the result is converted back to a
signed number. Although such code triggers systematic overflows when
y or z is negative, the final result (assuming modular arithmetics)
is identical to that of a signed, non-overflowing addition. This tech-
nique, called “compute-through-overflow,” is used by C code genera-
tors such as TargetLink [dSpace] for improved efficiency on embedded
platforms. Unfortunately, a simple interval analysis will be very im-
precise due to the overflows. Assume, for instance, that y and z lie
in [−1, 0]. Then, the cast to unsigned short gives the set {0, 65535}
(assuming that short is 16-bit long), which is abstracted as the whole
range [0, 65535]. Thus, an interval analysis finds that x is full range
[−32768, 32767], while it is in fact in [−2, 0]. To solve this issue, we
have added to Astrée a domain of modular intervals that can ex-
press properties of the form x ∈ [a, b] + cZ. Such properties are ob-
viously invariant by any operation that is invariant modulo dZ when-
ever c divides d (for instance, d = 2n when converting between signed
and unsigned n−bit integers). Given y, z ∈ [−1, 0], we can derive the
information (unsigned short)y, (unsigned short)z ∈ [−1, 0] + 216Z,
then (unsigned short)y + (unsigned short)z ∈ [−2, 0] + 216Z, and
finally x ∈ [−2, 0] + 216Z. A reduction with the interval information
x ∈ [−32768, 32767] gives x ∈ [−2, 0], which is the most precise result.

3.9.3 Abstraction of floating-point computations

Many control/command software rely on computations that are de-
signed with the perfect semantics of reals R in mind, but are actually
implemented using hardware floating-point arithmetics, which incurs
inaccuracies due to pervasive rounding. Rounding can easily accumu-
late to cause unexpected overflows or divisions by zero in otherwise well-
defined computations. An important feature of Astrée is its sound
support for floating-point computations following the IEEE 754–1985
[IEEE Computer Society, 1985] semantics.

Reasoning on floating-point arithmetics is generally difficult be-
cause, due to rounding, most mathematical properties of operations
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float x,y,z;
x = 1.000000019e+38;
y = x + 1.0e21;
z = x - 1.0e21;
r = y - z;
__ASTREE_assert(( r == 2.0e21 ));

Figure 3.15: Program triggering an assertion failure due to unintuitive floating-
point rounding.

are no longer true, for instance, the associativity and distributivity
of + and ×. Consider the simple program in Figure 3.15. Accord-
ing to standard algebraic rules, one would expect that r = y − z =
(x + 1021) − (x − 1021) = 2 × 1021. However, due to rounding, we ac-
tually get y = z, and so, r = 0, which triggers an assertion failure
runtime error.

Conceptually, a floating-point operation is defined in two steps: first
the exact real result is computed, and then it is rounded either to
the floating-point number immediately greater or lower than the exact
real result, depending on the current rounding mode (which can be: to
nearest, towards +∞, −∞, or 0). Note that rounding is monotonic. A
consequence is that interval arithmetics, and so, the interval domain
(§3.9.1), are very easy to adapt soundly to floating-point arithmetics:
it is sufficient to evaluate interval bounds with floating-point arith-
metics, rounding the upper bound towards +∞ and the lower bound
towards −∞ (to account for all possible rounding modes). However,
other domains (such as octagons in §3.9.4 or filters in §3.10.1) rely on
symbolic manipulations of expressions that would not be sound when
replacing real operators with floating-point ones. Our solution is to ap-
ply a preprocessing step to floating-point expressions and turn them
soundly into expressions on reals, which can then be safely manipu-
lated. More precisely, Astrée implements an abstract domain [Miné,
2004a,b] able to soundly abstract expressions, i.e., a function f : X → Y

is abstracted as a (non-deterministic) function g : X → ℘(Y ) such
that f(x) ∈ g(x), at least for all x in some given reachable subset R
of X. Then, g can be soundly used in place of f , for all arguments
in R. In practice, a floating-point expression f(~x) appearing in the



3.9. General-purpose numerical abstractions 57

program source is abstracted as a linear expression with interval co-
efficients g(~x) = [α, β] +

∑
i[αi, βi] × xi, and R is some condition on

the bounds of variables. Note that + and × in g now denote real ad-
ditions and multiplications and no longer floating-point ones, and so,
g can be fed to abstract domains assuming a real semantics. Interval
linear expressions have been selected because they can easily be ma-
nipulated symbolically (they form an affine space) while the intervals
provide sufficient expressiveness to abstract away complex non-linear
effects (such as rounding or multiplication) as non-determinism. For
instance, the C statement Z = X + 2.f * Y, where X, Y, and Z are
single-precision floats, will be linearized as [1.9999995, 2.0000005]Y +
[0.99999988, 1.0000001]X+[−1.1754944×10−38, 1.1754944×10−38]. Al-
ternatively, under the hypothesis X, Y ∈ [−100, 100], it can be linearized
as 2Y+X+[−5.9604648×10−5, 5.9604648×10−5], which is simpler (vari-
able coefficients are now scalars and not intervals) but exhibits a larger
constant term (i.e., absolute rounding error). In more complex cases,
such as multiplying two variables X*Y, one variable must be turned
into an interval so that one obtains an interval linear form [a, b]× X or
[a′, b′] × Y. In this case Astrée use specific heuristics to select which
sub-expression to abstract as intervals. Note that the linearization is
not static (fixed before the analysis starts) but dynamic as it often needs
information on variable bounds at the point where the expression is
evaluated, and this information is computed on-the-fly by the analysis
itself. Finally, because all operations in the expression abstract domain
can be broken down to (real or floating-point) interval arithmetics, it
can be soundly implemented using floating-point arithmetics with out-
wards rounding, which guarantees its efficiency. Other, more precise
abstractions of floating-point computations exist [Goubault, 2001], but
are not used in Astrée; the reason is that they are more costly, while
the extra precision is not useful when checking solely for the absence
of runtime errors.

An additional complexity in floating-point arithmetics is the pres-
ence (e.g., in inputs) of special values +∞, −∞, and NaN (Not a Num-
ber), as well as the distinction between +0 and −0. Thus, a floating-
point type is almost but not exactly a finite subset of R. The presence
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int x,y;
if (x > y) x = y;
if (y <= 10) {

// here, x <= 10
}

Figure 3.16: Program fragment showing the need for relational properties.

void main()
{

int i;
int x = 0;
for (i=0; i<1000; i++)

if (random()) x++; else x = 0;
}

Figure 3.17: Simple loop requiring an octagonal loop invariant.

of a special value is abstracted as a separate boolean flag in the abstrac-
tion of each floating-point cell, while 0 actually abstracts both concrete
values +0 and −0. Special values are propagated according to the IEEE
754 rules [IEEE Computer Society, 1985], which are sometimes subtle
(for instance, NaN compares unequal to all values, including NaN it-
self) and, additionally, either using or generating special values in or as
a result of some arithmetic operation is reported as a runtime error by
Astrée (this includes in particular floating-point arithmetic overflows
and divisions by zero). Moreover, Astrée checks that an expression
does not compute any special value before performing symbolic ma-
nipulations defined only over reals (otherwise, such manipulations are
disabled locally and only interval arithmetics is used).

3.9.4 Octagons

Given a finite set Vn of numerical cells, we denote by Oct(Vn) the subset
of linear expressions with unit coefficients and at most two variables:
Oct(Vn) , { ±X ± Y | X, Y ∈ Vn } ∪ { ±X | X ∈ Vn }. The octagon
domain [Miné, 2001, 2004b, 2006a] abstracts a concrete set of points
X ∈ ℘(Vn → R) as a finite map αOct(X) : Oct(X) → (R ∪ {+∞})
defined as αOct(X)(e) , maxx∈X e(x), that is, it expresses the tightest
set of constraints of the form ±X ± Y ≤ c or ±X ≤ c (i.e., with c
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void main()
{

int x, y, s, d, r;
y = 0;
while (1) {

x = inputX(); // in [-128,128]
d = inputD(); // in [0,16]
s = y;
r = x - s;
y = x;
if (r <= -d) y = s - d; else
if (r >= d) y = s + d;

}
}

Figure 3.18: Rate limiter.

minimal) that encloses X. Then, γOct(S) is the set of points that satisfy
the conjunction of the constraints of the form e ≤ S(e), for every
e ∈ Oct(Vn). The name octagon comes from the shape of γOct(S) in
two dimensions.

The octagon domain is able to express relationships between vari-
ables (unlike non-relational domains, such as the interval or congruence
domains). It is often necessary to compute, at least locally, on such
properties even if we are interested only in variable bounds eventu-
ally. Consider, for instance, the program fragment in Figure 3.16 that
bounds x by y before testing whether y ≤ 10. Obviously, at line 4, we
also have x ≤ 10. Although this is an interval property, the interval
domain will not be able to infer it. Indeed, it does not track the rela-
tionship x ≤ y which is required to deduce x ≤ 10 from y ≤ 10, while
the octagon domain does. Another, more subtle, example is the case
of loops, such as that of Figure 3.17 that increments x in a loop with
index i. In order to prove that x ≤ 1000 when the loop exits (which is a
purely interval property), it is required to find the relational invariant
loop x ≤ i first, and combine it with the loop exit condition i = 1000,
which is possible with the octagon domain but not the interval one.
Unlike the case of Figure 3.16, the required relation does not appear
syntactically in the program. Our last example is the program of Fig-
ure 3.18, extracted from an actual use case. It is a synchronous loop
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that takes as input in x a flow of numbers in the interval [−128, 128]
and outputs a flow of numbers in y which tries to follow the input x but
is constrained to change (in absolute value) between two iterations no
faster than d (which is also set dynamically in [0, 16] at each iteration).
The variable s stores the output value at the last iteration, and r stores
the actual rate of change. When evaluating either branch bounding y,
the interval domain cannot maintain the relation between r, x, s, and
d; hence, the assignment y = s - d; (respectively, y = s + d;) decre-
ments (respectively, increments) the lower (respectively, upper) bound
of y by 16 at each iteration. Hence, the interval domain cannot find any
finite bound and will warn of spurious overflows. In fact, some simple
linear arithmetics can show that y stays in the interval [−128, 128].
Indeed, the polyhedra domain [Cousot and Halbwachs, 1978], able to
represent and manipulate affine expressions, could find this exact re-
sult. The octagon domain is less precise: it cannot handle statements
involving three variables (such as r = x - s;) exactly. Nevertheless,
approximate semantic functions can be designed (such as inferring that
r−x ≤ −min s, which has an octagonal form), so that |y| ≤M becomes
an inductive loop invariant for any M ≥ 144 (an inductive invariant
is an invariant that is true when entering the loop the first time and
that, if assumed true at some loop iteration, is sufficient to prove in
the abstract domain that it is also true of the next iteration). When
combined with a widening with thresholds (§3.9.1), Astrée deduces
automatically that |y| is smaller than the smallest threshold greater
than 144. While not as good as the result obtained with a polyhedra
analysis, it is sufficient to prove the absence of arithmetic overflow.

The octagon domain is based on a matrix data-structure [Larsen
et al., 1997] with memory cost O(|Vn|2), and shortest-path closure al-
gorithms with time cost O(|Vn|3). This is far less costly than general
polyhedra [Cousot and Halbwachs, 1978] (which have exponential cost),
yet octagons correspond to a class of linear relations common in pro-
grams. As the interval domain, the octagon domain can be implemented
efficiently in floating-point arithmetics. Moreover, it can abstract inte-
gers (including pointer offsets) and floating-point arithmetics (provided
these are linearized, as in §3.9.3), and even infer relationships between
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cells of different type. For instance, the original code that inspired the
rate limiter in Figure 3.18 was actually a floating-point computation,
for which the octagon domain can prove the absence of runtime error
and bound the output |y| by approximately 144.00005 (taking rounding
errors into account).

3.9.5 Decision trees

The octagons abstract domain expresses linear numerical relations.
However, other families of relations have to be expressed and inferred
in order to ensure the success of the verification of absence of runtime
errors. In particular, when some integer variables are used as booleans,
relations of the form “if x is (not) equal to 0 then y satisfies property
P” may be needed, especially if part of the control-flow is stored into
boolean variables.

For instance, let us consider the program fragment in Figure 3.19.
This program is safe in the sense that no division by 0 will occur since
the division is performed only when b denotes the boolean value true
(i.e., is not equal to 0), that is only when x is greater than 6 (so that
x - 4 is not 0). However, this property can be proved only if a re-
lation between b and x is established; otherwise, if no information is
known about x at the beginning of the program, no information will be
gained at the entry of the true branch of the “if” statement, so that a
division by 0 alarm should be raised. In such cases, linear constraints
are of no help, since only the boolean value of b matters here. Thus,
we use a relational abstraction where some variables are treated as
boolean whereas other variables are treated as pure numeric variables.
Abstract values consist in decision trees containing numeric invariants
at the leaves. Internal nodes of the trees are labeled by boolean vari-
ables and the two sub-trees coming out of an internal node correspond
to the decision on whether that variable is true or false. The kind of in-
variants that can be stored at the leaves is a parameter of the domain.
By default in Astrée, the leaf abstract domain is the product of ba-
sic inexpensive domains, such as the interval and congruence abstract
domains. An example decision tree with two boolean variables (B1 and
B2) and two numeric variables (X and Y ) is depicted in Figure 3.20.
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int b,x,y;
b = (x >= 6);
[...]
if (b) y = 10 / (x - 4);

Figure 3.19: Program fragment requiring partitioning.
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Figure 3.20: Decision tree.

