
HAL Id: hal-01312248
https://hal.sorbonne-universite.fr/hal-01312248

Submitted on 3 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical Static Analysis of Interrupt-Driven Programs
via Sequentialization

Xueguang Wu, Liqian Chen, Antoine Miné, Wei Dong, Ji Wang

To cite this version:
Xueguang Wu, Liqian Chen, Antoine Miné, Wei Dong, Ji Wang. Numerical Static Analysis of
Interrupt-Driven Programs via Sequentialization. EMSOFT 2015 - International Conference on Em-
bedded Software, Oct 2015, Amsterdam, Netherlands. pp.55-64, �10.1109/EMSOFT.2015.7318260�.
�hal-01312248�

https://hal.sorbonne-universite.fr/hal-01312248
https://hal.archives-ouvertes.fr

Numerical Static Analysis of Interrupt-Driven Programs via
Sequentialization

Xueguang Wu ∗† Liqian Chen † Antoine Miné ‡ Wei Dong † Ji Wang ∗†

{xueguangwu, lqchen}@nudt.edu.cn Mine@di.ens.fr {wdong, wj}@nudt.edu.cn

∗ State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, China
† College of Computer Science, National University of Defense Technology, Changsha, China

‡ Computer Science Lab, École Normale Supérieure, Paris, France

ABSTRACT
Embedded software often involves intensive numerical com-
putations and thus can contain a number of numerical run-
time errors. The technique of numerical static analysis is of
practical importance for checking the correctness of embed-
ded software. However, most of the existing approaches of
numerical static analysis consider sequential programs, while
interrupts are a commonly used technique that introduces
concurrency in embedded systems. To this end, a numerical
static analysis approach is desired for embedded software
with interrupts. In this paper, we propose a sound numeri-
cal static analysis approach specifically for interrupt-driven
programs based on sequentialization techniques. A key ben-
efit of using sequentialization is the ability to leverage the
power of the state-of-the-art analysis and verification tech-
niques for sequential programs to analyze interrupt-driven
programs. To be more clear, we first propose a sequen-
tialization algorithm to sequentialize interrupt-driven pro-
grams into non-deterministic sequential programs according
to the semantics of interrupts. On this basis, we leverage
the power of numerical abstract interpretation to analyze
numerical properties of the sequentialized programs. More-
over, to improve the analysis precision, we design specific
abstract domains to analyze sequentialized interrupt-driven
programs by considering their specific features. Finally, we
present encouraging experimental results obtained by our
prototype implementation.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification; F.3.1
[Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

Keywords
Embedded Software, Interrupt-Driven Programs, Static Anal-
ysis, Abstract Interpretation, Sequentialization

.

1. INTRODUCTION
An interrupt is a signal to the processor indicating an

event that needs immediate attention and requiring the in-
terruption of the current code the processor is executing.
Interrupts are commonly used in embedded systems to in-
troduce concurrency, which is required for real-time appli-
cations. For example, embedded control software often uses
interrupts to obtain sensor data from the physical environ-
ment. In a program, during the running of the normal tasks,
an interrupt service routine (ISR) is invoked once an in-
terrupt alerts the processor to a higher-priority condition.
Such a program is said to be interrupt-driven. In interrupt-
driven programs (IDP), interrupts may cause unexpected
interleaving executions and even unexpected erroneous be-
haviors. Therefore, there is a great need in practice to ensure
that IDPs work correct in the presence of interrupts, since
IDPs are often used in safety critical fields such as avionics,
spaceflight and automotive. However, analyzing and verify-
ing IDPs are challenging. The main reason is that an ISR
may be triggered at any time and the number of possible ex-
ecution interleavings caused by concurrency between tasks
and ISRs is quite huge.

IDPs often appear in embedded systems, while embedded
software usually involves intensive numerical computations
which have the potential to cause numerical runtime errors
(such as division by zero, arithmetic overflow, and array
out-of-bound) [2]. Hence, analyzing numerical properties of
IDPs is of significant importance to check for the correct-
ness of embedded software. Numerical static analysis is a
commonly used technique to discover numerical properties
of programs. However, most of the existing numerical static
analysis approaches consider only sequential programs. For
IDPs, if we perform numerical static analysis over each task
and each ISR separately without considering the interleav-
ing between them, the analysis results may be not sound.

