Numerical Static Analysis of Interrupt-Driven Programs via Sequentialization
Xueguang Wu, Liqian Chen, Antoine Miné, Wei Dong, Ji Wang

To cite this version:
Xueguang Wu, Liqian Chen, Antoine Miné, Wei Dong, Ji Wang. Numerical Static Analysis of Interrupt-Driven Programs via Sequentialization. EMSOFT 2015 - International Conference on Embedded Software, Oct 2015, Amsterdam, Netherlands. pp.55-64, 10.1109/EMSOFT.2015.7318260. hal-01312248

HAL Id: hal-01312248
https://hal.sorbonne-universite.fr/hal-01312248
Submitted on 3 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Numerical Static Analysis of Interrupt-Driven Programs via Sequentialization

Xueguang Wu ∗† Liqian Chen † Antoine Miné ‡ Wei Dong † Ji Wang ∗†
{xueguangwu, lqchen}@nudt.edu.cn Mine@di.ens.fr {wdong, wj}@nudt.edu.cn
∗ State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, China
† College of Computer Science, National University of Defense Technology, Changsha, China
‡ Computer Science Lab, École Normale Supérieure, Paris, France

ABSTRACT
Embedded software often involves intensive numerical computations and thus can contain a number of numerical runtime errors. The technique of numerical static analysis is of practical importance for checking the correctness of embedded software. However, most of the existing approaches of numerical static analysis consider sequential programs, while interrupts are a commonly used technique that introduces concurrency in embedded systems. To this end, a numerical static analysis approach is desired for embedded software with interrupts. In this paper, we propose a sound numerical static analysis approach specifically for interrupt-driven programs based on sequentialization techniques. A key benefit of using sequentialization is the ability to leverage the power of the state-of-the-art analysis and verification techniques for sequential programs to analyze interrupt-driven programs. To be more clear, we first propose a sequentialization algorithm to sequentialize interrupt-driven programs into non-deterministic sequential programs according to the semantics of interrupts. On this basis, we leverage the power of numerical abstract interpretation to analyze numerical properties of the sequentialized programs. Moreover, to improve the analysis precision, we design specific abstract domains to analyze sequentialized interrupt-driven programs by considering their specific features. Finally, we present encouraging experimental results obtained by our prototype implementation.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

Keywords
Embedded Software, Interrupt-Driven Programs, Static Analysis, Abstract Interpretation, Sequentialization

1. INTRODUCTION
An interrupt is a signal to the processor indicating an event that needs immediate attention and requiring the interruption of the current code the processor is executing. Interrupts are commonly used in embedded systems to introduce concurrency, which is required for real-time applications. For example, embedded control software often uses interrupts to obtain sensor data from the physical environment. In a program, during the running of the normal tasks, an interrupt service routine (ISR) is invoked once an interrupt alerts the processor to a higher-priority condition. Such a program is said to be interrupt-driven. In interrupt-driven programs (IDP), interrupts may cause unexpected interleaving executions and even unexpected erroneous behaviors. Therefore, there is a great need in practice to ensure that IDPs work correct in the presence of interrupts, since IDPs are often used in safety critical fields such as avionics, spaceflight and automotive. However, analyzing and verifying IDPs are challenging. The main reason is that an ISR may be triggered at any time and the number of possible execution interleavings caused by concurrency between tasks and ISRs is quite huge.

IDPs often appear in embedded systems, while embedded software usually involves intensive numerical computations which have the potential to cause numerical runtime errors (such as division by zero, arithmetic overflow, and array out-of-bound) [2]. Hence, analyzing numerical properties of IDPs is of significant importance to check for the correctness of embedded software. Numerical static analysis is a commonly used technique to discover numerical properties of programs. However, most of the existing numerical static analysis approaches consider only sequential programs. For IDPs, if we perform numerical static analysis over each task and each ISR separately without considering the interleaving between them, the analysis results may not be sound.

```c
1: int x, y, z;
2: void task(){
3: if(x < y){
4: z = 1/(x - y);
5: } 3: y++; 5: }
6: return;
7: }
```

Figure 1: A motivating example

Fig. 1 shows a motivating example, where the functions `task()` and `ISR()` represent the entry functions of a task and an interrupt service routine respectively. `task()` performs
the division operation only when \(x \) is strictly less than \(y \). ISR() increases \(x \) by 1 and decreases \(y \) by 1. Performing numerical static analysis over task() without considering interrupts would answer that the program is safe. However, when taking interrupts into consideration, the task() function is not safe. For example, if \(x = 1, y = 3 \) and the interrupt fires between line 3 and 4 of task(), there will be a division-by-zero error in this program. Thereby, a sound numerical static analysis method is desired for IDPs.

Recently, a few numerical static analysis approaches have been proposed for general concurrent programs such as multi-threaded programs [15, 16], but very few approaches have considered the specific features of IDPs [6, 17]. Compared with multi-threaded programs, IDPs have their own specific features. For example, higher-priority interrupts will never be interrupted by lower ones. In other words, tasks and lower priority interrupts will never be aware of the intermediate states of higher priority interrupts during their running. Moreover, IDPs in embedded systems usually make use of hardware features such as interrupt mask registers (IMR) to control the interference between tasks and interrupts.

In this paper, we propose a sound numerical static analysis approach specifically for IDPs. The main idea is as follows. We first sequentialize IDPs into non-deterministic sequential programs according to the semantics of interrupts and the interaction between tasks and interrupts. Sequentialization then enables the use of existing analysis and verification techniques for sequential programs to verify IDPs. After that we make use of numerical abstract interpretation to analyze the numerical properties of the sequentialized IDPs. Moreover, by considering the specific features of sequentialized interrupt-driven programs, we design specific abstract domains to improve the precision of numerical static analysis. The preliminary results show that our approach is promising.