The concretization of such a tree comprises all the stores which sat-
isfy the numeric condition which can be read at the leaf of the unique
branch which it satisfies (i.e., such that it maps each variable into the
boolean value assigned to it on the branch). In the example of Fig-
ure 3.19, the required decision tree needs simply state that “when b is
true, x is greater than 6.”

This abstraction retains some of the properties of binary decision
diagrams [Bryant, 1986]: the efficiency is greatly improved by order-
ing the boolean variables and using sub-tree sharing techniques (for
instance, in Figure 3.20, when B2 is false, then the values of X and Y
do not depend upon the value of B1, hence the numerical abstract leaf
value can be shared).

This abstract domain defines a form of partitioning in the sense of
§2.16: given a boolean tree, we can express its concretization as the
join of the concretization of the boolean condition at each leaf inter-
sected with a set of states depending on the branch. Yet, it operates in
a very different manner compared to trace partitioning (§3.6): indeed,
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the boolean decision trees abstract domain is based on partitions of the
set of current states, and not traces. This remark has a great impact
on the definition of transfer functions: partitions are not affected by
control-flow branches (as in trace partitioning); however, when an as-
signment is made, partitions may need to be modified (which is not the
case with trace partitioning). For instance, if a program contains the
assignment x = x || y, then some partitions need to be merged (after
the assignment, x is true if and only if either x or y was true before) or
intersected (after the assignment, x is false if and only if both x and y
were false before).

3.9.6 Packing

Although the octagon domain has a very light, cubic cost compared to
many relational domains (such as polyhedra [Cousot and Halbwachs,
1978]), it would still be too high for embedded programs with tens of
thousands variables as found in aerospace. The same complexity issue
occurs for boolean decision trees. A practical solution implemented in
Astrée is not to try and relate all cells together, but make many small
packs of cells. This solution is adequate in practice since it is usually
not meaningful to track relations between all pairs of variables in the
program. For octagons, a simple syntactic pre-analysis groups cells in
a neighbourhood where they appear to be interdependent. More pre-
cisely, a pack is associated to each syntactic program block, and when
two or more variables are used in the same expression, they are put
into the pack corresponding to the closest enclosing block. Additionally,
variables in expressions at the boundary between two blocks (appear-
ing, e.g., in the test part of “if” statements or as loop indices) are stored
in both packs. Then, an octagon is associated to each pack, to relate
cells of the variables in this pack, but no relation is kept between cells
in distinct packs. Syntactic blocks are only used in the pre-analysis,
as boundaries to limit the size of dependency chains and avoid getting
large packs but, during the analysis, all the packs are tracked even
when outside the scope of the associated block. Note that a cell may
appear in several packs, in which case some non-relational interval in-
formation can still flow between these packs by reduction (§3.11). The



64 Verification of Synchronous Control/Command Programs

# lines # vars. # packs size
√
size2 3√size3

370 103 20 4 5.2 6.6
70 000 13 400 2 435 3.6 5.5 7.6

166 000 35 600 3 546 3.9 6.2 8.8
82 000 21 400 139 3.8 3.9 4

290 000 73 300 7 307 3.6 4.6 6
492 000 128 300 12 950 3.4 4.3 5.4
647 000 172 900 17 752 3.3 4.1 5.2
808 800 203 464 23 255 3 3.5 3.9

Figure 3.21: Octagon packing statistics on two families of avionic applications
(§3.14). sizen denotes the expectation of the size raised to the n−th power.

total cost thus becomes linear, as it is linear in the number of packs
(which is linear in the code size, and so, in the number of cells) and
cubic in the size of packs (which depends on the size of the considered
neighbourhoods, and is a constant). Figure 3.21 gives the number and
average size of octagon packs for two families of programs of increas-
ing size (described in more details in §3.14). The quadratic and cubic
expectation of pack size give a good idea of the expected (quadratic)
memory consumption and (cubic) time cost per pack, which appears to
be small and mostly independent from program size. Moreover, in our
experiments, cells tend to appear in less than two packs on average.

Boolean decision trees are also packed, but according to slightly
more semantic criteria. However, the pre-analysis is still very light, and
also results in a time and memory consumption that is experimentally
linear in the program size.

From a theoretical point of view, packing can also be viewed as
a particular case of a product abstraction. For instance, let us con-
sider the case of octagons. Given a finite set Vn of numerical cells,
the standard octagon abstraction Oct(Vn) would abstract functions in
℘(Vn → R). By contrast, the packing abstraction is based on the choice
of a family V1, . . . ,Vp of subsets of Vn, and using a product of abstrac-
tions D1× . . .×Dp, where Di forgets about cells not in Vi and uses an
octagon to abstract the cells in Vi. Each Di is thus itself obtained by
composing a “forget abstraction” with the abstraction into Oct(Vi).



3.10. Domain-specific numerical abstractions 65

3.10 Domain-specific numerical abstractions

3.10.1 Filters

Embedded software usually interact with a physical external environ-
ment that is driven by continuous differential equations. Streams of
values can be read from this external environment by using sensors.
Then, digital filters are small numerical algorithms which are used to
smooth such streams of input values and implement differential equa-
tions. In the software, these equations are discretized. Moreover, they
are usually linearized as well. It is hardly possible to bound the range
of the variables that are involved in digital filtering algorithms with-
out using specific domains. In Astrée, we have implemented a specific
domain [Feret, 2004] that deals with linear filters (which encode dis-
crete linear equations). This domain uses both quadratic inequalities
(representing ellipses) and formal expansions.

More precisely, a simple linear filter is implemented by a linear
recursion, where the value of a variable o at each loop iteration is
defined as a linear combination of an input value i and a fixed number
k of the values of the variable o at the last k iterations. Important
cases are first order filters, when k = 1, and second order filters, when
k = 2. Denoting as on (respectively, in) the value of the variable o
(respectively, i) at the n-th loop iteration, it follows that on+k = in+k+∑

1≤j≤k αj · on+k−j . An appropriate change of variables can be found
[Feret, 2005b] by factoring the polynomial Xk −

∑
1≤j≤k αj · Xk−j ,

so as to express the sequence (on)n∈N as a linear combination of the
output values of some first and second order (simple) linear filters.
Then, first order filters can be analyzed accurately by using intervals
and widening with thresholds (§3.9.1), whereas second order filters can
be analyzed by using filled ellipses relating the values of two consecutive
outputs. In the later case, the templates for the constraints (that is,
the coefficients of the quadratic forms which describe the ellipses) are
extracted directly from the analyzed code: for instance, the appropriate
quadratic form for bounding the output value of a recursion of the form
on+2 = α1 · on+1 + α2 · on + in+2 is on+2 − α1 · on+2 · on+1 − α2 · on+1.
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In practice, filter algorithms do not use only the last input value at
each loop iteration, but a fixed number l of consecutive input values.
That is to say, recursions are of the form on+k =

∑
0≤j≤l βj · in+k−j +∑

1≤j≤k αj · on+k−j (instead of on+k = in+k +
∑

1≤j≤k αj · on+k−j).
One could abstract the overall contribution of the input values at
each iteration as one global value, but this would lead to a very in-
accurate abstraction, since the contributions of the same input value
at successive loop iterations are likely to partially cancel each other
(e.g., when the βj do not have the same sign). A better accuracy
can be obtained by isolating the contribution of the last N input
values, where N is a fixed parameter. Doing so, we can express, for
n + k > N , the value of on+k as the sum o′n+k +

∑
0≤j<N δ

N
j · in+k−j

where the linear combination
∑

0≤j<N δ
N
j · in+k−j encodes the exact

contribution of the last N input values, and the new variable o′n+k en-
codes the output value of a fictitious filter which satisfies the recursion
o′n+k =

∑
0≤j≤l βj ·εNj · in+k−N−j +

∑
1≤j≤k αj ·o′n+k−j . The coefficients

(δ
N

j ) and (ε
N

j ) can be computed automatically. If they were computed
in the real field, the coefficients (εNj ) would converge towards 0, so that,
the bigger N is chosen, the better the accuracy of the abstraction would
be (we would even converge towards the exact analysis of the filter).
Yet, in the implementation of the domain, the coefficients (δNj ) and
(εNj ) are safely over-approximated by lower and upper floating-point
bounds. This ensures the soundness of the abstract domain, but the
drawback is that, if N is chosen too big, then the domain starts loos-
ing some accuracy because of rounding errors. The best choice for N
is computed automatically for each filter in the program. Then, a safe
bound for the value of the sequence (o′n) is computed by abstracting
the overall contribution of the input values at each iteration as one
global value. The loss of information is amortized by the coefficients
(εNj ) which are very small.

Figure 3.22 presents an example implementation of a second order
digital filter that uses the last two inputs (i[0], i[1]) from a stream
(input_x) and the last two outputs (o[0] and o[1]) to compute the
next output (p), but can also be re-initialized non-deterministically
(input_init) to match the current input. An example execution trace



3.10. Domain-specific numerical abstractions 67

void main()
{

static float i[2], o[2];
while (1)
{

float p;
float x = input_x();
if (input_init())
{

i[0] = x;
o[0] = x;
p = x;

}
else

p = (0.5 * x) - (0.7 * i[0]) + (0.4 * i[1]) +
(1.5 * o[0]) - (0.7 * o[1]);

i[1] = i[0];
i[0] = x;
o[1] = o[0];
o[0] = p;
output(p);

}
}

Figure 3.22: Second order digital filter.

(i.e., the successive values o[1] as a function of o[0]) is presented
on the left of Figure 3.23, which shows clearly that such traces are
contained in an ellipse (on the right). More importantly, Figure 3.24
shows that the interval domain cannot express any accurate inductive
loop invariant, while ellipses can. Indeed, denoting by F the effect (as a
geometric transformation) of one iteration of the filter loop and by X a
set of environments (as points with coordinate o[0],o[1]), then F (X)
is a slightly rotated smaller version ofX. No boxX satisfies F (X) ⊆ X,
while this is possible for an ellipse Y of adequate parameters, which are
automatically discovered by widening in the digital filter domain. An
ellipse inductive invariant then implies a box (non-inductive) invariant,
i.e., variable bounds. For instance, assuming that the values returned
by input_x are in the range [−10, 10], Astrée is able to deduce that
the output is bounded by [−14.169716, 14.169716] and that there is no
arithmetic overflow.
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Figure 3.23: Left: example execution trace of a second order digital filter (o[1] as
a function of o[0]), and right: its over-approximation as an ellipsoid.

F

F

F(Y)

Y
X
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Figure 3.24: Effect of one iteration of the loop in Figure 3.22 on a box and on an
ellipse.
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3.10.2 Exponential evolution in time

Critical embedded software often contain computations that would be
stable if they were computed in real arithmetics, but which may diverge
slowly due to the accumulation of floating-point rounding errors. An
example is a variable x that is divided by a constant c at the beginning
of a loop iteration, and then multiplied by the same constant c at the
end of the loop iteration (this kind of pattern usually occurs in codes
that are automatically generated from a higher-level specification, e.g.,
to implement unit conversion). Another example is when the value of a
variable x at a given loop iteration is computed as a barycentric mean
of the values of the variable x at some (not necessary consecutive)
previous loop iterations.

We use geometric-arithmetic series [Feret, 2005a] to safely bound
such computations. The main idea is to over-approximate, for each
variable x, the action of the loop iteration over the absolute value of x
as a linear transformation. Doing so, we get a bound for the absolute
value of x that depends exponentially on the loop counter t (counting
clock ticks). More precisely, we get a constraint of the following form:

|x| ≤ (1 + a)t ·
(
m−

b

1− a

)
+

b

1− a
,

where m is a bound on the initial absolute value of the variable x, t is
the value of the loop counter, and a and b are very small coefficients
inferred by the analysis. More precisely, a is of the order of magnitude
of floating-point relative errors and b is of the order of magnitude of
floating-point absolute errors. For instance, if t ranges between 0 and
3, 600, 000 (which corresponds to 10 hours of computation with 100
loop iterations per second) with a ' 10−7, which corresponds to com-
putations with 32-bit floating-point arithmetics, we get (1+a)t ' 1.43,
whereas with a ' 10−13, which corresponds to computations in 64-bit
floating-point arithmetics, we get (1 + a)t ' 1 + 10−7. In practice,
(1 + a)t is small enough so as to prove that these slow divergences do
not cause overflows.
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void mult(double dst[4], const double a[4], const double b[4])
{

dst[0] = a[0]*b[0] - a[1]*b[1] - a[2]*b[2] - a[3]*b[3];
dst[1] = a[0]*b[1] + a[1]*b[0] + a[2]*b[3] - a[3]*b[2];
dst[2] = a[0]*b[2] + a[2]*b[0] + a[3]*b[1] - a[1]*b[3];
dst[3] = a[0]*b[3] + a[3]*b[0] + a[1]*b[2] - a[2]*b[1];

}

Figure 3.25: Quaternion multiplication.