1: int x, y, z;
2: void task(){
3: if(x < y){
4: z = 1/(x− y);
5: }
6: return;
7: }

1: void ISR(){
2: x++;
3: y−−;
4: return;
5: }

Figure 1: A motivating example

Fig. 1 shows a motivating example, where the functions
task() and ISR() represent the entry functions of a task and
an interrupt service routine respectively. task() performs

the division operation only when x is strictly less than y.
ISR() increases x by 1 and decreases y by 1. Performing
numerical static analysis over task() without considering in-
terrupts would answer that the program is safe. However,
when taking interrupts into consideration, the task() func-
tion is not safe. For example, if x = 1, y = 3 and the in-
terrupt fires between line 3 and 4 of task(), there will be
a division-by-zero error in this program. Thereby, a sound
numerical static analysis method is desired for IDPs.

Recently, a few numerical static analysis approaches have
been proposed for general concurrent programs such as multi-
threaded programs [15, 16], but very few approaches have
considered the specific features of IDPs [6, 17]. Compared
with multi-threaded programs, IDPs have their own specific
features. For example, higher-priority interrupts will never
be interrupted by lower ones. In other words, tasks and
lower priority interrupts will never be aware of the intermedi-
ate states of higher priority interrupts during their running.
Moreover, IDPs in embedded systems usually make use of
hardware features such as interrupt mask registers (IMR) to
control the interference between tasks and interrupts.

In this paper, we propose a sound numerical static analysis
approach specifically for IDPs. The main idea is as follows.
We first sequentialize IDPs into non-deterministic sequen-
tial programs according to the semantics of interrupts and
the interaction between tasks and interrupts. Sequentializa-
tion then enables the use of existing analysis and verification
techniques for sequential programs to verify IDPs. After
that we make use of numerical abstract interpretation to
analyze the numerical properties of the sequentialized IDPs.
Moreover, by considering the specific features of sequential-
ized interrupt-driven programs, we design specific abstract
domains to improve the precision of numerical static anal-
ysis. The preliminary results show that our approach is
promising.

The rest of this paper is organized as follows. Section 2
presents the program syntax of IDPs. Section 3 presents
methods for sequentializing IDPs. In Section 4, we show how
to use abstract interpretation to analyze the sequentialized
IDPs. Section 5 presents our implementation together with
preliminary experimental results. Section 6 discusses some
related work. Finally, conclusions as well as suggestions for
future work are given in Section 7.

2. INTERRUPT-DRIVEN PROGRAMS
An IDP consists of a fixed set of a finite number of tasks

and interrupts, each of which has an entry function. In this
paper, recursive functions are not allowed in IDPs, and all
functions have been inlined (except the entry functions of
tasks and interrupts). Tasks are scheduled in a cooperative,
round-robin manner and interrupts are assigned priorities.
Moreover, the tasks execute with interleaved semantics (on
a uniprocessor) and each task can finish its job within the
given time slice. Each interrupt has a fixed priority level
attribute p which is a positive integer and a larger priority
level means higher priority. In other words, higher-priority
interrupts can interrupt lower-priority interrupts and tasks,
but the opposite preemption can not happen. For the sake of
presentation, we use the following two assumptions through-
out this paper:

1) We assume that an IDP only consists of a single task.
Since tasks are scheduled in a cooperative, round-robin

manner, for an IDP including multiple tasks, we can
design a wrapper function which consists of calling
each of the tasks one by one in sequence to simulate
the round-robin scheduling of multi-tasks.

2) We assume that each priority level contains only one
interrupt. For an IDP which contains multiple inter-
rupts with the same priority, we can design a new
wrapper ISR of that priority to over-approximate the
program behaviors. The new wrapper ISR consists of a
loop in which each iteration non-deterministically calls
one of the original interrupts of that priority.