The rest of this paper is organized as follows. Section 2 presents the program syntax of IDPs. Section 3 presents methods for sequentializing IDPs. In Section 4, we show how to use abstract interpretation to analyze the sequentialized IDPs. Section 5 presents our implementation together with preliminary experimental results. Section 6 discusses some related work. Finally, conclusions as well as suggestions for future work are given in Section 7.

2. INTERRUPT-DRIVEN PROGRAMS

An IDP consists of a fixed set of a finite number of tasks and interrupts, each of which has an entry function. In this paper, recursive functions are not allowed in IDPs, and all functions have been inlined (except the entry functions of tasks and interrupts). Tasks are scheduled in a cooperative, round-robin manner, for an IDP including multiple tasks, we can design a wrapper function which consists of calling each of the tasks one by one in sequence to simulate the round-robin scheduling of multi-tasks.

2) We assume that each priority level contains only one interrupt. For an IDP which contains multiple interrupts with the same priority, we can design a new wrapper ISR of that priority to over-approximate the program behaviors. The new wrapper ISR consists of a loop in which each iteration non-deterministically calls one of the original interrupts of that priority.

\[
\text{ISR} := \langle \text{entry}, p \rangle \quad \text{where} \quad \text{entry} \in \text{Stmt}, \quad p \in \{1, N\}
\]

In fact, any program statement involving shared variables can be transformed into this form by introducing auxiliary variables. Moreover, we assume that the statements \(g = l \) and \(l = g \) are atomic.

In this paper, we consider analyzing IDPs in the level of source code rather than machine code, and one program statement in the source code can be translated into several machine instructions. Hence, an interrupt may happen during the running of a program statement if the statement is not atomic. For example, consider an IDP that contains one task \(\{ z = x + y; \} \) and one interrupt whose ISR is \(\{ x = 1; y = 1; \} \). Suppose that both shared variables \(x, y \) are initialized to 0. If we consider only the case that the interrupt happens before or after the assignment statement \(\{ z = x + y; \} \) in the task, the value of variable \(z \) can be 0 or 2. However, the interrupt may happen during the running of this statement at machine instruction level. For example, the interrupt may happen after reading \(x \) and before reading
y, and then the value of variable z can be 1 in this case. This is the reason why we only allow two kinds of statements (i.e., \(l = g \) and \(g = l \)) that are atomic to access a shared variable in the syntax shown in Fig. 2.

3. SEQUENTIALIZING INTERRUPT-DRIVEN PROGRAMS

In this section, we will describe how to sequentialize IDPs into non-deterministic sequential programs in a sound way. In other words, we will guarantee that the program behaviors of the sequentialized program are an over-approximation of the behaviors of the original IDP. In the following, we will first show in Sect. 3.1 how to sequentialize IDPs into sequential programs by considering IDPs as priority preemptive scheduling systems. Then we will make use of data flow dependency information between tasks and interrupts to remove unnecessary scheduling in Sect. 3.2. After that, we will consider further the IMR information at program point to remove unnecessary scheduling in Sect. 3.3.

3.1 Sequentializing IDPs by simulating priority preemptive scheduling

First, let us review the running process of an IDP. During the running of a task, the \(i \)-th interrupt may be fired before any program statement of the task. If the \(i \)-th interrupt is fired, the task is preempted and resumes only when ISR, has finished. Hence, this situation can be simulated by calling the ISR, function in the stack once the \(i \)-th interrupt is fired. Similarly, before each program statement of the task and ISRs in an IDP. That is, ISR, function in the stack when the \(j \)-th interrupt with higher priority (i.e., satisfying \(i < j \)) is fired, ISR, is preempted and resumes only when ISR, has finished. This situation also can be simulated by calling the ISR, function in the stack when the \(j \)-th interrupt is fired. In general, because the ISR of a preempted lower-priority interrupt (or task) will not resume until the ISR of a higher-priority interrupt has finished, the task and ISRs in an IDP can share the same stack. In other words, in IDPs, interrupt preemption can be modeled as a function call.

Based on this insight, inspired from [12] where Kidd et al. made use of a Schedule() function to simulate the priority preemptive scheduler for sequentializing multi-tasking programs, we add an explicit Schedule() function before each program statement of the task and ISRs in an IDP. That is, if a task or ISR consists of program statements \(St_1, \ldots, St_n \), then we get \(St' = \text{Schedule}(\ldots, St, \ldots) \), where each \(St' \) is defined as:

\[
\text{Schedule}(\ldots, St, \ldots, St', \ldots).
\]

The Schedule() function works as follows: It passes through the interrupts of which the priority is higher than the current running task or ISR, and non-deterministically calls the ISR function of a higher-priority interrupt which has not yet happened. In this subsection, now we make the following assumption: Each statement in the task and ISRs is atomic and a higher-priority interrupt can happen at most once before each program statement of the task or a lower-priority interrupt. We use this assumption in this subsection to make the sequentialization method in [12] easy to understand and we will show how to remove this assumption in Sect. 3.2.

Fig. 3 shows the sequentialized program of the motivating example by adding explicit the Schedule() function before each program statement of the task and ISRs. In Fig. 3, \(N \) represents the number of interrupts (and \(N = 1 \) in this example), \(ISRs_{\text{seq}}[N] \) (whose indices range from 1 to \(N \)) represents the corresponding sequentialized version of a fixed set of ISRs and the function \(\text{nondet}() \) non-deterministically returns true or false. The function \(\text{task}_{\text{seq}}() \) is the entrance of the sequentialized program. Besides, in this example, since we have only one interrupt, the Schedule() functions added in \(ISRs_{\text{seq}}() \) can be all omitted and those Schedule() functions added in \(\text{task}_{\text{seq}}() \) can be all replaced as

\[
\text{if}(\text{nondet}()) \text{ISRs}_{\text{seq}}();
\]