3.10.3 Quaternions

Quaternions provide a convenient mathematical notation for repre-
senting orientations and rotations of objects in three dimensions by
a tuple of four numbers. Quaternions are widely used in spatial con-
trol/command programs. In order to handle rotations, quaternions are
fitted with some algebraic operators. Basically, quaternions can be
added +, subtracted −, multiplied by a scalar ·, multiplied together
×, and conjugated ·. Quaternions are usually converted to rotation
matrices and conversely. An example implementation of quaternion
multiplication is presented in Figure 3.25. Obviously, applying many
such operations in sequence without care can may result in arithmetic
overflows. An interesting value for a quaternion q = (u, i, j, k) is its
norm ||q|| which is defined as ||q|| ,

√
u2 + i2 + j2 + k2. Quaternions

are usually meant to be normalized, that is to have always a unit norm:
||q|| = 1. This ensures in particular that all quaternion coefficients are
smaller than 1 in absolute value, and so, that quaternion operations
do not cause overflow. Yet, because of rounding errors and approxi-
mated algorithms, their norm may diverge along the execution of the
program. Thus, quaternions are often re-normalized (i.e., divided by
their norm) so as to avoid overflows. Figure 3.26 presents an example
renormalization function, including a protection against division by a
too small norm (to avoid division by zero and overflow errors).
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void normalize(double dst[4], const double a[4])
{

int i;
double norm = sqrt(a[0]*a[0] + a[1]*a[1] +

a[2]*a[2] + a[3]*a[3]);
if (norm < 0.001)
{

dst[0] = 1.;
for (i=1; i<4; i++) dst[i] = 0.;

}
else
{

for (i=0; i<4; i++) dst[i] = a[i] / dst;
}

}

Figure 3.26: Quaternion normalization.

Thankfully, the norm behaves well with respect to algebraic opera-
tions, as stated by the following properties:

| ||q1|| − ||q2|| | ≤ ||q1 + q2|| ≤ ||q1||+ ||q2|| (triangle inequality)
| ||q1|| − ||q2|| | ≤ ||q1 − q2|| ≤ ||q1||+ ||q2|| (triangle inequality)

||λ · q|| = |λ| · ||q|| (positive homogeneity)
||q1 × q2|| = ||q1|| · ||q2||

||q|| = ||q|| .
(3.1)

Since it is quite difficult to prove the absence of overflows with-
out tracking the computations over quaternions, we have designed
a quaternion domain. This domain handles predicates of the form
Q(x1, x2, x3, x4, I), where x1, x2, x3, x4 are four variables and I is an
interval. The meaning of such a predicate is that the value of the ex-
pression

√
x2

1 + x2
2 + x2

3 + x2
4 ranges within the interval I. So these pred-

icates encode the properties of interest in our domain. In order to infer
such properties, we need intermediate properties, so as to encode the
fact that a given variable is the given coordinate of a quaternion that is
being computed. As a matter of fact, the domain also handles predicates
of the form P (x, i, φ, ε), where x is a variable, i is an integer in the set
{1, 2, 3, 4}, φ is an arithmetic formula over quaternions as defined by the
following grammar: φ , [x1, x2, x3, x4] | λ·φ | φ1×φ2 | φ1+φ2 | φ, and ε
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is a non-negative real number. The meaning of a predicate P (x, i, φ, ε)
is that the value of the i-th coordinate of the quaternion denoted by
φ ranges in the interval [x − ε, x + ε], this way, the number ε can be
used to model the rounding errors accumulated during operations over
quaternions. The interpretation of arithmetic formulas is the following:
the formula [x1, x2, x3, x4] denotes the quaternion the four coordinates
of which are the values of the variables x1, x2, x3, and x4, whereas other
constructs denote the algebraic operations over quaternions.

Whenever the four coordinates of a given quaternion have been
discovered (that is to say that Astrée has inferred four predicates
P (x1, 1, φ, ε1), P (x2, 2, φ, ε2), P (x3, 3, φ, ε3), and P (x4, 4, φ, ε4) where φ
is a formula, x1, x2, x3, and x4 are four program variables, and ε1, ε2,
ε3, ε4 are four non-negative real numbers), the corresponding quater-
nion is promoted (that is to say that Astrée infers a new predicate
Q(x1, x2, x3, x4, I) where the interval I is obtained by applying the for-
mulas about norm (3.1) and the first triangle inequality in order to
handle the contribution of rounding errors, which is encoded by the
numbers ε1, ε2, ε3, and ε4). Moreover, the depth of the formulas φ
which can occur in predicates can be bounded for efficiency purposes.

Some tuples (x1, x2, x3, x4) of variables can be declared as a quater-
nion with a norm in a given interval I by using a directive, so that
the end-user can assert some hypotheses about volatile inputs. In such
a case, Astrée assumes that the predicate Q(x1, x2, x3, x4, I) holds,
without any check. Moreover, whenever the values x1, x2, x3, x4 of
four variables x1, x2, x3, and x4 are divided by the value of the expres-
sion

√
x2

1 + x2
2 + x2

3 + x2
4, Astrée promotes them to a new quaternion

and computes an interval of its norm.

3.11 Combination of abstractions

Astrée uses dozens of abstract domains which can interact with one
another [Cousot et al., 2006]. These interactions enable Astrée to
refine abstract properties, as with a partially reduced product of ab-
stract domains (§2.15), but also to refine their predicate transformers.
Special care has to be taken when reduction is used after convergence
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acceleration (widening or narrowing) steps, in order not to break the
construction of inductive invariants: reductions should not break ter-
mination of the analysis.

In Astrée, abstract domains are implemented as independent
modules that share a common interface. Each module implements some
primitives such as predicate transformers (abstract assignments, ab-
stract guards, control-flow joins) and convergence acceleration primi-
tives (widening and narrowing operators). Moreover, in order to enable
the collaboration between domains, each abstract domain is fitted with
some optional primitives so as to express properties about abstract
states in a common format which can be understood by all abstract
domains. Basically, a reduction has to be requested by a computation
in an abstract domain. We distinguish between two kinds of reduc-
tions: either the reduction is requested by the domain which misses
an information or by the domain which discovers an information. This
asymmetry enables a fine tuning of the reduction policy: for efficiency
reasons, it is indeed important not to consider all common properties
between each computation step.

We now give more details about these two kinds of reduction. As
already mentioned, abstract domains can at crucial moments ask for a
constraint that they miss and that they need in order to perform accu-
rate computations. For that purpose, we use a so-called input channel.
The input channel carries a collection of constraints that have been in-
ferred so far. Moreover, the pool of available constraints can be updated
after each computation in an abstract domain. For efficiency reasons,
the input channel is dealt with in a lazy way, so that only computations
that are used at least once are performed; moreover, the use of a cache
avoids performing the same computation twice. Thanks to the input
channel, a domain may ask for a constraint about a precondition (that
is, the properties about the state of the program before the currently
computed step). For instance, at the first iteration of a second order
filter, no quadratic constraint has been inferred yet; thus, the filter do-
main asks for the range of the variables that contain the first output
values of the filter, so as to build an initial ellipse. Besides, a domain
may also ask for a constraint about a post-condition (that is, the prop-
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erties about the state after the currently computed step). For instance,
in some cases, the octagon domain is not able to compute the effect of a
transfer function at all. Consider for instance, the assignment x = y on
an octagon containing x, but not y. In such a case, the octagon domain
relies on the underlying interval domain to give the actual range of x in
the post-condition. It is worth noting that the order of computations
matters: only the properties which are inferred by the domains that
have already performed their computation are available.

As a consequence, it is necessary to provide another channel that
enables the reduction of a domain by a constraint that will be computed
later. For that purpose, we use a so-called output channel. The output
channel is used whenever a new constraint is discovered and the domain
which has inferred this constraint wants to propagate this constraint
to the domains which have already performed their computation. For
instance, whenever a filter is iterated, the interval for the value of the
output stream that is found by the filter domain is always more precise
than the one that has been discovered by the interval domain: the
bound that is found by the filter domain is sent via the output channel
to the interval domain.

Most reduction steps can be seen as a reduction of the abstract
state, i.e., a partially reduced product (as defined in §2.15). Let us
denote by D the compound domain, and by γ the concretization func-
tion, which maps each abstract element d ∈ D to a set of concrete
states. A partial reduction operator ρ is a conservative map, that is to
say γ(d) ⊆ γ(ρ(d)) for any abstract element d ∈ D. Replacing d with
ρ(d) in a computation is called a reduction of an abstract state. Yet, in
some cases, collaborations between domains also enable the refinement
of predicate transformers. For instance, most abstract domains use lin-
ear expressions (with interval coefficients) and, whenever an expression
is not linear, it is linearized by replacing some sub-expressions with
their interval (§3.9.3).

There is no canonical way to linearize an expression and Astrée
has to use some heuristics. For instance, when linearizing the product
of the values of the variables x and y, Astrée has to decide to replace
either the variable x with its range, or the variable y with its range.
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This choice is made by asking properties about the values of x and y
to the other domains (via the input channel).

Lastly, reductions can also be used to refine the result of an extrap-
olation (widening) or interpolation (narrowing) step. Such refinements
must be done carefully, since they may break the convergence acceler-
ation process, leading to non-termination of the analysis. Examples of
problematic interactions between extrapolation and reduction can be
found in [Miné, 2004b, p. 85]. Even worse, alternating the application
of a widening operator with a classic join operator during upward it-
eration, or intersecting at each iteration step the abstract state with a
constant element may lead to non-termination. More formally, [Cousot
et al., 2006, §7] presents an example of a sequence (dn) ∈ DN of ab-
stract elements in an abstract domain D that is related to a set of
states by a concretization map γ and that is fitted with a join oper-
ator t (such that γ(d1) ∪ γ(d2) ⊆ γ(d1 t d2)), a meet operator (such
that γ(d1) ∩ γ(d2) ⊆ γ(d1 u d2)), a reduction operator ρ (such that
γ(d) ⊆ γ(ρ(d))), so that none of the three sequences (an), (bn), (cn)
defined as follows: a1 = d1

an+1 = (an
`
dn+1) u d0

b1 = d1

bn+1 = ρ(bn
`
dn+1)


c1 = d1

c2·n+2 = c2·n+1 ∪ d2·n+2

c2·n+1 = c2·n
`
d2·n+1,

is ultimately stationary.
Yet, reducing the result of a widening is very important, so as to

avoid unrecoverable losses of information. In order to solve this issue,
we ask specific requirements on abstract domains, their primitives, and
the reduction steps ρ` that may be used after widening steps. Namely,
we require that (1) each abstract domain D is a finite Cartesian prod-
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uct
∏
j∈J Dj of components (Dj ,≤j) that are totally ordered sets (for

instance, an interval for a given program variable is seen as a pair
of two bounds, an octagon is seen as a family of bounds, etc.), that
(2) the join, meet, and widening operators are defined component-
wise from operators over the components (e.g., for intervals, indepen-
dent widening on each bound), that (3) for each component j ∈ J ,
the join operator tj , the meet operator uj , and the widening oper-
ator `

j are compatible with the total order ≤j (that is to say, for
any j ∈ J , aj , bj ∈ Dj , we have: aj ≤j aj tj bj , bj ≤j aj tj bj ,
aj uj bj ≤j aj , aj uj bj ≤j bj , aj ≤j aj

`
j bj , and bj ≤j aj

`
j bj)

and that (4) there are no cycle of reductions between components —
that is to say, there is an acyclic relation → over J , so that for any
two abstract elements d, d′ ∈ D (noting d = (xj)j∈J , d′ = (x′j)j∈J ,
ρ`(d) = (yj)j∈J and ρ`(d′) = (y′j)j∈J), we have: for any j ∈ J ,
[xj = x′j and ∀k ∈ J : k → j =⇒ xk = x′k] =⇒ yj = y′j . These
assumptions ensure the termination of the analysis even if the reduc-
tion operator ρ` is applied to each upward iterate, and if, for each
component j ∈ J , some widening computations are replaced with join
computations, provided that for each component j ∈ J , an unbounded
number of widening steps would be applied during each infinite se-
quence. Last, it is worth noting that other reduction steps can be per-
formed during the computation of predicate transformers (such as the
classic closure algorithm in the octagon domain).

3.12 Abstract iterator

Formally, the concrete collecting semantics of any program can be ex-
pressed as a single fixpoint equation X = lfp⊆F , where the function F
is derived from the text of the program. The abstract semantics has a
similar form X] = lfp⊆]

F ], where X] is representable in memory, F ] is
built from calls to abstract domain functions, and the equation can be
solved algorithmically by iteration with widening. However, maintain-
ing X] in memory is not feasible: due to partitioning by control state
(§3.4), X] has as many components as program locations in the fully
unrolled source code (that numbers in millions).



3.12. Abstract iterator 77

Instead, Astrée operates similarly to an interpreter which would
execute a program following its control-flow, except that it maintains an
abstract element representing many prefix traces ending at the current
control point instead of an environment representing a single concrete
memory snapshot. For instance, if the current iterator state is the con-
trol state and abstract component pair (c :: `,X]

c) (where :: denotes
the concatenation of a stack of program locations c with a location
`) and the program has some assignment X = Y between locations
` and `′, then the effect of the assignment on X]

c is computed as Y ]
c ,

and the new iterator state is (c :: `′, Y ]
c ). The abstract state X]

c can
then be erased from memory. The situation is a little more complex
for conditionals “if . . . then . . . else” and other forms of branching (such
as calls to function pointers with many targets) as branches must be
explored independently and then merged with an abstract union ∪],
which requires storing an extra abstract component. Note that such
independent computations can be performed in parallel [Monniaux,
2005] on multiprocessor systems and networks to achieve better anal-
ysis times. Loops also require an extra abstract component to store
and accumulate iterations at the loop head. We only need to apply the
widening ` at the loop heads, stabilizing inner loops first and outer
loops last. Moreover, more precision can be obtained by bounded un-
rolling, i.e., analysing the first few iterations of the loops separately
from the rest. In the case of nested loops, a fixpoint for the inner loop
is computed for each iteration of the outer loop, i.e., loops nesting is
handled in a recursive way. While other techniques exist (such as com-
puting a single global fixpoint), prior work [Bourdoncle, 1993] suggests
that the recursive strategy is faster and more precise (although they are
not comparable in theory [Cousot and Cousot, 1992b]). Finally, the C
language features non-structured control flow transfer statements (i.e.,
jumps) such as goto, break, continue, and return. Astrée is es-
sentially a functional program; its interpreter is designed by structural
induction on the syntax tree of the program, which does not support
jumps easily. We handle them using continuations [Reynolds, 1993], a
standard solution to express the semantics of imperative (in particular
jump-based) programs in a functional way: additionally to a so-called
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direct flow of abstract information, the interpreter maintains abstract
elements corresponding to pending jump statements that have been en-
countered but the target of which have not been reached by the syntax
tree iterator yet.