Expr := l | C | E1 � E2 (where l ∈ NV , C is a constant,
E1, E2 ∈ Expr and � ∈ {+,−,×,÷})

Stmt := l = g | g = l | l = e | S1;S2 | skip | enableISR(i)
| disableISR(i) | if e then S1 else S2

| while e do S
(where l ∈ NV , g ∈ SV , e ∈ Expr , i ∈ [1, N],
S1, S2, S ∈ Stmt)

Task := entry (where entry ∈ Stmt)
ISR := 〈entry, p〉 (where entry ∈ Stmt , p ∈ [1, N])

Prog := Task ‖ ISR1 ‖ . . . ‖ ISRN

Figure 2: Syntax of interrupt-driven programs

We now present a simple language to model IDPs. The
syntax of our language is depicted in Fig. 2. An IDP consists
of one task and N interrupts. ISR := 〈entry, p〉 represents
the ISR entry function of an interrupt and its priority. With-
out loss of generality, we assume that the priority p is equal
to the index of the corresponding interrupt and use ISRi to
represent the interrupt with priority p = i where i ∈ [1, N].
enableISR(i) and disableISR(i) represent respectively the
instructions that enable and disable an interrupt by writ-
ing to the interrupt mask register (IMR). We use SV and
NV respectively represent the set of shared and non-shared
variables.

For the sake of simplicity but without loss of generality,
we restrict that shared variables can only appear in the fol-
lowing two kinds of statements:

• l = g which represents reading the value from a shared
variable g to a non-shared variable l,

• g = l which represents writing the value of a non-
shared variable l to a shared variable g.

In fact, any program statement involving shared variables
can be transformed into this form by introducing auxiliary
variables. Moreover, we assume that the statements g = l
and l = g are atomic.

In this paper, we consider analyzing IDPs in the level of
source code rather than machine code, and one program
statement in the source code can be translated into several
machine instructions. Hence, an interrupt may happen dur-
ing the running of a program statement if the statement is
not atomic. For example, consider an IDP that contains
one task {z = x + y; } and one interrupt whose ISR is
{x = 1; y = 1; }. Suppose that both shared variables x, y
are initialized to 0. If we consider only the case that the
interrupt happens before or after the assignment statement
{z = x + y; } in the task, the value of variable z can be 0 or
2. However, the interrupt may happen during the running
of this statement at machine instruction level. For example,
the interrupt may happen after reading x and before reading

y, and then the value of variable z can be 1 in this case. This
is the reason why we only allow two kinds of statements (i.e.,
l = g and g = l) that are atomic to access a share variable
g in the syntax shown in Fig. 2.

3. SEQUENTIALIZING INTERRUPT-DRIVEN
PROGRAMS

In this section, we will describe how to sequentialize IDPs
into non-deterministic sequential programs in a sound way.
In other words, we will guarantee that the program behav-
iors of the sequentialized program are an over-approximation
of the behaviors of the original IDP. In the following, we will
first show in Sect. 3.1 how to sequentialize IDPs into sequen-
tial programs by considering IDPs as priority preemptive
scheduling systems. Then we will make use of data flow
dependency information between tasks and interrupts to re-
move unnecessary scheduling in Sect. 3.2. After that, we
will consider further the IMR information at program point
to remove unnecessary scheduling in Sect. 3.3.

3.1 Sequentializing IDPs by simulating prior-
ity preemptive scheduling

First, let us review the running process of an IDP. During
the running of a task, the i-th interrupt may be fired before
any program statement of the task. If the i-th interrupt is
fired, the task is preempted and resumes only when ISRi

has finished. Hence, this situation can be simulated by call-
ing the ISRi function in the stack once the i-th interrupt
is fired. Similarly, before each program statement of the i-
th interrupt, if the j-th interrupt with higher priority (i.e.,
satisfying i<j) is fired, ISRi is preempted and resumes only
when ISRj has finished. This situation also can be simulated
by calling the ISRj function in the stack when the j-th in-
terrupt is fired. In general, because the ISR of a preempted
lower-priority interrupt (or task) will not resume until the
ISR of a higher-priority interrupt has finished, the task and
ISRs in an IDP can share the same stack. In other words,
in IDPs, interrupt preemption can be modeled as merely a
function call.

Based on this insight, inspired from [12] where Kidd et al.
made use of a Schedule() function to simulate the priority
preemptive scheduler for sequentializing multi-tasking pro-
grams, we add an explicit Schedule() function before each
program statement of the task and ISRs in an IDP. That is,
if a task or ISR consists of program statements St1, . . . , Stn,
then we will get St′1, . . . , St

′
n, where each St′ is defined as:

St′
def
= Schedule();St. The Schedule() function works as fol-

lows: It passes through the interrupts of which the priority
is higher than the current running task or ISR, and non-
deterministically calls the ISR function of a higher-priority
interrupt which has not yet happened. In this subsection,
now we make the following assumption: Each statement in
the task and ISRs is atomic and a higher-priority interrupt
can happen at most once before each program statement of
the task or a lower-priority interrupt. We use this assump-
tion in this subsection to make the sequentialization method
in [12] easy to understand and we will show how to remove
this assumption in Sect.3.2.