1: \(\text{int } x, y, z; \) 1: \(\text{void ISRs}_{\text{seq}}(); \)
2: //Current priority 2: \(\text{int } tx, ty; \)
3: \(\text{int } Prio = 0; \) 3: \(\text{Schedule(); } tx = x; \)
4: //ISR entry 4: \(\text{Schedule(); } tx = tx + 1; \)
5: \(\text{ISR } ISRs_{\text{seq}}[N]; \) 5: \(\text{Schedule(); } x = tx; \)
6: \(\text{void task}_{\text{seq}}(); \) 6: \(\text{Schedule(); } ty = y; \)
7: \(\text{int } tx, ty; \) 7: \(\text{Schedule(); } ty = ty - 1; \)
8: \(\text{Schedule(); } \) 8: \(\text{Schedule(); } y = ty; \)
9: \(tx = x; \) 9: \(\text{Schedule(); return; } \)
10: \(\text{Schedule(); } \) 10: \(\)
11: \(ty = y; \) 11: \(\text{void Schedule(); } \)
12: \(\text{Schedule(); } \) 12: //Save current priority
13: \(\text{if}(tx < ty) \) 13: \(\text{int prevPrio = Prio; } \)
14: \(\text{Schedule(); } \) 14: \(\text{for}(\text{int } i = 1; i \leq N; i++) \{ \)
15: \(tx = x; \) 15: \(\text{if}(i \leq Prio) \text{ continue; } \)
16: \(\text{Schedule(); } \) 16: \(\text{if}(\text{nondet}()) \{ \)
17: \(ty = y; \) 17: \(Prio = i; \)
18: \(\text{Schedule(); } \) 18: \(\text{ISRs}_{\text{seq}}[i].entry(); \)
19: \(z = 1/(tx - ty); \) 19: \} \}
20: \) 20: //Restore priority
21: \(\text{Schedule(); } \) 21: \(\text{Prio = prevPrio; } \)
22: \(\text{return; } \) 22: \) 23: \)

Figure 3: Sequentialization of the motivating example by simulating priority preemptive scheduling

3.2 Sequentializing IDPs by considering data flow dependency

In Sect. 3.1, we have described an approach to sequentialize IDPs by adding explicit calls to a Schedule() function before each program statement. However, the scale of the resulting sequentialized program may become very large, especially when an IDP contains many interrupts. In this subsection, we will show how to avoid adding unnecessary calls to the Schedule() function but still guarantee the soundness of sequentialization.

Essentially, in IDPs, the task and interrupts communicate with each other through shared variables. If a program statement does not access any shared variable, it makes no difference whether an interrupt happens before or after this statement. For example, suppose that the task is comprised of \(St_1, \ldots, St_n \). Adding a call to Schedule() before each program statement will give:

\[\{ \text{Schedule(); } St_1; \text{Schedule(); } \ldots; \text{Schedule(); } St_n \}. \]

However, if for each \(i \in [1, n - 1] \) the statement \(St_i \) does not access any shared variable, the following sequentialized program is still sound:

\[St_1; St_2; \ldots; St_{n-1}; \]

\[\text{for}(\text{int } i = 1; i < n; i++) \]

\[\text{Schedule(); } St_n; \]

Using a loop to wrap a number of calls to the Schedule() function has a key benefit that the resulted sequentialized
program will be of much smaller size in code lines. And loops can be analyzed very fast, for example, by using extrapolation techniques such as widening in abstract interpretation.

In fact, in practical IDPs, only a very small percentage of program statements will read/write shared variables. Moreover, the sets of shared variables between the task and different interrupts are usually different. Before a program statement $l = g$ that reads a shared variable g, we only need to consider those interrupts whose happening will affect the value of g. Similarly, after a program statement $g = l$ that writes a shared variable g, we only need to consider those ISRs whose execution will be affected by the value of g.

Based on this insight, we could make use of the data flow dependency information over shared variables between the task and interrupts, to avoid certain unnecessary inserted Schedule() function calls during sequentializing IDPs. To this end, we first introduce some notations.

Data flow dependency among interrupts. For each ISR, we introduce $RSVars(ISR_i)$ and $WSVars(ISR_i)$ to respectively denote the sets of shared variables that are read and written by ISR. Given two interrupts ISR_i, ISR_j, if $RSVars(ISR_i) \cap WSVars(ISR_j) \neq \emptyset$, we say that ISR i is directly dependent on ISR j, denoted as $ISR_i \rightarrow ISR_j$. Given two interrupts ISR_i, ISR_j, we say that ISR i is transitively dependent on ISR j, denoted as $ISR_i \rightarrow ISR_j$, if there exists ISR k such that $(ISR_i \rightarrow ISR_k \lor ISR_k \rightarrow ISR_j) \land (ISR_k \rightarrow ISR_j \lor ISR_k \rightarrow ISR_i)$. Given an interrupt ISR, we define a so-called dependent interrupt group for ISR as $dGroup[ISR_j] = \{ I \in ISRs | I \rightarrow ISR_j \vee I \rightarrow ISR_i \}$, and a so-called influenced interrupt group for ISR as $iGroup[ISR_j] = \{ I \in ISRs | ISR_i \rightarrow I \lor ISR_i \rightarrow I \}$. Example 1. Suppose that in an IDP, there are two shared variables x, y, three interrupts ISR_1, ISR_2, ISR_3, and $RSVars(ISR_1) = WSVars(ISR_2) = \{ x \}$ $RSVars(ISR_2) = WSVars(ISR_3) = \{ y \}$

Then, $dGroup[ISR_2] = \{ ISR_1 \}$ and $iGroup[ISR_2] = \{ ISR_1 \}$.