The number of abstract components that need to be stored simul-
taneously at a given point depends only on the number of nested con-
ditionals, loops, and jumps, which is very small (i.e., a dozen) for most
programs. This iteration technique is less flexible than general itera-
tions, which can be optimized [Bourdoncle, 1993] while requiring that
X] is fully available in memory; however, it is much more memory-
efficient and can scale to very large programs.

3.13 Analysis parameters

Astrée has many configuration options to easily adapt the analysis
to a target program. This includes 148 command-line parameters, 32
directives that can be inserted at some points in the source-code, and
two configuration files.

A first set of parameters allows altering the concrete semantics.
This includes an Application Binary Interface file that sets the sizeof
and alignment of all C types, the endianess, and the default signedness
of char and bitfields. Then, some behaviors that are undefined in the C
standard and can give unexpected results can be set to be reported as
errors or not (e.g., integer overflow on explicit casts, implicit casts, or
arithmetic operations). In addition, the semantics of erroneous opera-
tions (such as integer overflows) can be selected (e.g., whether to use a
modular or non-deterministic semantics) to specify how to continue the
analysis after reporting an error. Finally, extra semantic hypotheses can
be provided in the form of ranges for volatile variables (e.g., modeling
inputs from the environment), C boolean expressions that are assumed
to hold at given program points (e.g., to model the result of a call to
an external library which is not provided), or a maximum clock tick
for which the synchronous program runs (so that Astrée can bound
the accumulation of rounding errors). The provided hypotheses should
be reviewed with the uttermost care as these are taken for granted
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by Astrée, and the results are sound only for executions where the
hypotheses actually hold.

A second set of parameters allows altering the abstraction per-
formed by Astrée, which has an influence on the efficiency and the
number of false alarms, without altering the concrete semantics. A first
set of flags allows enabling or disabling individual abstract domains so
that, e.g., Astrée does not spend its energy looking for quaternions in
code that is known not to contain any. Then, several abstract domains
have parameters to tweak the cost/precision trade-off. One such pa-
rameter, used in several domains, is the density of widening thresholds
(more thresholds means more iterations, that is, an increased cost,
but also the possibility of finding a tighter invariant and avoid false
alarms). Other aspects of loop iterations are also configurable, such as
the amount of unrolling (globally or on a per-loop basis), or decreas-
ing iterations. For costly domains, that are not used uniformly on all
variables (such as packed domains) or all program parts (such as trace
partitioning), the user can insert local directives to force the use of
these domains and improve the precision. Finally, the amount of array
folding can be configured, either globally or per-variable.

Various printing facilities are available, in particular the ability to
trace the abstract value of one or several variables to help discovering
the origin of alarms.

3.14 Application to aeronautic industry

The first application of Astrée (from 2001 up to now) was the proof
of absence of runtime errors in two families of industrial embedded
avionic control/command software [Delmas and Souyris, 2007]. These
are synchronous C programs which have the global form shown in Fig-
ure 3.27.

The analysis is an “open loop” in that the relationship between
the output variables at one iteration and input variables at the next
(i.e., the fact that outputs to actuators have an effect on the environ-
ment that in turn effects the sensors) is abstracted away (e.g., by range
hypotheses on inputs and requirements on outputs). A closed loop anal-
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declare input, output, and state variables
initialize state variables
loop for 10h

read input variables from sensors
update state and compute output
output variables to actuators
wait for next clock tick (10ms)

end loop

Figure 3.27: General form of a synchronous program.

ysis would have to take a more precise abstraction of the properties of
a model of the plant into account.

A typical program in the families has around 10 K to 200 K global
variables (half of which have floating-point type, the rest being integers
and booleans) and 100 K to 1 M lines of code (mainly in the “update
state and compute output” part). The program is automatically gen-
erated from a higher-level synchronous data-flow specification, which
makes the program very regular (a large sequence of instances of a few
hand-written macros) but very difficult to interpret (the synchronous
scheduler flattens higher-level structures and disperses computations
across the whole source code). Additional challenges include domain-
specific computations, such as digital filters, that cannot be analyzed
by classic abstractions.

To be successful, Astrée had to be adapted by abstraction
parametrization to each code family, which includes designing new ab-
stract domains (§3.10.1, §3.10.2), reductions (§3.11), and strategies to
apply costly generic domains only where needed (§3.6, §3.9.6). This
kind of hard-coded parametrization can only be performed by the anal-
ysis designers, but it is generally valid for a full family of similar pro-
grams. The initial development of Astrée and parametrization to the
first family took three years (2001–2003). The task of adapting As-
trée to the second program family in the same application domain
(2003–2004) was easier, as many abstract domains could be reused,
despite an increased software complexity and major changes in macro
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implementations and coding practices. In the end, user-visible config-
uration options (§3.13) are enough (if needed at all) for the industrial
end-users [Delmas and Souyris, 2007] to adapt the analysis to a specific
program instance in any supported family, without intervention from
the analysis designers.

Figure 3.28 presents benchmarks analyses on various programs of
increasing size from two families of embedded avionic control/command
software (smaller programs are actually representative fragments, while
larger ones are several development revisions of full programs). The
analysis was performed on our 64-bit 2.66GHz Intel server using a sin-
gle core (significant speed-ups can be achieved by using several cores,
as reported in [Monniaux, 2005], which is not discussed here). The
memory consumption is approximate as Astrée uses caches and a
garbage collector, but shows nevertheless that the analyses fit easily on
memory sizes that are currently mainstream. The number of alarms is
sufficiently low (a dozen or less) so that they can be examined by hand.
More importantly, industrial users [Delmas and Souyris, 2007] report
zero false alarm (i.e., proof of absence of runtime error) on programs
in these families after analysis parametrization.

In addition to these two families of software, Astrée was also used
to analyze two other kinds of software: two 45 000 lines self-test pro-
grams stressing the hardware before actual programs are run, and a
60 000 lines communication program that formats data from input
media to output media [Delmas and Souyris, 2007]. Although neither
are control/command, they are nevertheless embedded avionic software
written using similar programming guidelines and libraries, and run-
ning on the same platforms. Thus, Astrée proved sufficiently precise
(7 to 100 alarms) and fast (less than 2h) on these programs.

3.15 Application to space industry

The second application (2006–2008) of Astrée was the analysis of
space software [Bouissou et al., 2009]. Astrée could prove the absence
of runtime errors in a C version of the Monitoring and Safing Unit
(MSU) software of the European Space Agency Automated Transfer
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# lines time memory alarms
370 5s 205 MB 0

70 000 2h 10mn 740 MB 2
166 000 6h 14mn 1.2 GB 10
82 000 41mn 588 MB 2

290 000 7h 2mn 1.2 GB 3
492 000 13h 21mn 2.2 GB 2
647 000 22h 40mn 2.2 GB 13
808 800 50h 13mn 2.7 GB 1

Figure 3.28: Analysis with Astrée of two families of avionic applications.

Vehicle (ATV). The analyzed version differs from the operational one
written in Ada in that it is a C program generated from a Scade [Es-
terel Technologies] V6 model, but it is otherwise representative of the
complexity of space software, in particular the kinds of numerical al-
gorithms used.

This case study illustrates the effort required to adapt a specialized
analyzer such as Astrée to a new application domain. Although the
MSU software has some similarity with the avionic software of §3.14
(both are synchronous embedded reactive control/command software
featuring floating-point computations), it implements different math-
ematical theories and algorithms (such as quaternion computations)
that need to be supported in Astrée by the addition of new abstract
domains (§3.10.3). After specialization by the analysis designers, As-
trée could analyze the 14 K lines MSU software in under 1h, with zero
false alarm.

It is our hope that a tool such as Astrée could be used efficiently
by industrial end-users to prove the absence of runtime errors in large
families of software for the embedded control/command industry, once
a library of abstractions dedicated to the various application domains
(automotive, power plant, etc.) is available.
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3.16 Industrialization

First developed as a research prototype (starting from 2001), Astrée
has slowly matured into a tool usable by trained industrial engineers
[Delmas and Souyris, 2007]. Its success resulted in the demand to in-
dustrialize it, so as to ensure its compliance to software quality expec-
tations in industry (robustness, integration, graphical user interfaces,
availability on all platforms, etc.), its continuous development, its dis-
tribution and support. Since 2009, Astrée is developed, made com-
mercially available, and distributed [Kästner et al., 2010] by [AbsInt,
Angewandte Informatik], a company that develops various other (com-
plementary) abstract interpretation-based tools (e.g., to compute guar-
anteed worst case execution time [Heckmann and Ferdinand, 2004]).



4
Verification of Imperfectly-Clocked Synchronous

Programs

For safety and design purpose, it is frequent that a synchronous con-
trol/command software is actually built as several computers connected
by asynchronous communication channels. The clocks of these systems
may then desynchronize and the communication channels have some
latency. We now introduce a theory aiming at extending the static anal-
ysis of embedded systems to such sets of communicating imperfectly-
clocked synchronous systems. This theory enables the development of
a static analyzer independent of Astrée.

In the previous chapter, programs in the C language were analyzed.
In order to study the temporal properties of systems with imperfect
clocks, we assume that systems were first developed in a higher-level
language as it is often the case for embedded systems: we analyze sets
of synchronous language programs.

4.1 Motivation

The problem of desynchronization is often neglected. Some techniques
(e.g., alternating bit protocol) make sure to detect desynchronization
and are used commonly in the industry. But this may be easily imple-

84
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mented in erroneous way [Ginosar, 2003]. Another risk is to degrade
performance. For example, consider the system in Figure 4.1. It de-
picts two identical systems whose only computation is to perform the
boolean negation of their own previous output. They should therefore
implement two alternating boolean values. In the System 1 on the left,
an additional system compares the previous outputs of both systems
in order to check if both units agree.

But these computations are performed according to two clocks C
and C′. It may be that these clocks are synchronous. This case is de-
picted in the lower left part of Figure 4.1. The two alternating boolean
outputs of the two systems being always equal, the comparison always
results in no alarm (OK statement).

But maybe the clocks C and C′ are slightly desynchronized by a small
delay ε. This case is depicted in the lower right part of Figure 4.1. The
two alternating boolean outputs of the two systems are then almost al-
ways equal, but they differ near every clock tick. Then, the comparison
being made precisely on those tick, it always results in an alarm (“!=”
statement). However, this alarm is probably unnecessary in that case,
since the desynchronization delay is very small. This desynchronization
delay is in practice unavoidable, since clocks are physical objects and
cannot be perfect. This implementation of an alarm is therefore flawed.
Such errors cannot be always discovered by hand. Their detection has
to be done automatically and statically.

4.2 Syntax and semantics

We assume that each part of the synchronous software compiled for one
precise computer will execute according to the clock C of that computer
with a period (the time between two consecutive clock ticks) remain-
ing inside a known interval [µC, νC], with 0 < µC 6 νC. In the quasi-
synchronous framework introduced formally by Caspi et al. [2001], two
clocks supposed to tick synchronously are allowed to desynchronize in
the following way: at most two consecutive ticks of one of the clock may
happen between two consecutive ticks of the other clock. This hypoth-
esis is quite weak, and we usually work with a clock whose parameter
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Figure 4.1: Example of two similar imperfectly-synchronous systems with an alarm
watching differences in their outputs.

is such that 2× µC > νC, which implies quasi-synchrony compared to a
perfect clock whose period is between µC and νC. When µC is close to
νC, our hypothesis is stronger and we expect to prove more properties.

Furthermore, each communication channel ch has an interval
[αch, βch] as parameter such that the delays between the emission of
a value and its reception must always belong to this interval. The
communications over a given channel are still considered serial, which
means that if a value a is sent over channel ch before a value b, then
a is received before b. In this realistic framework, idealistic cases usu-
ally considered can still be modeled. It is then assumed that all clocks
C, C’, . . . are perfect: µC = νC = µC’ = νC’ = . . . and that communica-
tions are instantaneous, i.e., 0 = αch = βch = αch’ = βch’ for all the
channels ch, ch’, . . . in the system.

Apart from these tags for clocks and communication channels, the
syntax only differs from that of classic synchronous languages by the
way we handle inputs and outputs. Since we allow several synchronous
systems to desynchronize, some kind of buffers have to be used to store
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Figure 4.2: Two examples of imperfect clock behaviors.

data that has been received and not yet read. In embedded systems,
it is often the case that blackboards are used at the entrance of each
imperfectly synchronous subsystem instead of buffers. Proving that no
buffer overflow may happen is indeed very complex. A blackboard is a
memory cell at the end of any communication channel that is overwrit-
ten by any new value targeted at this cell, even if the previous value
has not been used.

For example, a simple counter with an imperfect clock of average
period 1 with 10% clock skew allowed is defined in synchronous lan-
guages by the equation n = 0 → (1 + pre n), C[0.9,1.1], where a → b

means a at first cycle then b, pre c means c but delayed by one cycle,
and C is a clock of parameter [0.9, 1.1]. We depict in Figure 4.2 (respec-
tively, in red and blue) two very different behaviors of this counter n
for two imprecise clocks C and C’.