Fig. 3 shows the sequentialized program of the motivating
example by adding explicit the Schedule() function before
each program statement of the task and ISRs. In Fig. 3,
N represents the number of interrupts (and N = 1 in this

example), ISRs seq [N] (whose indices range from 1 to N)
represents the corresponding sequentialized version of a fixed
set of ISRs and the function nondet() non-deterministically
returns true or false. The function task seq is the entrance
of the sequentialized program. Besides, in this example,
since we have only one interrupt, the Schedule() functions
added in ISR seq() can be all omitted and those Schedule()
functions added in task seq() can be all replaced as

if(nondet()) ISR seq();

1: int x, y, z;
2: //Current priority
3: int Prio = 0;
4: //ISR entry
5: ISR ISRs seq [N];
6: void task seq(){
7: int tx, ty;
8: Schedule();
9: tx = x;
10: Schedule();
11: ty = y;
12: Schedule();
13: if(tx < ty){
14: Schedule();
15: tx = x;
16: Schedule();
17: ty = y;
18: Schedule();
19: z = 1/(tx− ty);
20: }
21: Schedule();
22: return;
23: }

1: void ISR seq(){
2: int tx, ty;
3: Schedule(); tx = x;
4: Schedule(); tx = tx + 1;
5: Schedule(); x = tx;
6: Schedule(); ty = y;
7: Schedule(); ty = ty − 1;
8: Schedule(); y = ty;
9: Schedule(); return;
10: }
11: void Schedule(){
12: //Save current priority
13: int prevPrio = Prio;
14: for(int i = 1; i ≤ N ; i++){
15: if(i ≤ Prio) continue;
16: if(nondet()){
17: Prio = i;
18: ISRs seq [i].entry();
19: } }
20: //Restore priority
21: Prio = prevPrio;
22: }

Figure 3: Sequentialization of the motivating exam-
ple by simulating priority preemptive scheduling

3.2 Sequentializing IDPs by considering data
flow dependency

In Sect. 3.1, we have described an approach to sequential-
ize IDPs by adding explicit calls to a Schedule() function
before each program statement. However, the scale of the
resulting sequentialized program may become very large, es-
pecially when an IDP contains many interrupts. In this sub-
section, we will show how to avoid adding unnecessary calls
to the Schedule() function but still guarantee the soundness
of sequentialization.

Essentially, in IDPs, the task and interrupts communi-
cate with each other through shared variables. If a program
statement does not access any shared variable, it makes no
difference whether an interrupt happens before or after this
statement. For example, suppose that the task is comprised
of St1; . . . ;Stn. Adding a call to Schedule() before each pro-
gram statement will give: {Schedule();St1; Schedule(); . . . ;
Schedule();Stn; }. However, if for each i ∈ [1, n − 1] the
statement Sti does not access any shared variable, the fol-
lowing sequentialized program is still sound:

St1;St2; . . . ;Stn−1;
for(int i = 1 ; i < n; i++)

Schedule();
Stn;

Using a loop to wrap a number of calls to the Schedule()
function has a key benefit that the resulted sequentialized

program will be of much smaller size in code lines. And loops
can be analyzed very fast, for example, by using extrapola-
tion techniques such as widening in abstract interpretation.

In fact, in practical IDPs, only a very small percentage of
program statements will read/write shared variables. More-
over, the sets of shared variables between the task and dif-
ferent interrupts are usually different. Before a program
statement l = g that reads a shared variable g, we only need
to consider those interrupts whose happening will affect the
value of g. Similarly, after a program statement g = l that
writes a shared variable g, we only need to consider those
ISRs whose execution will be affected by the value of g.

Based on this insight, we could make use of the data flow
dependency information over shared variables between the
task and interrupts, to avoid certain unnecessary inserted
Schedule() function calls during sequentializing IDPs. To
this end, we first introduce some notations.