The data flow dependency relationships among ISRs can be described by a directed graph, which we call dependency graph. Each vertex of the graph denotes an interrupt and there exists a directed edge from ISR$_i$ to ISR$_j$ if ISR$_i \rightarrow$ ISR$_j$. Then the problem of computing the dependent/influenced interrupt group for ISR$_i$ can be reduced to a reachability problem in a directed graph. We use a matrix $DG \in \{0,1\}^{x,y \times x,y}$ to encode the graph where N is the number of interrupts, and $DG_{ij} = \begin{cases} 1 & \text{if } ISR_i \rightarrow ISR_j \\ 0 & \text{otherwise} \end{cases}$

We use a procedure $BuildDepGraph()$ to construct the dependency graph for an IDP. And we use two procedures $CompDepGroup()$ and $CompInfGroup()$ to compute respectively the dependent and influenced interrupt groups for ISR$_i$, as shown in Algorithm 1. Basically, Algorithm 1 computes the two groups by computing the transitive closure of direct dependency relations among ISRs.

Considering only statements that access a shared variable. As we have mentioned, if a program statement does not access any shared variable, it makes no difference whether an interrupt happens before or after this statement.

Algorithm 1 Algorithms for computing dependent/influenced group for ISR$_i$

procedure $CompDepGroup(i$: int, p: int, imr: int) ws, rs: int set; $ws = \{ i \}, rs = \{ \}$; j, k: int; while ($ws \neq \emptyset$) do $k = GetAndRemove(ws)$; $rs \leftarrow rs \cup \{ k \}$; for (each $j \in [p, N] \land imr[j] = 1$) do if ($DG_{kj} = 1$ \&\& $j \notin rs$) do $ws \leftarrow ws \cup \{ j \}$; return rs; end procedure

procedure $CompInfGroup(i$: int, p: int, imr: int) ws, rs: int set; $ws = \{ i \}, rs = \{ \}$; j, k: int; while ($ws \neq \emptyset$) do $k = GetAndRemove(ws)$; $rs \leftarrow rs \cup \{ k \}$; for (each $j \in [p, N] \land imr[j] = 1$) do if ($DG_{ij} = 1$ \&\& $rs \cap \{ j \} = \emptyset$) then $ws \leftarrow ws \cup \{ j \}$; return rs; end procedure

For a program statement that reads a shared variable, we need to consider the influence from those ISRs that affect the value of this shared variable. For a program statement that write into a shared variable, we need to consider the influence of this statement to those interrupts whose executions may be affected by the value change of this shared variable.

Based on this insight, we propose the following strategy for sequentializing IDPs: We only add Schedule() functions before statements that read shared variables and after statements that write shared variables. To be more clear, we give the details as follows:

- Before a statement (in the form of $l = g$) that reads a shared variable g, we consider invoking ISRs in $S_1 \cup S_2$ where $S_1 = \{ I \in ISRs | g \in WSVars(I) \}$ $S_2 = \{ I \in dGroup[I'] | I' \in S_1 \}$

where S_1 represents the set of ISRs that directly write shared variable g and S_2 represents the set of ISRs that are in the dependent interrupt groups of any ISR in S_1. We use procedure $ReadDepISRs()$ to compute $S_1 \cup S_2$, as shown in Algorithm 2.

- After a statement (in the form of $g = l$) that writes a shared variable g, we consider invoking ISRs in $S_3 \cup S_4$ where $S_3 = \{ I \in ISRs | g \in RSVars(I) \}$ $S_4 = \{ I \in iGroup[I'] | I' \in S_4 \}$

where S_3 represents the set of ISRs that directly read shared variable g and S_4 represents the set of ISRs that are in the influenced interrupt groups of any ISR.
that reads a shared variable, we use \textit{InvokeBefore}(St^R, group) to obtain the following sequentialized result:

\[St^R \triangleq \text{ScheduleG}_K\text{(group)}; St^R; \]

For a statement \(St^W \) that writes a shared variable, we will use \textit{InvokeAfter}(St^W, group) to obtain the following sequentialized result:

\[St^W \triangleq \text{ScheduleG}_K\text{(group)}; \]

\begin{algorithm}
\begin{algorithmic}
\State //Compute the set of ISRs that need to be considered before a statement that reads a shared variable \(g \)
\Procedure{ReadDepISRs}{g; vars, p; int, imr: int}
\hspace{1em} directDepSet = \{\}; int set;
\hspace{1em} depSet = \{\}; int set;
\hspace{1em} for (each \(i \in [p, N] \wedge imr[i] == 1\)) do
\hspace{2em} if \((g \in WSVars(ISR_i))\) then
\hspace{3em} directDepSet \leftarrow directDepSet \cup \{i\};
\hspace{1em} for (each \(j \in directDepSet\)) do
\hspace{2em} depSet \leftarrow depSet \cup CompDepGroup(j, p, imr);
\hspace{1em} return depSet;
\EndProcedure
\Procedure{WriteInfISRs}{g; vars, p; int, imr: int}
\hspace{1em} directInfSet = \{\}; int set;
\hspace{1em} infSet = \{\}; int set;
\hspace{1em} for (each \(i \in [p, N] \wedge imr[i] == 1\)) do
\hspace{2em} if \((g \in RSVars(ISR_i))\) then
\hspace{3em} directInfSet \leftarrow directInfSet \cup \{i\};
\hspace{1em} for (each \(j \in directInfSet\)) do
\hspace{2em} infSet \leftarrow infSet \cup CompInfGroup(j, p, imr);
\hspace{1em} return infSet;
\EndProcedure
\end{algorithmic}
\end{algorithm}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{Scheduling functions calling only those ISRs in a given interrupt group.}
\end{figure}

Simplifying the sequentialized programs. We may notice that the sequentialization method based on the above strategy may still introduce unnecessary invoking of the function \textit{ScheduleG}_K\text{(group)}. For example, suppose the task is comprised of \(St_1^W; \ldots; St_n^W \), where \(St_i^W \) represents a statement that writes a shared variable \(g_i \) and \(St_i^R \) represents a statement that read a shared variable \(g_i \), while all statements in between do not access any shared variables. Then the sequentialized task will be:

\[St_1; \text{ScheduleG}_K\text{(grp}_1); \]
\[St_2; \text{ScheduleG}_K\text{(grp}_1); \ldots; St_{n-2}; \text{ScheduleG}_K\text{(grp}_2); \]
\[St_{n-1}; \text{ScheduleG}_K\text{(grp}_2); St_n; \]

When the interrupt groups \(grp_1 \) and \(grp_2 \) are the same, the invoking of \textit{ScheduleG}_K\text{(grp}_2)\text{)} is unnecessary.