The semantics is continuous-time in the sense that it gives a value at
each point of the program at any time. This means that the semantics
of a system is an element of ℘(V → (R → V)). This semantics can be
mathematically defined as the solution of continuous-time equations.
For example, the trace y is in the semantics at the output point of an
operator pre with a clock C if and only if their exists a trace x at the
input point of pre such that y = x ◦ πC with:
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πC(t) =
{
−1 if t < C1

Cp + (t−Cp+1)×(Cp+1−Cp)
Cp+2−Cp+1

when t ∈ [Cp+1, Cp+2) .

This operator connects Cp+1 to Cp and thus clearly allows the definition
of a continuous-time semantics for the pre operator.

However, the properties of this semantics are difficult to discover
automatically, since the solution of the equation is very sensitive to the
parameters of this equation. We therefore abstract in a canonical way
this semantics to an element of V→ (℘(R→ V)).

As presented in §2.3, this semantics is abstracted as a fixpoint of a
concrete operator.

4.3 Abstraction

Even if this over-approximation of the initial semantics is now math-
ematically computable, it is still far from being computable statically
and automatically by a computer, so that we introduce an abstract
domain and operators inside this domain, that are proved sound with
respect to concrete ones. Following the theory introduced in §2.4, the
abstract fixpoint is an over-approximation of the concrete fixpoint and
thus of the semantics of the system.

This abstraction is actually a reduced product of several abstract
domains. We now present two of them. The common point between
these domains is that they involve an abstract continuous time (seen
as R), since we abstract sets in ℘(R → V). This abstraction is precise
and inexpensive. This is because these systems were in fact designed in
a continuous world (through differential equations) in an environment
(made of space and time) that is a continuous object. In addition, using
a continuous-time semantics enables the use of very well-known mathe-
matical theories about continuous numbers which are not so frequently
used in static analysis.
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4.4 Temporal abstract domains

4.4.1 Abstract constraints

A first domain of abstract constraints [Bertrane, 2005] abstracts ℘(R→
V) as conjunctions of universal and existential constraints. A universal
constraint over a signal s ∈ R → V is defined by a time interval [a, b]
and a value x, and denoted as ∀t ∈ [a, b] : s(t) = x. Its concretization is
the set of signals in R→ V that take the value x during the whole time
interval [a, b]. An existential constraint over a signal s is defined by a
time interval [a, b] and a value x, and denoted as ∃t ∈ [a, b] : s(t) = x.
Its concretization is the set of signals in R → V that take the value x
at least once during the time interval [a, b]. For example, ∃t ∈ [0, 1] :
s(t) = true ∧ ∃t ∈ [0, 1] : s(t) = false is the abstraction of functions
in R→ B that change their boolean value at least once between t = 0
and t = 1.

The operators defined for usual operations in abstract domains
(∪,∩) as well as the backward abstract operators corresponding to
synchronous language primitives (→, pre, blackboard reading, etc.) are
quite precise in this domain.

4.4.2 Changes counting domain

A second domain of change counting [Bertrane, 2006] was designed
in order to deal automatically with reasoning on the stability and
the variability of systems. The abstract properties (6 k, a� �b) and
(> k, a� �b), for a, b ∈ R+ and k ∈ N, respectively mean that behav-
iors do not change their value more (respectively, less) than k times
during the time interval [a, b].

This domain is more precise for forward operators and defines a
very precise reduced product with the abstract constraint domain.

An example of reduction is (with times a < b < c < d < e <

f) when an abstract property u = (6 1, a� �e) interacts with the
abstract properties v = ∃t ∈ [b, c] : s(t) = x and w = ∀t ∈ [d, f ] :
s(t) = x. Then, if there is at least one value change between c and
d, then there are actually at least two changes. Indeed, at some time
t ∈ [c, d), the value has to be some y 6= x, since at time d it has to
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be x (by w) and it changes at least once in [c, d]. Then, at some point
t′ ∈ [b, c], the value has to be x (by v) which makes two value changes:
one between t′ and t, and one between t and d. This is excluded by the
stability property u. As a consequence, there is no value change between
c and d and, since the value at time d is x and does not change, the
value has to remain equal to x during the whole time interval, which
can be translated into ∀t ∈ [c, d] : s(t) = x. This constraint merges with
the constraint ∀t ∈ [d, f ] : s(t) = x and yields ∀t ∈ [c, f ] : s(t) = x.

4.5 Application to redundant systems

It is often the case that similar (if not identical) systems run in parallel
so that, in case one system has a hardware failure, it is detected, either
by the other similar systems or by a dedicated unit, and only redundant
units keep performing the computation. The continuous-time seman-
tics presented in this chapter has been precisely designed to prove the
properties of such systems.

Another classic embedded unit aims at treating sensor values. Sen-
sor values are indeed very unstable and usually get stabilized by a syn-
chronous system. The temporal abstract domains we introduced are
precise as well to analyze those systems.

A prototype static analyzer has been developed implementing the
two temporal abstract domains presented as well as other, less central
domains. This prototype is independent from Astrée (Chapter 3) and
AstréeA (Chapter 6). The prototype analyzer was able to prove some
temporal specification of redundant systems with a voting system de-
ciding between them. Furthermore, when some property did not hold,
looking at the remaining abstract set sometimes led to actual erroneous
traces in altered implementations.

An example analysis involved the code used in industry as a test
for such systems where clocks may desynchronize and communication
might be delayed. No hypothesis was given on the inputs of the studied
system but a specification was given for the output. We started several
automatic analyses with several hypothesis of value k as input stability,
which led to discovering a constant value k0 such that:
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• with an input stability of k0 milliseconds at least, the analyzer
could prove the specification;

• with an input stability of 2
3 ×k0 milliseconds or less, the analyzer

could not prove the specification, but in the computed abstract
result, it was very easy to find (and this process could have been
made automatic) a counter-example to the specification;

• with an input stability between 2
3 ×k0 and k0, the analyzer could

not prove the specification, while the abstract result did not pro-
vide any obvious counter-example to the specification. It is there-
fore unknown whether the specification holds in this case.

This result is very interesting since it demonstrates the necessity
to stabilize input signals. But the analyzer also provides a safe lower
bound for this stabilization. In order for the analyzer to get closer
to the optimal stabilization, i.e., suggest a smaller minimal stability
requirement, a new abstract domain may be added in a modular way.
Then, the properties proved by the previous domains would still be
discovered and, thanks to the added precision of the new domain, new
properties may be discovered as well.



5
Verification of Target Programs

5.1 Verification requirements and compilation

In Chapter 3, we addressed the verification of properties at the source
level. However, source level code is compiled into assembly code prior
execution; thus, one may object that the verification performed at the
source level may not be convincing enough or may not be sound at
all. Indeed, if the compiler itself contains a bug, then a C code which
is correct according to the C semantics may be compiled into a tar-
get program which may crash abruptly. More generally, certification
authorities usually require a precise definition of the properties which
are validated (by verification or by testing) to be provided at the tar-
get level, which requires, at least, a good correspondence between the
source and the target level to be established. As a consequence, certi-
fication norms such as DO-178B [Technical Commission on Aviation,
1999] often include target code verification requirements.

An alternative solution is to perform all verification tasks at the
target level; yet, this approach is not adequate for all properties. It is
well adapted to the verification of properties which can be defined reli-
ably only at the compiled code level, such as worst case execution time
properties [Heckmann and Ferdinand, 2004]. On the other hand, infer-
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ring precise invariants in order to prove the absence of runtime errors
is harder at assembly level, due to the loss of control and data struc-
tures induced by compilation. For instance, expressions are translated
into sequences of atomic, lower-level operations, which makes it harder
for an analyzer to compute a precise invariant for the whole operation:
as an example, a conversion from integer data-type to floating-point
data-type on a PowerPC target typically involves dozens of instruc-
tions, including bit masks and bit-field concatenations.

5.2 Semantics of compilation

When a direct target code level verification is too hard, other ap-
proaches can be applied, which allow exploiting the results of a source
level verification. Such approaches are based on a common pattern: ei-
ther compilation should be correct (for some definition of correctness
which we need to make explicit) or the verification of properties at
the target level should be expected to fail. Thus, we need to formalize
compilation correctness first.

The abstract interpretation framework allows defining program
transformations at the semantic level [Cousot and Cousot, 2002]. In-
deed, a program transformation usually aims at preserving some prop-
erty of the semantics of the program being transformed, which we can
define as an abstraction of the standard semantics. Then, the correct-
ness of the transformation boils down to a condition (such as equiva-
lence) at this abstract level. Furthermore, the notion of fixpoint transfer
extends to this case, and allows a local definition of the correctness of
the transformation.

In the case of compilation, and when the compiler performs no
optimization, the target level abstraction should forget about interme-
diate compilation steps; then, the correctness of the compilation can be
expressed as a tight relation (such as the existence of a bi-simulation
between the non-standard semantics, or as an inclusion between them).
This relation is usually characterized by a relation between subsets of
control points and variables of both the source and the target programs.
A subtle yet important property is that this relation can only be de-
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fined for valid source programs: for instance, if a C program violates
the C semantics (e.g., exhibits undefined behaviors), it is not possible
to give a meaning for the compilation correctness in that case. When
the compiler performs optimization, this simple definition can be ex-
tended, using more complex abstractions; for instance, dead variable
elimination will cause some variables to be abstracted away at some
program points.

We have formalized this framework [Rival, 2004]. Given a compiler
and compilation option, this framework allows expressing what prop-
erty we should expect compilation to preserve, so that we can derive
how to exploit the results of source code verification so as to verify the
target code.

5.3 Invariant translation applied to target level verification

When the relation between program control points and variables in the
source and compiled codes is known, and after invariants are computed
for the source code, it is possible to translate automatically those invari-
ants into invariants for the target code. When the compilation is indeed
correct, the translated invariants are sound by construction. However, it
is also possible to check the soundness of the translated invariants inde-
pendently, which is much easier than inferring precise invariants for the
compiled program directly. When this independent check succeeds, the
invariants are provably correct, independently from any assumption on
the correctness of the compiler or source code analyzer. Nevertheless,
the fact that we expect the compilation to be correct is very important
here, as this guides the translation of invariants.

This is the principle of proof carrying codes [Necula, 1997].
This techniques generalizes to invariants computed by abstract
interpretation-based static analyses of the source code [Rival, 2003].

A disadvantage of such techniques is that not all kinds of invari-
ants can be efficiently checked at assembly level; actually, case studies
[Rival, 2003] show that significant refinements are required in order to
make the checking of invariants of the same kind as those produced by
Astrée succeed: indeed, checking invariants requires the sequence of
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instructions corresponding to each statement in the source code to be
analyzed precisely and part of the structure lost at compile time has
to be reconstructed by the invariant checker.

5.4 Compilation verification

An alternate solution consists in verifying the compilation itself. The
principle of this approach is simple: we need to verify that the target
code and the source code are correct in the sense stated above, i.e.,
that the tight relation between their abstract semantics holds. This
can either be proved automatically after each compilation run (this
technique is known as translation validation [Pnueli et al., 1998, Necula,
2000, Rival, 2004]) or only once, for the compiler itself (this technique
is usually called compiler verification [Leroy, 2006]). In both cases, the
compilation is verified correct at some level of abstraction in the sense
of §5.2. Moreover, the proof of equivalence is based on a set of local
proofs: to prove the compilation correct, we only need to prove that
each execution step in the source level is mapped into an equivalent
step in the assembly and the converse (this is actually a consequence
of the fixpoint transfer-based definition of compilation correctness).

When the compilation verification succeeds, it is possible to trans-
late interesting properties to the target code, provided they can be es-
tablished at the source level. This is the case for the absence of runtime
errors, for instance. On the other hand, the correctness of compilation
verification cannot usually be guaranteed if the source code cannot be
proved correct: indeed, as we observed in §5.2, the compilation correct-
ness cannot be defined in the case where the source program itself is
not valid. Thus, the verification of the compilation should follow the
verification of the absence of runtime errors at the source level, e.g.,
using a tool such as Astrée.

Translation validation algorithms rely on automatic equivalence
proof algorithms, which are either based on model-checking [Pnueli
et al., 1998] or special purpose provers [Necula, 2000, Rival, 2004].
These tools consider the compiler as a black box; thus, they apply to
a range of compilers. On the other hand, compiler verification [Leroy,
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2006] requires a manual formalization and proof of the compiler; thus,
it needs to be done by the compiler designers; however, once a compiler
is verified, there is no need to run a (incomplete) verification tool to
verify each compilation run.



6
Verification of Parallel Programs

We now briefly discuss on-going work [Miné, 2011] on the verification of
the absence of runtime errors in embedded parallel C software running
under realtime operating systems, with application to aeronautics.

6.1 Considered programs

Parallel programming allows a better exploitation of processors, multi-
processors, and more recently, multi-core processors. For instance, in
the context of Integrated Modular Avionics (IMA), it becomes possible
to replace a physical network of processors with a single one that exe-
cutes several tasks in parallel (through multi-tasking with the help of a
scheduler). The use of light-weight processes in a shared memory (e.g.,
as in POSIX threads [IEEE and The Open Group]) ensures an efficient
communication between the tasks. There exists several models of par-
allel programming, giving rise to as many different concrete semantics.
Moreover, parallel programming is used in various widely different ap-
plications, requiring different abstractions. As in Chapter 3, in order
to design an effective analyzer that eschews decidability and efficiency
issues, we will focus on one such model and one application domain.
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We will focus on applications for realtime operating systems and,
more precisely, ARINC 653 [Aeronautical Radio, Inc. (ARINC)] which
is an avionic specification for safety-critical realtime operating systems
(OS). An application is composed of a bounded number of processes
that communicate implicitly through a shared memory and explic-
itly through a bounded number of synchronization objects (events,
semaphores, message queues, blackboards, etc.) provided by the OS.

The realtime hypothesis imposes that processes and resources are
only created during a special initialization phase of the program. We
assume that they do not vary from one run of the program to an-
other. The realtime hypothesis also indicates that the scheduling ad-
heres strictly to process priorities (which, we assume, is fixed at process
creation time): a lower priority process can only run when all higher
priority processes are blocked in system calls. This is unlike the default,
non-realtime, POSIX [IEEE and The Open Group] semantics used in
most desktop computers and most servers, where any unblocked pro-
cess, whatever its priority, eventually gets to run, possibly preempting
higher priority processes.

We also assume that all the processes are scheduled on a single
processor, i.e., only one process can run at a given time. The real-time
and single-processor hypotheses are neither gratuitous nor added to
simplify the analysis, but are actually relied on for the correctness of
our target applications; thus, the analyzer must take them into account
to construct a proof of absence of runtime errors (see the next section
for an example where these hypotheses are necessary).

Finally, we assume the same restrictions as in Chapter 3: programs
are in a subset of C without longjmp nor recursive procedures. In
addition to runtime errors, we wish to report data-races (i.e., concurrent
accesses to the same variable by two different processes, which are not
protected by a synchronization primitive, and one of which is a write),
but do not consider other parallel-related threats (such as deadlocks,
livelocks, starvation).
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6.2 Program example

Figure 6.1 presents a simple program with two processes, low and high,
with respective priority 0 and 1 (higher values denoting higher priori-
ties), and a mutual exclusion lock (or mutex).

The main entry point creates these resources and stores the mu-
tex identifier into the variable l. When main returns, both processes
are started concurrently. They share a global variable x that denotes
abstractly some kind of resource that can be consumed by low (x--)
and created by high (x++). In order for the lower priority process low
to be able to run, it is necessary for the higher priority process high
to voluntarily relinquish the control, which is done with the yield in-
struction. Note that yield does not specify when the control returns
back to the high process: its concrete semantics consists in waiting for
a non-deterministic amount of time and then preempting the low pro-
cess at any point of its execution, prompting the analysis to consider a
large number of preemption points and process interleavings to cover
all cases.

Accesses to x are protected by the mutex l in critical sections, so
that the other process cannot change the value of x between a test
(x <= 10 or x > 0) and the subsequent update (x++ and x--). The
low process uses a standard lock/unlock bracketing pair to protect its
access to x. We could have done the same for high, but chose instead to
present an alternate, lock-less protection mechanism. Indeed, because
high has higher priority, and only a single process can run at a given
time, it is sufficient to test whether the mutex is locked (without locking
it) and, if it is not, high can modify x, confident that low cannot
preempt high, lock l, and start modifying x before high has finished
modifying x and called yield.

Note that this reasoning is only possible if the program runs under
a real-time, mono-processor OS.

This programming pattern is used in our main target applications
(§6.5), and so, must be precisely handled by our analysis to avoid spu-
rious alarms.
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int l; // mutex identifier
int x; // shared variable
void low() {

while (1) {
mutex_lock(l);
if (x > 0) x--;
mutex_unlock(l);

}
}
void high() {

while (1) {
if (!mutex_is_locked(l)) {

if (x <= 10) x++;
}
yield();

}
}
void main() {

process_create(low, 0);
process_create(high, 1);
l = mutex_create();
x = 5;

}

Figure 6.1: Parallel program creating two processes, low and high, that modify a
shared variable x and synchronize using a mutex l.

6.3 Concrete collecting semantics

An execution of the program is an interleaving of instructions from each
process obeying some scheduling rules (§6.3.2). Our concrete collecting
semantics is then a prefix trace semantics (in ℘(S∗)) corresponding
to prefixes of sequences of states (in S) encountered during any such
execution. A concrete state can be decomposed into several components
S = D × U × (C1 ×D1) × . . . × (Cn ×Dn), where n is the number of
processes, D is a snapshot of the global, shared variables, U is the state
of the scheduler (including the state of all synchronization objects),
Ci is the control state of process i (a stack of control points), and
Di is a snapshot of the local, private variables available for process i
at its control state (i.e., the local variables in all activation records).
The Di and Ci components are identical to those used in synchronous
programs, while the D and U components are described below.
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init: flag1 = flag2 = 0
process 1: process 2:

flag1 = 1; flag2 = 1;
if (!flag2) if (!flag1)
{ {

/* critical section */ /* critical section */
} }

Figure 6.2: Mutual exclusion algorithm inspired by Dekker.

6.3.1 Shared memory

The main property of a memory is that a program will read back at
a given address the last value it has written at that address. This is
no longer true when several processes use a shared memory. Which
values a process can read back is defined by a memory consistency
model [Saraswat et al., 2007]. The most natural one, sequential con-
sistency [Lamport, 1979], assumes that memory operations appear to
be performed in some global sequential order respecting the order of
operations in each process. This means that the D state component
can be modeled as a map from global variables to values V→ V.

Unfortunately, this model is not valid in practice as enforcing se-
quential consistency requires some heavyweight measures from the com-
piler (e.g., preventing most optimizations, introducing fences) with a
huge negative impact on performance. Following Java [Gosling et al.,
2005], the latest C and C++ standards [ISO/IEC JTC1/SC22/WG21
Working Group, 2010] only require that perfectly synchronized pro-
grams (i.e., where all accesses to shared variables are protected by
synchronization primitives, such as mutexes) behave in a sequentially
consistent way (e.g., because calls to synchronization primitives are
recognized and treated specially by the compiler, disabling optimiza-
tion and generating fences). In earlier (and still commonly used) C
standards, unprotected accesses are implicitly understood as causing
undefined behaviors while, in Java, a weak memory consistency model
[Manson et al., 2005] specifies a set of possible valid behaviors. Con-
sider, for instance, the incorrectly synchronized program (inspired from
Dekker’s mutual exclusion algorithm [Dijkstra, 1968]) from Figure 6.2.
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In the Java memory model, both processes can enter their criti-
cal section simultaneously. The rationale is that, due to process-level
program optimization without knowledge of other processes, a com-
piler might assume that, e.g., in process 1, the write to flag1 and
the read from flag2 are independent and can be reordered, and the
same for process 2, flag2 and flag1 respectively. As a consequence,
each process can read the other process’ flag before setting its own
flag. Multi-processors with out-of-order execution, local buffers, or not
fully synchronized caches can also cause similar behaviors, even in the
absence of compiler optimization.

In order to define our concrete semantics, we had to choose a mem-
ory model that is consistent with newer standards but also currently
used programming practices that often predate these standards. Firstly,
we assume that the semantics guarantees sequential consistency for pro-
grams without data-races. Secondly, our analysis reports data-races as
errors. Finally, we also give a proper semantics to unprotected accesses,
so that we can analyze the behavior of a program after a data-race (this
is consistent with our choice to continue the analysis with the modular
behavior after reporting an integer overflow). More precisely, assume
that a run of a process p performs a sequence of synchronization oper-
ations at times t1 < . . . < tn, and a run of another process p′ performs
two synchronization operations at time t′1 < t′2; denote i and j such
that ti ≤ t′1 < ti+1 and tj ≤ t′2 < tj+1; then, a read from a variable
v in p′ between t′1 and t′2 can return either: 1) any value written to v
by p between ti and tj+1 (unsynchronized access), or 2) the last value
written to v by p before ti if any, or its initial value if none (synchro-
nized access), or 3) the last value written to v by p′ if either the value
was written after t′1 or there is no write from p to v before ti. This
can be formalized in fixpoint form [Miné, 2011, Ferrara, 2008, 2009]
and requires the D state components to store sets of values written to
global variables by processes (instead of a simple map). This seman-
tics is sound to analyze data-race-free programs, and it is also sound
for programs with data-races under reasonable hypotheses on the op-
timizations used by the compiler and the hardware consistency model
enforced by the processor(s) [Miné, 2011].
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6.3.2 Scheduling and synchronization

The U state component in our concrete semantics models the scheduler
state, which in turn defines which process can run and which must wait.
Firstly, it maintains the state of synchronization objects, e.g., for each
mutex (there are finitely many), whether it is unlocked or locked by
a process (and which one). Secondly, it remembers, for each process,
whether it is waiting for a resource internal to the system (e.g., trying
to lock an already locked mutex), for an external event (e.g., a message
from the environment or a timeout), or is runnable (i.e., either actually
running or preempted by a higher priority process). As we assume
that the scheduler obeys a strict real-time semantics and there is a
single processor, only one process can be scheduled in a given state: the
runnable process with highest priority. All higher priority processes are
waiting at a system call, while lower priority processes can be either
waiting at a system call, or be runnable and preempted at any point.

The execution of a synchronization primitive by the running process
updates the scheduling state U . For instance, trying to lock an already
locked mutex causes the process to enter a wait state, while unlocking
a locked mutex causes either the mutex to be unlocked (if no process
is waiting for it), or the mutex ownership to be transferred to the
highest priority process waiting for it (which then becomes runnable,
and possibly preempts the current process). Moreover, U might change
due to external events, which we assume can take place at any time. For
instance, a process performing a timed wait enters a non-deterministic
wait phase but can become runnable at any time (as we do not model
physical time), and possible preempt a lower priority running process.
This is also formalized in [Miné, 2011].

6.4 Abstractions

Our prototype analyzer for parallel embedded realtime software, orig-
inally named Thésée [Miné, 2011] and now rebranded AstréeA, is
based on Astrée (Chapter 3). It has a similar structure, reuses most
of its abstractions (e.g., general-purpose numerical abstractions for Di,
trace partitioning with respect to Ci, etc.) and adds some more.
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6.4.1 Control and scheduler state abstraction

Astrée was fully flow- and context-sensitive thanks to a partition-
ing with respect to the control state C (§3.4). Full flow- and context-
sensitivity for a parallel program, i.e., partitioning with respect to
G = U ×C1× · · ·Cn (i.e., the scheduler state and control states for all
processes) is not practical as there are generally too many reachable
control points in G.

To solve this problem, we first make use of an abstraction [Cousot
and Cousot, 1984], derived from proof techniques for parallel programs
[Lamport, 1977, Owicki and Gries, 1976, Jones, 1981], that consists
in decomposing a global property partitioned on G into several local
properties, one for each process. More precisely, given a process i, we
can represent a set of states as a map from U × Ci to ℘(D × Di ×∏
j 6=i(Cj × Dj)). Then, we abstract away all the information purely

local to other processes, which gives a map from U ×Ci to ℘(D×Di).
We also abstract U into a domain Ui that only distinguishes, for each
mutex, whether it is unlocked, locked by process i, by a process of higher
priority than i, or of lower priority. The set of reachable configurations
in Ui × Ci is now small enough that we can perform a partitioning of
an abstraction of ℘(D×Di) (described below) with respect to Ui×Ci.

6.4.2 Interference abstraction

Our map from Ui×Ci to ℘(D×Di) can be decomposed into a map from
Ui×Ci to ℘(Di) and a map from Ui×Ci to ℘(D). As Di is a simple map
from local, non-shared variables to values, ℘(Di) is abstracted exactly
as in the synchronous case (§3.7). Following the concrete semantics of
weakly consistent shared memory (§6.3.1), (Ui × Ci) → ℘(D) is ab-
stracted as a disjunction. Firstly, we track for each (u, c) ∈ Ui × Ci an
abstraction of the reachable environments ignoring the effect of other
processes (i.e., considering the variables as non-shared). Secondly, we
track for each u ∈ Ui and each variable v an abstraction of write ac-
tions. These consist in two components: the set of all the values written
to v while in state u (to handle incorrectly synchronized accesses), and
the set of values written last before exiting state u (to handle cor-
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(a) Incorrectly synchronized interferences.

lock(l) unlock(l)

lock(l) unlock(l)
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(b) Correctly synchronized interferences.

Figure 6.3: Actions of the writes from one process (1) on the reads of another
process (2).

rectly synchronized accesses). This abstraction of write actions is both
flow-insensitive and non-relational (e.g., using the interval and the con-
gruence domains).

When process i writes to a global variable, both the non-shared
and the write action abstractions are updated. When process i reads
from a global variable, the value read can come from both the non-
shared abstraction of process i and the write actions of other processes
j 6= i. As such write actions are empty for global variables that are not
actually shared, these are abstracted as precisely as local ones (i.e., in
a flow-sensitive and relational way). The soundness with respect to the
weakly consistent memory model of §6.3.1 is ensured because the order
of write actions has been abstracted away.

Not all write actions from j influence a read in i. First, we consider
write actions associated to scheduler states in j not mutually exclu-
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sive with that of process i (e.g., not locking the same mutex). This
is illustrated in Figure 6.3.(a): writes W1 and W2 by process 1 while
the lock l is held do not influence reads R2 and R3 by process 2 be-
cause these reads are also protected by the lock l. However, this is not
sufficient. There is indeed a flow of information between two critical
sections protected by the same mutex: the last write before unlocking
l in process 1 (i.e., W2) can be seen by the reads in process 2 until it
overwrites the variable while holding mutex l. Hence, W2 influences R2,
but not R3, as seen in Figure 6.3.(b) (the fact that W2 influences R1
is already taken into account in Figure 6.3.(a)). Distinguishing these
cases is made possible because write actions are partitioned with re-
spect to (an abstraction of) the scheduler state. It makes the analysis
partially aware of synchronization processes (including synchronization
through priority, as in Figure 6.1), which is key to avoid spurious in-
terferences and achieve a sufficient level of precision to eliminate false
alarms. Other interesting properties, such as the presence of data-races
(i.e., incorrectly synchronized interferences), or simply the set of shared
variables and which processes use them, can be extracted easily from
the computed write actions.