Based on this insight, we design a simplification procedure \textit{Simplify()} to remove unnecessary invoking of \textit{ScheduleG}_K\text{(group)}. The \textit{Simplify()} procedure removes the second invoking of \textit{ScheduleG}_K\text{(grp}_1)\text{)} in the following two patterns:

\[St_1^W; \text{ScheduleG}_K\text{(grp}_1); \ldots; \text{ScheduleG}_K\text{(grp}_1); St_n^R; \]
\[\text{ScheduleG}_K\text{(grp}_2); St_1^R; \ldots; \text{ScheduleG}_K\text{(grp}_1); St_n^R; \]

where for all \(i \in [2, n - 1] \) the statement \(St_i \) does not write any shared variable.

3.3 Sequentializing IDPs by considering IMR

IDPs usually use an interrupt mask register (IMR) to control the interference between tasks and interrupts. Each bit of IMR corresponds to an interrupt and represents whether that interrupt is enabled or disabled. In our IDPs, program-
value of IMR to disable and enable the i-th interrupt respectively. Hence, the value of IMR may be different at different program points.

Computing data flow dependency considering IMR.

The value of IMR may affect the data flow dependency among interrupts. For example, suppose there are two shared variables x, y and three interrupts ISR1, ISR2, ISR3. If \(RSVars(ISR_i) = WSVars(ISR_j) = x \) and \(RSVars(ISR_i) = WSVars(ISR_j) = y \) then the bit \(ISR_i \land ISR_j = ISR_k \). Without considering the value of IMR, we have the following data flow dependency: \(ISR_k \to ISR_j \land ISR_i \land ISR_k \to ISR_i \). However, if ISR1 is disabled, there is no data flow dependency among ISR1, ISR2, ISR3.

To obtain a precise analysis of data flow dependency, we need to consider only enabled interrupts when computing the data flow dependency among interrupts. As shown in Algorithm 1 and Algorithm 2, in procedures \(CompDepGroup() \), \(CompInfGroup() \), \(ReadDepISRs() \), \(WriteInfISRs() \), we have considered the value of IMR. Essentially, these procedures consider data flow dependency among enabled interrupts. In these two algorithms, we use \(imr[1] \) to represent the j-th bit of the imr value which indicates whether ISRj is enabled (when the bit is 1) or disabled (when the bit is 0).

Pre-analysis for analyzing the value of IMR.

In order to obtain the value of IMR at each program point, we need a pre-analysis to analyze the value of IMR (for each entry function of the task and interrupts separately) before sequentializing an IDP. In other words, we need a pre-analysis for analyzing the value of IMR without considering the interleaving between tasks and interrupts. However, inside an ISR function, programmers may also call \(disableISR(i) \) and \(enableISR(i) \) to change the value of IMR. Hence, the value of IMR at the entry-point of an ISR may be different from the value at the exit-point of the same ISR. Thus, the pre-analysis that analyzes the value of IMR for each entry function of the task and interrupts separately may be not sound in general. In this paper, we essentially model interrupt preemption as a function call to the corresponding ISR. To this end, throughout this paper, we presume the following assumption:

- We assume that at the exit-point of an ISR, the IMR is reset to the initial value of IMR at the entry-point of this ISR.

In fact, this assumption is followed in most practical IDPs.

Based on this assumption, we design a procedure namely \(ComputeIMR() \) to compute the value of IMR at each program point for each entry function of the task and interrupts separately. The value of IMR is modeled as a bit vector. For the i-th bit, we use 0 to represent that the i-th interrupt is disabled, 1 to represent that the i-th interrupt is enabled or inconclusive (i.e., either enabled or disabled). Note that when we can not conclude whether the i-th interrupt is enabled or disabled, we assign 1 to the i-th bit of IMR, which means that we assume the interrupt is enabled in this case. Essentially, the procedure \(ComputeIMR() \) performs a flow-sensitive data flow analysis using a bitwise abstract domain. For \(disableISR(i) \) and \(enableISR(i) \) statements, we set the i-th bit of the IMR bit-vector to 0 and 1 respectively. For the branch statement, at the control-flow join, we perform the bit-wise OR operation over the two resulting bit-vectors from different branches. In other words, for each bit, the joint operation returns 0 if and only if the two corresponding input bits are 0, and otherwise returns 1.

Invoking ISRs for \(enableISR(i) \) and \(disableISR(i) \).

Until now, we have considered adding calls to the schedule function only before statements that read shared variables and after statements that write into shared variables. However, when if an IDP includes statements \(enableISR(i) \) and \(disableISR(i) \), the above strategy may miss some invoking of related ISRs. For example, Fig. 5 shows an IDP involving statements \(enableISR(i) \) and \(disableISR(i) \), wherein \(y \) is the shared variable. If we add invocation of ISRs only before statements that read shared variables and after statements that write shared variables, we will not invoke ISR1 because ISR1 is disabled when the shared variable \(y \) is read (i.e., in line 7). However, this program may cause a division-by-zero error when ISR1 fires between line 5 and line 6 in the \(task() \).

```c
1: int y;
2: void task()
3: { int x, tmpy, z, c;
4:   c = 1; x = c;
5:   c = 2; y = c;
6:   disableISR(1);
7:   tmpy = y;
8:   z = 1/(x - tmpy);
9:   enableISR(1);
10: }
```

Figure 5: An example with \(disableISR \) and \(enableISR \)

When dealing with statements \(enableISR(i) \) and \(disableISR(i) \), we may also need to add an invocation of certain related ISRs. We use the following strategy to add invocation of certain related ISRs during dealing with statements \(enableISR(i) \) and \(disableISR(i) \).