A limitation of this abstraction, though, is that it cannot discover
relational invariants holding at critical section boundaries, as the value
of correctly synchronized variables is abstracted in a non-relational way.
This has been addressed in later work [Miné, 2014]. Another possible
improvement would be to perform a trace abstraction (§3.6) of se-
quences of scheduler states to analyze precisely behaviors that depend
on the history of interleavings of process execution (e.g., initialization
sequences run only once in a specific order).

6.4.3 Abstract iterator

Due to the abstraction of states as a collection of maps (Ui × Ci) →
℘(D × Di), one for each process i, the abstract semantics of each
process can almost be computed in isolation. The only coupling be-
tween processes is the flow-insensitive abstraction of write actions∏
i(Ui → ℘(D)). Thus, the analysis is constructed as a least fixpoint

computation over an abstract domain of write actions. It starts from an
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empty set and iterates the analysis of each process in turn (reusing the
iterator of §3.12 for synchronous programs, which includes inner fix-
point computations) using a widening ` to enforce convergence of write
actions. This is very memory efficient as, when analysing a process, no
information about other processes need to be kept in memory, except
for the abstraction of write actions, which has a linear memory cost
(as it is non-relational). The cost of the analysis depends directly on
the number of fixpoint iterations required to stabilize the write action
sets, which is fortunately quite low in practice (§6.5).

6.4.4 Operating system modeling

AstréeA provides only support for a minimum set of operations on
low-level resources: finitely many processes, events, and non-recursive
mutexes indexed by int identifiers. Applications, however, perform sys-
tem calls to an ARINC 653 OS that provides higher-level resources
(e.g., semaphores, logbooks, sampling and queuing ports, buffers, black-
boards, all identified by string names). Thus, in order to analyze an
application, we must complete its source code with a model of the
OS, i.e., a set of stub C functions that implement all OS entry-points,
mapping high-level operations to low-level ones that AstréeA under-
stands (e.g., an ARINC 653 buffer is implemented as a C array to store
the message contents and a mutex to protect its access). The model
also performs error checking and bookkeeping (e.g., maintaining a map
between resource names and AstréeA identifiers).

This model is approximately 2 500 lines long. Although it is written
in C, the model is not executable as it uses many AstréeA-specific
primitives (e.g., mutex locking). As details of the implementation of
parallelism are forgotten, the model embeds some abstraction. The
analysis is then sound in that it computes (an over-approximation of)
all the behaviors of the program when run under any OS respecting
the ARINC 653 specification.
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6.5 Preliminary application to aeronautic industry

Our main application targets a family of industrial avionic software. We
have analyzed one instance consisting of 15 processes and 1.6 M code
lines. It runs on a single partition (ARINC 653 can run several such par-
titions on the same processor but on separate time frames and memory
spaces). Intra-partition inter-process communication is precisely mod-
eled by computing an abstraction of the shared memory as well as all
the messages sent. Inter-partition communication as well as non-volatile
memory are treated as non-deterministic inputs. This way, we aim at
proving that the application has no runtime error, independently from
(and without requiring hypotheses on) the behavior of other (unana-
lyzed) applications and the initial contents of the non-volatile memory.
Our target software is rather complex and heterogeneous. Some pro-
cesses have a synchronous control/command flavor similar to software
targeted by Astrée (§3.14), while others focus on string formatting,
list manipulation and sorting, or network protocols (such as TFTP),
among other tasks.

Because the software is very large, we started by analyzing a lighter
version reduced to 5 processes and 100 K code lines but similar in com-
plexity (i.e., it corresponds to a coherent functional subset of the total
application). Preliminary results indicate an analysis time of 1h 40mn
on our 64-bit 2.66GHz Intel server, and approximately 100 alarms.

We then turned to the analysis of the full 1.6 M line software. The
analysis currently takes 30h of computation time [Miné, 2014]. An im-
portant experimental result is that the number of iterations required
to compute write action sets is quite low (up to 6), which validates our
choice of control abstraction for parallel programs (§6.4.2). Moreover,
the number of scheduler states for write actions is low (around 50) so
that the analysis stays efficient in memory: the analysis fits in 32 GB of
memory (due to the use of caches and a garbage collector, it is difficult
to assess more precisely the memory consumption). The analysis out-
puts around 1 100 alarms. This high number of alarms is expected as
AstréeA inherits most of its abstract domains from Astrée, which
was specialized for synchronous control/command software, while our
application is not purely control/command. New abstract domains need
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to be developed to account for algorithms and data-structures (such as
lists, strings, and network message) used in the analyzed software, and
these are not tied to the use of parallelism but rather to an application
domain. This is ongoing work, and the figures we now provide are al-
ready an improvement over earlier published results of 12 000 alarms
in 50h in [Bertrane et al., 2010], and 7 600 alarms later in [Miné, 2011].



7
Conclusion

There are numerous examples of static analyzers and verifiers which
are unsound, imprecise, unscalable, or trivial (i.e., confined to programs
with too many restrictions to be of any practical use). It is much more
difficult to design sound, precise, and scalable static analyzers with a
broad enough scope. We have shown that the theory of abstract inter-
pretation is a good basis for the formal design of such static analyzers
and verifiers. We have also provided examples, such as Astrée, now
industrialized, built using abstractions designed for specific application
domains to eliminate all false alarms. This shows that program qual-
ity control can effectively evolve from control of the design process to
the verification of the final product. This opens a new avenue towards
a more rigorous programming practice producing verified programs, at
least for specific classes of specifications. Of course, much work remains
to be done. In particular, considerable research effort is needed on the
static analysis prototypes for imperfect synchrony, for parallelism, and
for target code certification.

The development of a sound, precise, and scalable static analyzer is
a long-term effort. For example, the development of Astrée [Cousot
et al.] took 8 years before being available as an industrial product [Ab-
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sInt, Angewandte Informatik]. This neither includes decades of research
on abstract interpretation nor the development of flexible user inter-
faces, the refinements of the analyzer which were necessary to serve a
broader community, etc. Moreover the qualification of the tool must go
beyond the classic methods based on tests [Technical Commission on
Aviation, 1999]. Work is on-going on the formal verification of analyz-
ers, that is, the computer-checked formal proof that the static analyzer
is designed according to the abstract interpretation theory so as to
be provably sound. Although the state of the art in formally certified
sound C static analyzers is not yet on par with the precision and effi-
ciency of analyzers such as Astrée, promising recent work [Jourdan
et al.] shows that it is possible to reason about abstract interpretation
using proof assistants and derive mechanically checked sound tools.

Astrée analyzes control programs in open loop, meaning that the
plant is known only by hypotheses on the inputs to the control program
(such as, e.g., bounds on values returned by sensors). Closing the loop
is necessary since a model of the plant must be analyzed together with
the control program to prove, e.g., reactivity properties. Obtaining a
sound abstract model of the plant is itself a problem to which abstract
interpretation can contribute. Considering more expressive properties,
such as reactivity, variability, stability, etc., would considerably extend
the scope of application of static analysis.

The design of a plant control program follows different stages during
which successive models of the plant and its controller are refined until
reaching a computer program that can be implemented on hardware.
Such refinements include physical limitations (such as coping with sen-
sor or actuator failures), implementation decisions (such as synchronous
or asynchronous implementation on a mono- or multi-processor), etc.
Waiting for the final program to discover bugs by static analysis that
have not been discovered by simulation of the various models is cer-
tainly useful but not completely efficient (in particular when functional
bugs are discovered by analysis of the origin of non-functional bugs such
as overflows). Development methods can be significantly improved to
enhance safety, security, and reduce costs. In particular, static analyses
of the different models would certainly speed up the development pro-
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cess and reduce the cost of bugs by earlier detection. Such static anal-
ysis tools are missing but can be developed. This raises the question of
high-level languages for describing models, the semantics of which is of-
ten vague or unrealistic (e.g., confusing reals and floats) and that of the
translation of a specification from one model to another with different
semantics. Automatically generating correct, efficient, and structured
code would considerably help static analyzers (since dirty code is al-
ways more difficult to analyze) and static analyzers can definitely help
in code generation (e.g., to choose the translation of real expressions
to float so as to minimize rounding errors [Martel, 2009]).

Beyond safety concerns in embedded software, aeronautics is now
confronted to security concerns with the generalization of on-board
Internet. Here again, security properties can be formalized and verified
by abstract interpretation, which is a brand-new and rapidly developing
domain of application.

In conclusion, static analysis can go well-beyond classic sequential
programming languages and implicit specifications towards the verifi-
cation of complex computational models and systems. This is certainly
nowadays a natural, challenging, and promising orientation for research
in abstract interpretation.



References

AbsInt, Angewandte Informatik. Astrée run-time error analyzer. http:
//www.absint.com/astree/.

Aeronautical Radio, Inc. (ARINC). ARINC 653. http://www.arinc.com/.
J. Bertrane. Static analysis by abstract interpretation of the quasi-

synchronous composition of synchronous programs. In R. Cousot, editor,
Proc. of the 6th Int. Conf. on Verification, Model Checking and Abstract
Interpretation (VMCAI’05), volume 3385 of LNCS, pages 97–112. Springer
(Berlin), 2005.

J. Bertrane. Proving the properties of communicating imperfectly-clocked
synchronous systems. In Kwangkeun Yi, editor, Proc. of the 13th Int.
Static Analysis Symposium (SAS’06), volume 4134 of LNCS, pages 370–
386. Springer (Berlin), 2006.

J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X.
Rival. Static analysis and verification of aerospace software by abstract
interpretation. In AIAA Infotech@Aerospace (I@A 2010), number AIAA-
2010-3385, pages 1–38. AIAA (American Institute of Aeronautics and As-
tronautics), 2010.

F. Besson, D. Cachera, T.P. Jensen, and D. Pichardie. Certified static analysis
by abstract interpretation. In Foundations of Security Analysis and Design
V, FOSAD 2007/2008/2009 Tutorial Lectures, volume 5705 of LNCS, pages
223–257. Springer (Berlin), 2009.

113

http://www.absint.com/astree/
http://www.absint.com/astree/
http://www.arinc.com/


114 References

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded software, in-
vited chapter. In T. Mogensen, D.A. Schmidt, and I.H. Sudborough, edi-
tors, The Essence of Computation: Complexity, Analysis, Transformation.
Essays Dedicated to Neil D. Jones, volume 2566 of LNCS, pages 85–108.
Springer (Berlin), 2002.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. A static analyzer for large safety-critical software.
In Proc. of the ACM SIGPLAN 2003 Conf. on Programming Language
Design and Implementation (PLDI’03), pages 196–207. ACM Press (New
York), 2003.

O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, E. Goubault,
K. Ghorbal, D. Lesens, L. Mauborgne, A. Miné, S. Putot, X. Rival, and
M. Turin. Space software validation using abstract interpretation. In
Proc. of the Int. Space System Engineering Conference, Data Systems In
Aerospace (DASIA’09), pages 1–7. ESA publications, 2009.

F. Bourdoncle. Abstract interpretation by dynamic partitioning. Journal of
Functional Programming, 2(4):407–423, 1992.

F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc.
of the Int. Conf. on Formal Methods in Programming and their Applications
(FMPA’93), volume 735 of LNCS, pages 128–14. Springer (Berlin), 1993.

R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8), 1986.

R. M. Burstall. Program proving as hand simulation with a little induction.
In Proc. of IFIP Congress, pages 308–312, 1974.

P. Caspi, C. Mazuet, and N. Reynaud Paligot. About the design of distributed
control systems: The quasi-synchronous approach. In Udo Voges, editor,
20th Int. Conf. on Computer Safety, Reliability and Security (SAFECOMP
2001), volume 2187 of LNCS, pages 215–226. Springer (Berlin), 2001.

P. Cousot. Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique de pro-
grammes (in French). Thèse d’État ès sciences mathématiques, Université
scientifique et médicale de Grenoble, Grenoble, France, 21 Mar. 1978.

P. Cousot. Semantic foundations of program analysis, invited chapter. In
S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood
Cliffs, 1981.



References 115

P. Cousot. Types as abstract interpretations. In Conf. Rec. of the 24th Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(POPL’97), pages 316–331. ACM Press (New York), 1997.

P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theoretical Computer Science, 277(1–
2):47–103, 2002.

P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proc. of the Second Int. Symp. on Programming (ISOP’76),
pages 106–130. Dunod, Paris, 1976.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In Conf. Rec. of the 4th Annual ACM SIGPLAN-SIGACT Symp. on Prin-
ciples of Programming Languages (POPL’77), pages 238–252. ACM Press
(New York), 1977.

P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theo-
rems. Pacific Journal of Mathematics, 81(1):43–57, 1979a.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Conf. Rec. of the 6th Annual ACM SIGPLAN-SIGACT Symp. on Prin-
ciples of Programming Languages (POPL’79), pages 269–282. ACM Press
(New York), 1979b.

P. Cousot and R. Cousot. Invariance proof methods and analysis techniques
for parallel programs, chapter 12, pages 243–271. Macmillan, 1984.

P. Cousot and R. Cousot. Sometime = always + recursion ≡ always: on the
equivalence of the intermittent and invariant assertions methods for proving
inevitability properties of programs. Acta Informatica, 24:1–31, 1987.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511–547, Aug. 1992a.

P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe
and M. Wirsing, editors, Proc. of the 4th Int. Symp. on Programming Lan-
guage Implementation and Logic Programming (PLILP’92), volume 631 of
LNCS, pages 269–295. Springer (Berlin), 1992b.

P. Cousot and R. Cousot. “À la Burstall” intermittent assertions induc-
tion principles for proving inevitability properties of programs. Theoretical
Computer Science, 120:123–155, 1993.



116 References

P. Cousot and R. Cousot. Systematic design of program transformation
frameworks by abstract interpretation. In Conf. Rec. of the 29th Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(POPL’02), pages 178–190. ACM Press (New York), 2002.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conf. Rec. of the 5th Annual ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages (POPL’78),
pages 84–97. ACM Press (New York), 1978.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. The
Astrée static analyzer. www.astree.ens.fr and www.absint.com/astre
e/.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. The Astrée analyser. In M. Sagiv, editor, Proc. of the 14th European
Symposium on Programming Languages and Systems (ESOP’05), volume
3444 of LNCS, pages 21–30. Springer (Berlin), 2005.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. Combination of abstractions in the Astrée static analyzer. In
M. Okada and I. Satoh, editors, Proc. of the 11th Annual Asian Computing
Science Conference (ASIAN’06), volume 4435 of LNCS, pages 272–300.
Springer (Berlin), 2006.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. Varieties of static analyzers: A comparison with Astrée. In M.
Hinchey, He Jifeng, and J. Sanders, editors, Proc. of the First Symp. on
Theoretical Aspects of Software Engineering (TASE’07), pages 3–17. IEEE
Computer Society Press, 2007a.

P. Cousot, P. Ganty, and J.-F. Raskin. Fixpoint-guided abstraction refine-
ments. In G. Filé and H. Riis-Nielson, editors, Proc. of the 14th Int.
Static Analysis Symposium (SAS’07), volume 4634 of LNCS, pages 333–
348. Springer (Berlin), 2007b.

P. Cousot, R. Cousot, and L. Mauborgne. The reduced product of abstract
domains and the combination of decision procedures. In M. Hofmann,
editor, 14th Int. Conf. on Fondations of Software Science and Computation
Structures (FoSSaCS 2011), volume 6604 of Lecture Notes in Computer
Science, pages 456–472. Springer-Verlag, 2011.

D. Delmas and J. Souyris. Astrée: from research to industry. In G. Filé and
H. Riis-Nielson, editors, Proc. of the 14th Int. Static Analysis Symposium
(SAS’07), volume 4634 of LNCS, pages 437–451. Springer (Berlin), 2007.

www.astree.ens.fr
www.absint.com/astree/
www.absint.com/astree/


References 117

E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages: NATO Advanced Study Institute, pages 43–112.
Academic Press, 1968.

dSpace. TargetLink code generator. http://www.dspaceinc.com.
Esterel Technologies. Scade suiteTM, the standard for the development of

safety-critical embedded software in the avionics industry. http://www.es
terel-technologies.com/.

Euclid of Alexandria. Elementa geometriæ, book xii, proposition 17. fl. 300
BC.

J. Feret. Static analysis of digital filters. In D. Schmidt, editor, Proc. of the
13th European Symp. on Programming Languages and Systems (ESOP’04),
volume 2986 of LNCS, pages 33–48. Springer (Berlin), 2004.

J. Feret. The arithmetic-geometric progression abstract domain. In R. Cousot,
editor, Proc. of the 6th Int. Conf. on Verification, Model Checking and
Abstract Interpretation (VMCAI’05), volume 3385 of LNCS, pages 42–58.
Springer (Berlin), 2005a.

J. Feret. Numerical abstract domains for digital filters. In Proc. of the First
Int. Workshop on Numerical & Symbolic Abstract Domains (NSAD’05),
2005b.

P. Ferrara. Static analysis via abstract interpretation of the happens-before
memory model. In Proc. of the Second Int. Conf. on Tests and Proofs
(TAP’08), volume 4966 of LNCS, pages 116–133. Springer (Berlin), 2008.

P. Ferrara. Static analysis via abstract interpretation of multithreaded pro-
grams. PhD thesis, École Polytechnique, Palaiseau, France, May 2009.

R. W. Floyd. Assigning meanings to programs. In Proc. of the American
Mathematical Society Symposia on Applied Mathematics, volume 19, pages
19–32. Springer Netherlands, 1967.

R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations
complete. Journal of the Association for Computing Machinery, 47(2):361–
416, 2000.

R. Ginosar. Fourteen ways to fool your synchronizer. In Proc. of the 9th Int.
Symposium on Asynchronous Circuits and Systems (ASYNC’03), pages 89–
97. IEEE Computer Society, 2003.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java language specification,
third edition. Addison Wesley, 2005.

http://www.dspaceinc.com
http://www.esterel-technologies.com/
http://www.esterel-technologies.com/


118 References

É. Goubault. Static analyses of floating-point operations. In Proc. of the
8th Int. Static Analysis Symposium (SAS’01), volume 2126 of LNCS, pages
234–259. Springer (Berlin), 2001.

P. Granger. Static analysis of arithmetical congruences. International Journal
of Computer Mathematics, 30(3 & 4):165–190, 1989.

P. Granger. Static analysis of linear congruence equalities among variables
of a program. In S. Abramsky and T.S.E. Maibaum, editors, Proc. of the
Int. Joint Conf. on Theory and Practice of Software Development (TAP-
SOFT’91), Volume 1 (CAAP’91), volume 493 of LNCS, pages 169–192.
Springer (Berlin), 1991.

R. Heckmann and C. Ferdinand. Worst-case execution time prediction by
static program analysis. In Proc. of the 18th Int. Parallel and Distributed
Processing Symposium (IPDPS’04), pages 26–30. IEEE Computer Society,
2004.

IEEE and The Open Group. Portable operating system interface (POSIX).
http://www.opengroup.org, http://standards.ieee.org.

IEEE Computer Society. IEEE standard for binary floating-point arithmetic.
Technical report, ANSI/IEEE Std. 745-1985, 1985.

ISO/IEC JTC1/SC22/WG14 Working Group. C standard. Technical Report
1124, ISO & IEC, 2007.

ISO/IEC JTC1/SC22/WG21 Working Group. Working draft, standard for
programming language C++. Technical Report 3035, ISO & IEC, 2010.

B. Jeannet and A. Miné. The Apron numerical abstract domain library. http:
//apron.cri.ensmp.fr/library/, 2007.

B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for
static analysis. In Proc. of the 21st Int. Conf. on Computer Aided Verifi-
cation (CAV’09), volume 5643 of LNCS, pages 661–667. Springer (Berlin),
2009.

C. B. Jones. Development Methods for Computer Programs including a Notion
of Interference. PhD thesis, Oxford University, Jun. 1981.

J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie. A
formally-verified C static analyzer. In Conf. Rec. of the 42nd Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(POPL 2015).

D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret, L.
Mauborgne, A. Miné, and X. Rival. Astrée: Proving the absence of rutime
errors. In Proc. of Embedded Real-Time Software and Systems (ERTS’10),
pages 1–5, 2010.

http://www.opengroup.org
http://standards.ieee.org
http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/


References 119

L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
on Software Engineering, 3(2):125–143, Mar. 1977.

L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, 28:690–
691, Sept. 1979.

K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-
time systems: Compact data structure and state-space reduction. In Proc.
of the 18th IEEE Real-Time Systems Symp. (RTSS’97), pages 14–24. IEEE
CS Press, 1997.

X. Leroy. Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. In Conf. Rec. of the 33rd Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(POPL’06), pages 42–54. ACM Press (New York), 2006.

J. Manson, W. Pugh, and S. V. Adve. The java memory model. In Conf.
Rec. of the 32nd Annual ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages (POPL’05), pages 378–391. ACM Press (New
York), 2005.

M. Martel. Enhancing the implementation of mathematical formulas for fixed-
point and floating-point arithmetics. Formal Methods in System Design, 35
(3):265–278, Dec. 2009.

L. Mauborgne. Astrée: Verification of absence of run-time error. In P.
Jacquart, editor, Building the Information Society, chapter 4, pages 385–
392. Kluwer Academic Publishers, Dordrecht, 2004.

L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation
based static analyzer. In M. Sagiv, editor, Proc. of the 14th European
Symp. on Programming Languages and Systems (ESOP’05), volume 3444
of LNCS, pages 5–20. Springer (Berlin), 2005.

A. Miné. The octagon abstract domain. In Proc. of the Analysis, Slicing
and Transformation Workshop (AST’01), pages 310–319. IEEE Computer
Society Press (Los Alamitos), 2001.

A. Miné. Relational abstract domains for the detection of floating-point run-
time errors. In D. Schmidt, editor, Proc. of the 13th European Symp. on
Programming Languages and Systems (ESOP’04), volume 2986 of LNCS,
pages 3–17. Springer (Berlin), 2004a.

A. Miné. Weakly Relational Numerical Abstract Domains. Thèse de doctorat
en informatique, École polytechnique, Palaiseau, France, 6 Dec. 2004b.

A. Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19:31–100, 2006a.



120 References

A. Miné. Field-sensitive value analysis of embedded C programs with
union types and pointer arithmetics. In Proc. of the ACM SIGPLAN-
SIGBED Conf. on Languages, Compilers, and Tools for Embedded Systems
(LCTES’06), pages 54–63. ACM Press (New York), 2006b.

A. Miné. Static analysis of run-time errors in embedded critical parallel
C programs. In Proc. of the 20th European Symposium on Programming
(ESOP’11), volume 6602 of LNCS, pages 398–418. Springer, 2011.

A. Miné. Relational thread-modular static value analysis by abstract inter-
pretation. In Proc. of the 15th Int. Conf. on Verification, Model Checking,
and Abstract Interpretation (VMCAI’14), volume 8318 of Lecture Notes in
Computer Science (LNCS), pages 39–58. Springer, 2014.

D. Monniaux. The parallel implementation of the Astrée static analyzer.
In Proc. of the 3rd Asian Symp. on Programming Languages and Systems
(APLAS’05), volume 3780 of LNCS, pages 86–96. Springer (Berlin), 2005.

R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs N. J., USA,
1966.

G. C. Necula. Proof-Carrying Code. In Conf. Rec. of the 24th Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Langauges
(POPL’97), pages 106–119. ACM Press (New York), 1997.

G. C. Necula. Translation Validation for an Optimizing Compiler. In
Proc. of the Conf. on Programming Language Design and Implementation
(PLDI’00), pages 83–94. ACM Press (New York), 2000.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs
i. Acta Informatica, 6(4):319–340, Dec. 1976.

A. Pnueli, O. Shtrichman, and M. Siegel. Translation Validation for Syn-
chronous Languages. In Proc. of the 25th Int. Coll. on Automata, Lan-
guages and Programming (ICALP’98), volume 1443 of LNCS, pages 235–
246. Springer (Berlin), 1998.

J. C. Reynolds. The discoveries of continuations. Lisp and Sy,bolic Compu-
tation, 6(3–4):233–248, 1993.

X. Rival. Abstract Interpretation-based Certification of Assembly Code. In
Proc. of the 4th Int. Conf. on Verification, Model Checking and Abstract
Interpretation (VMCAI’03), volume 2575 of LNCS, pages 41–55. Springer
(Berlin), 2003.

X. Rival. Symbolic transfer functions-based approaches to certified compila-
tion. In Conf. Rec. of the 31st Annual ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages (POPL’04), pages 1–13. ACM Press
(New York), 2004.



References 121

X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM
Transactions on Programming Languages Systems, 29(5), 2007.

V. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory of
memory models. In Proc. of the 12th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming (PPOPP’07), pages 161–172. ACM
Press (New York), 2007.

A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–310, 1955.

Radio Technical Commission on Aviation. DO-178B. Technical report, Soft-
ware Considerations in Airborne Systems and Equipment Certification,
1999.


	Nomenclature
	Introduction
	Theoretical Background on Abstract Interpretation
	Semantics
	Collecting semantics
	Fixpoint semantics
	Abstraction functions
	Concretization functions
	Galois connections
	The lattice of abstractions
	Sound (and complete) abstract semantics
	Abstract transformers
	Sound abstract fixpoint semantics
	Sound and complete abstract fixpoints semantics
	Infinite abstraction example: interval abstraction
	Abstract domains and functions
	Convergence acceleration by extrapolation and interpolation
	Combination of abstract domains
	Partitioning abstractions
	Static analysis
	Abstract specifications
	Verification
	Verification in the abstract

	Verification of Synchronous Control/Command Programs
	Analyzed C subset
	Operational semantics of C
	Analysis examples
	Flow- and context-sensitive abstractions
	Hierarchy of parameterized abstractions
	Trace abstraction
	Memory abstraction
	Pointer abstraction
	General-purpose numerical abstractions
	Domain-specific numerical abstractions
	Combination of abstractions
	Abstract iterator
	Analysis parameters
	Application to aeronautic industry
	Application to space industry
	Industrialization

	Verification of Imperfectly-Clocked Synchronous Programs
	Motivation
	Syntax and semantics
	Abstraction
	Temporal abstract domains
	Application to redundant systems

	Verification of Target Programs
	Verification requirements and compilation
	Semantics of compilation
	Invariant translation applied to target level verification
	Compilation verification

	Verification of Parallel Programs
	Considered programs
	Program example
	Concrete collecting semantics
	Abstractions
	Preliminary application to aeronautic industry

	Conclusion
	References