When dealing with \(disableISR(i) \), we presume that all shared variables in \(WSVars(ISR_i) \) are read during the execution of the statement \(disableISR(i) \). In this situation, we need add the schedule function to invoke \(ISR_i \) and all those interrupts in \(dGroup(ISR_i) \) before \(disableISR(i) \). Similarly, when dealing with \(enableISR(i) \), we presume that all shared variables in \(RSVars(ISR_i) \) are written during the execution of the statement \(enableISR(i) \). In this situation, we need add the schedule function to invoke \(ISR_i \) and all those interrupts in \(iGroup(ISR_i) \) after \(enableISR(i) \).

Algorithm 3 shows how to insert calls to related ISRs before each statement. \(IMRValTbl \) represents a map from each program statement to its IMR value, which is computed by \(computeIMR() \). \(InvokeBefore() \) and \(InvokeAfter() \) represent a call to the corresponding interrupts before or after a statement.

3.4 The overall sequentialization algorithm considering data flow dependency and IMR

Algorithm 4 shows the overall sequentialization algorithm considering both the data flow dependency and IMR. In Algorithm 4, the procedure \(SeqIDP() \) is the main entry function of the overall sequentialization algorithm. \(N \) is the number of interrupts. \(task \) and \(ISR[1..N] \) respectively represent the entry function of the task and interrupts. \(IMRValTbl \) is a hash table that maps each program statement to the value of IMR at that statement. \(IMRValTbl \) is computed by the procedure \(computeIMR() \) discussed in Sect. 3.3.

For an IDP consisting of one task and \(N \) interrupts, the overall sequentialization algorithm shown in Algorithm 4 works as follows: First, we compute the value of IMR at each program point and build the data flow dependency graph.
ISR that is invoked in the sequentialized task, we do not need to analyze the entry function of the sequen-
tialized task and the sequentialized ISRs. The entry func-
described in Sect. 3 consist of entry functions of the sequen-
tialized result of the task.

4.1 Analyzing entry functions of sequential-
ized ISRs

Algorithm 3 Algorithm calling ISRs for each statement

```
procedure StmtInvokeISRs(st : stmt, p : int)
  imr : int;
group : int set;
  match st with
  | l = g →
    imr ← IMRValTbl.find(st);
group ← ReadDepISRs(g, p, imr);
  InvokeBefore(st, group);
  | g = l →
    imr ← IMRValTbl.find(st);
group ← WriteInfISRs(g, p, imr);
  InvokeAfter(st, group);
  | disableISR(i) →
    imr ← IMRValTbl.find(st);
group ← CompInfGroup(i, p, imr);
  InvokeAfter(st, group);
  | enableISR(i) →
    imr ← IMRValTbl.find(st);
group ← CompDepGroup(i, p, imr);
  InvokeAfter(st, group);
| S₁; S₂ →
  StmtInvokeISRs(S₁, p); StmtInvokeISRs(S₂, p);
  while e do S → StmtInvokeISRs(S, p);
  l → ()
end procedure
```

among ISRs. Then, we sequentialize the task and each inter-
rupt separately. For each program statement in the task and
ISRs, we first get the value of IMR from IMRValTbl, com-
pute the dependent/influenced interrupt group, and then
add the schedule function to invoke ISRs in the corre-
sponding group before or after that statement. Finally, we use
the procedure Simplify() to remove certain unnecessary calls to
ISRs in the sequentialized IDPs.

4. ANALYZING SEQUENTIALIZED IDPS VIA
ABSTRACT INTERPRETATION

As we mentioned before, embedded software often involves
lots of numerical computations and thus have the potential
to contain numerical related program errors. To this end,
in this section, we make use of abstract interpretation [8] to
analyze numerical properties of IDPs. To be more clear, we
would like to leverage existing numerical abstract inter-
pretation techniques for sequential programs to analyze num-
erical properties of sequentialized IDPs given by the methods
described in Sect. 3.

4.1 Analyzing entry functions of sequential-
ized IDPs

The resulting sequentialized IDPs given by the methods
described in Sect. 3 consist of entry functions of the sequen-
tialized task and the sequentialized ISRs. The entry func-
tion of the task is the main entry function of the whole IDP.
Hence, we need to analyze the entry function of the sequen-
tialized task first. In most cases, the sequentialized task will
invoke all the sequentialized ISRs. For the sequentialized
ISR that is invoked in the sequentialized task, we do not need
to analyze the entry function of this ISR again after analyz-
ing the task. However, there may exist special cases where an
interrupt ISR may never be invoked in the sequential-
ized result of the task function by the algorithm described
in Sect. 3.4. This is exemplified by Example 2. This situ-
ation may happen when there is no (direct or transitive) data
flow dependency relations between ISRs and task. Hence,
when analyzing the sequentialized IDPs, we need to analyze
not only the entry function of the sequentialized task, but
also the entry functions of those sequentialized ISRs that
are never invoked in the sequentialized task.

Example 2. Suppose that an IDP is comprised of one task
and two interrupts:

- task : {tmp = x;}
- ISR₁ : {tmp1 = x; tmp1 = 1/tmp1;}
- ISR₂ : {tmp2 = 0; x = tmp2;}

where ISR₂ is of higher priority than ISR₁, x is a shared
variable and tmp₁, tmp₁, tmp₂ are non-shared variables.

Following the strategy that we only consider invoking rele-
vant ISRs before statements reading shared variables and after
statements writing shared variables, ISR₁ will never be in-
voked in the sequentialization result of the task. However,
in this IDP, there will be a division-by-zero in ISR₁ when
ISR₂ fires before ISR₁. Hence, when performing static anal-
ysis over sequentialized IDPs, we need to analyze not only
the entry function of sequentialized task but also the entry
function of sequentialized ISR₁. If we analyze the entry
function of sequentialized ISR₁, the division-by-zero error
will be detected, since in the sequentialized ISR₁ a non-
deterministic call to the higher-priority ISR₂ is added before
the statement {tmp1 = x;}. Hence, given a sequential IDP, we first perform nu-
merical static analysis to analyze the entry function of the
sequentialized task. And then we separately analyze entry
functions of those sequentialized ISRs that are never invoked
in the sequentialized task.

4.2 Specific abstract domains for IDPs

To perform numerical static analysis, there exist a vari-
ety of numerical abstract domains in the literature. For
example, the interval abstract domain [7] is a kind of non-
relational abstract domains and can be used to infer nu-
merical bounds for variables, i.e., \(x \in [c, d] \). The octagon
abstract domain [14] is a kind of weakly relational abstract
domain and can be used to infer numerical invariants in the
form of \(\pm x \pm y \leq c \) (where \(e \) is a constant). We employ these
general numerical abstract domains for analyzing IDPs.

However, sequentialized IDPs also have their own specific
features that are not common in generic programs. To

improve the precision of numerical static analysis of sequen-
tialized IDPs, we need to design certain specific abstract
domains according to the specific features of IDPs. In the

following, we give an example of specific abstract domains
for IDPs.

From practical IDPs, we observe that there is a specific
family of interrupts which are fired after a fixed time inter-
val. For example, some interrupts are triggered by timers.
We call this kind of interrupts periodic interrupts. Furth-
more, there is a kind of periodic interrupts whose periods
are larger than one task period, which means that this kind
of periodic interrupts are fired at most once during one task
period. In this paper, we call this specific kind of interrupts
as at-most-once fired periodic interrupts.

During numerical static analysis of IDPs that involve an
at-most-once fired periodic interrupt ISR, whether ISR has
happened or not is an important information for the preci-
sion of the analysis. However, numerical abstract interpreta-
tion often performs flow-sensitive analysis rather than path-
sensitive analysis. Consider analyzing \(\text{ISR}(\text{notdet}(\text{ISR}())) \). Let \(\text{ISR} \) denote the abstract value in an abstract domain
before this statement. After this statement, abstract inter-

pretation will perform a join operation to compute the
post abstract value as \(\text{ISR}() \cup A_1 \), where \(A_1 \cup_{\text{def}} \text{ISR}(\text{notdet}(\text{ISR}())) \cup A_2 \)
wherein \(\text{ISR}(\text{notdet}(\text{ISR}())) \cup A_2 \) denotes the abstract transfer function of
ISR(). Intuitively, in \(A_1 \cup A_2 \), \(A_1 \) denotes the abstract
value when ISR has never been fired while \(A_2 \) denotes the
abstract value after ISR has been fired. However, after the
join operation, most numerical abstract domains will lose
the information that the abstract values are different for the

\begin{example}
Suppose that an IDP is comprised of one task and one interrupt where \(x \) is a shared variable, all other
variables are non-shared variables and ISR is an at-most-

once fired periodic interrupt:

- task : \{ \(x = 0 \); \(tx = x \); \(tx = tx + 1 \); \(x = tx \); \(z = x \); \}
- ISR : \{ \(tx = x \); \(tx = tx + 10 \); \(x = tx \); \}

If we use the interval abstract domain to analyze the pro-

gram, at the end of the task, the resulting variable bounds
are \(x \in [1, 21], z \in [1, 21] \). However, if we use the boolean
flag abstract domain on top of intervals, at the end of the
task, the results will be \(x \in [11, 11], z \in [11, 11] \) when ISR
has been fired and \(x \in [1, 1], z \in [1, 1] \) when ISR has not
been fired. Obviously, the results given by the boolean flag
abstract domain are more precise.

\end{example}

5. IMPLEMENTATION AND EXPERIMENT RESULTS

We have implemented a prototype tool to sequentialize
IDPs, which uses CIL [18] as its front-end. We use a CIL
supported inline tool to deal with function calls. We have also
developed a numerical static analyzer for analyzing se-
nquentialized IDPs based on the front-end CIL and the Apron

Our experiments were conducted on a selection of bench-
mark examples listed in Fig. 6. Motex is the motivat-
ing example shown in Fig. 1. DataRaceEx and Privatize
come from a data race detection tool Goblint [21]. Nxtgs is
a robot controller program from LIGO company samples.
UART (Universe Asynchronous Receiver and Transmitter)
is from an open source website which implements a First-In
First-Out (FIFO) buffer. Ping-pong is an implementation of
ping-pong buffer (or double buffering that is a technique to
use two buffers to speed up a computer that can overlap
I/O with processing). Some of these examples originally do
not include interrupts, such as Nxtgs, but tasks in these
programs are scheduled by the priorities of tasks, which is
quite similar to IDPs. Thus we adapt them into IDPs.

Fig. 6 shows the sequentialization results of all the bench-
marks. OLT and OLI represent respectively the original
code size in lines of task and interrupts. #Vars represents
the number of variables in programs. #ISR represents the
number of interrupts. SEQ represents the sequentializa-
tion method described in Sect. 3.1 which is inspired from
[12]. DF_SEQ represents the sequentialization method de-
scribed in Sect. 3.4 which considers data flow dependency
and IMR. From the results, we can see that the code size of
the program given by DF_SEQ is much smaller than that
given by SEQ. For example, for UART, the code size of
the program given by DF_SEQ is around 20% of the code size
of that given by SEQ.

Fig. 7 shows the analysis results of analyzing sequential-
ized IDPs by numerical abstract interpretation. We use box
and octagon abstract domains to analyze the sequential-
ized IDPs. For all the examples in Fig. 7, using the box do-
main and the octagon domain for both the programs given
by SEQ and DF_SEQ can find the same properties or er-
rors in the program. For Motex, we find the expected
division-by-zero error. For DataRaceEx and Privatize,
our method can prove their assertions. For example, Privatize
asserts that a shared variable is always equal to 1. For

\footnote{http://lejos-osek.sourceforge.net/}

\footnote{http://www.mikrocontroller.net/topic/101472#882716}
Nxt_gs, our analysis issues a number of integer overflow alarms. This is due to the fact that in Nxt_gs many variables are assigned data from sensors. For soundness, our analysis sets these variables to unknown values and then arithmetic operations over these variables may cause integer overflow. For UART and Pingpong, our method can prove that there is no array-out-of-bound error. From the analysis time, we can see that analyzing the sequentialized program given by \(DF_{SL}\) is much faster than analyzing that given by \(SL\). This is due to the fact that the code size of the resulting sequentialized IDPs given by \(DF_{SL}\) is much smaller than that given by \(SL\). Although the resulting sequentialized IDPs given by \(DF_{SL}\) may contain more loops, abstract interpretation can deal with loops efficiently using extrapolation techniques such as widening.

Fig. 8 shows the analysis results of analyzing IDPs with at-most-once fired periodic interrupts. In Fig. 8, we use BF to denote the boolean flag abstract domain described in Sect. 4. \#FP denote the number of false alarms. Example_3 is an adapted version of the program in Example 3 in Section 4.2 by adding an assertion \(x \leq 20\) at the end of the task. Division_Ex is an example that involves a division operation in the task. For Example_3 and Division_Ex, the analysis using only the octagon domain issues false alarms, while using our boolean flag abstract domain on top of the octagon domain (denoted by BF+oct) can eliminate these false alarms. This is because our boolean flag abstract domain can make use of the information that the interrupt is an at-most-once fired periodic interrupt.

6. RELATED WORK

Sequentialization. Much work has been done on sequentializing concurrent programs. Qadeer et al. [19] propose a context bounded analysis (CBA) method for concurrent programs via sequentialization. Their sequentialization method employs a non-deterministic scheduler model for two threads and two context switches. Lal et al. [13] propose a CBA method based on sequentialization with an arbitrary given context bound. Inverso et al. [10] propose a lazy sequentialization method that reduces the nondeterminism of sequentialized programs to avoid exponentially growing formula sizes during model checking the sequentialized programs. Recently, Chaki et al. [5] present a CBA method for analyzing periodic programs based on sequentialization.

Kidd et al. [12] propose a sequentialization method for priority preemptive scheduling systems in which each task is periodic. The key idea is to use a single stack for all tasks and model preemptions by function calls. Edwards [9] surveys a variety of approaches for translating concurrent specifications (these concurrent specifications are more abstract than concurrent programs) into sequential code which can be efficiently executed.

Compared with the above work, our sequentialization method is specifically for IDPs. Moreover, our method makes use of the data flow dependency among tasks and interrupts to reduce the size of the sequentialized program. In addition, we consider analyzing numerical properties of the sequentialized programs using numerical abstract interpretation.

Numerical static analysis of embedded software. Most of the existing numerical static analysis approaches consider sequential programs. Astree [2] is one of the famous numerical static analyzers for sequential programs, which has been successfully used in analyzing flight control software.

Miné [15, 16] proposes a numerical static analysis method for parallel embedded software. The main idea of his method is to iterate each thread in turn until all thread interferences stabilize. Compared with his work, our work is specially for IDPs and we can get more precise analysis results for IDPs.

Cooprider et al. [6] propose a static analysis method for embedded software to reduce the code size. Beckschulte et al. [1] propose a data race analysis method for lockless microcontroller programs considering hardware architecture. Compared with their work, our method focuses on numerical properties of IDPs and considers data flow dependency among tasks and interrupts. Monniaux [17] proposes a static analysis method for a concurrent USB driver, which is limited to two threads. Compared with his method, our method supports multiple tasks and interrupts.

Analysis of interrupt-driven programs. In the literature, there are a few work on analyzing and verifying IDPs [3, 4, 20, 21]. Brylow et al. [3] propose a static analysis method for interrupt-driven Z86-based software. Their method uses model checking to analyze upper bounds of stack size and interrupt latencies of IDPs. Most of the existing work focus on object code and consider problems such as interrupt latency, stack size, and data race.

Compared with the above work, our method analyzes the source code of IDPs rather than object code and focuses on numerical properties of IDPs.
properties of the sequentialized IDPs. By considering specific features of sequentialized IDPs, we design and make use of specific abstract domains to analyze sequentialized IDPs. The preliminary results show that our method is promising. For future work, we will consider designing more specific abstract domains that fit IDPs and conducting more experiments on large realistic IDPs. We also plan to handle shared variables involving pointers during sequentialization.

Acknowledgments. This work is supported by the 973 Program under Grant No. 2014CB340703, the NSFC under Grant Nos. 61120106006, 61202120, 91318301.

8. REFERENCES

<table>
<thead>
<tr>
<th>Program</th>
<th>Analysis of SEQ (s)</th>
<th>Analysis of DF_SEQ (s)</th>
<th>Founded properties or errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Box</td>
<td>OCT</td>
<td>Box</td>
</tr>
<tr>
<td>Motv_Ex</td>
<td>0.007</td>
<td>0.011</td>
<td>0.006</td>
</tr>
<tr>
<td>DataRace_Ex</td>
<td>0.042</td>
<td>0.053</td>
<td>0.011</td>
</tr>
<tr>
<td>Privatize</td>
<td>0.029</td>
<td>0.036</td>
<td>0.005</td>
</tr>
<tr>
<td>Nxt_gs</td>
<td>0.113</td>
<td>0.140</td>
<td>0.040</td>
</tr>
<tr>
<td>UART</td>
<td>0.732</td>
<td>5.782</td>
<td>0.128</td>
</tr>
<tr>
<td>Ping_pong</td>
<td>0.429</td>
<td>2.434</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Figure 7: Experimental results on analyzing sequentialized IDPs

![Figure 8: Experimental results on analyzing IDPs with at-most-once fired periodic interrupts](image-url)