Data flow dependency among interrupts. For each
ISRi , we introduce RSVars(ISRi) and WSVars(ISRi) to
respectively denote the sets of shared variables that are
read and written by ISRi . Given two interrupts ISRi , ISRj ,
if RSVars(ISRi) ∩ WSVars(ISRj) 6= ∅, we say that ISRi

is directly dependent on ISRj , denoted as ISRi → ISRj .
Given two interrupts ISRi , ISRj , we say that ISRi is transi-
tively dependent on ISRj , denoted as ISRi � ISRj , if there
exists ISRk such that (ISRi → ISRk ∨ ISRi � ISRk) ∧
(ISRk → ISRj ∨ ISRk � ISRj). Given an interrupt ISRi ,
we define a so-called dependent interrupt group for ISRi as

dGroup[ISRi]
def
= {I ∈ ISRs | I → ISRi ∨ I � ISRi}, and a

so-called influenced interrupt group for ISRi as iGroup[ISRi]
def
= {I ∈ ISRs | ISRi → I ∨ ISRi � I }.
Example 1. Suppose that in an IDP, there are two shared
variables x, y, three interrupts ISR1 , ISR2 , ISR3 , and

RSVars(ISR1) = WSVars(ISR2) = {x}
RSVars(ISR2) = WSVars(ISR3) = {y}

Then, dGroup[ISR2] = {ISR3} and iGroup[ISR2] = {ISR1}.

The data flow dependency relationships among ISRs can
be described by a directed graph, which we call dependency
graph. Each vertex of the graph denotes an interrupt and
there exists a directed edge from ISRi to ISRj if ISRi →
ISRj . Then the problem of computing the dependent/influ-
enced interrupt group for ISRi can be reduced to a reacha-
bility problem in a directed graph. We use a matrix DG ∈
{0, 1}N×N to encode the graph where N is the number of
interrupts, and

DGij
def
=

{
1 if ISRi → ISRj

0 otherwise

We use a procedure BuildDepGraph() to construct the
dependency graph for an IDP. And we use two procedures
CompDepGroup() and CompInfGroup() to compute respec-
tively the dependent and influenced interrupt groups for
ISRi, as shown in Algorithm 1. Basically, Algorithm 1 com-
putes the two groups by computing the transitive closure of
direct dependency relations among ISRs.

Considering only statements that access a shared
variable. As we have mentioned, if a program statement
does not access any shared variable, it makes no difference
whether an interrupt happens before or after this statement.

Algorithm 1 Algorithms for computing dependent/influ-
enced group for ISRi

procedure CompDepGroup(i: int, p: int, imr: int)
ws, rs: int set;
ws = {i}, rs = {};
j, k: int;
while(ws 6= ∅)

//Get an element and remove it from a set
k = GetAndRemove(ws);
rs← rs ∪ {k};
for each (j ∈ [p,N] ∧ imr|j == 1) do

if (DGkj == 1 && j /∈ rs) do
ws← ws ∪ {j};

return rs;
end procedure
procedure CompInfGroup(i: int, p: int, imr: int)

ws, rs: int set;
ws = {i}, rs = {};
j, k: int;
while ws 6= ∅ do

k = GetAndRemove(ws);
rs← rs ∪ {k};
for(each j ∈ [p,N] ∧ imr|j = 1) do

if (DGjr == 1 && rs ∩ {j} == ∅) then
ws← ws ∪ {j};

return rs;
end procedure

For a program statement that reads a shared variable, we
need to consider the influence from those ISRs that affect
the value of this shared variable. For a program statement
that write into a shared variable, we need to consider the
influence of this statement to those interrupts whose exe-
cutions may be affected by the value change of this shared
variable.

Based on this insight, we propose the following strategy
for sequentializing IDPs: We only add Schedule() functions
before statements that read shared variables and after state-
ments that write shared variables. To be more clear, we give
the details as follows:

• Before a statement (in the form of l = g) that reads a
shared variable g, we consider invoking ISRs in S1∪S2

where

– S1
def
= {I ∈ ISRs | g ∈WSVars(I)}

– S2
def
= {I ∈ dGroup[I ′] | I ′ ∈ S1}

where S1 represents the set of ISRs that directly write
shared variable g and S2 represents the set of ISRs
that are in the dependent interrupt groups of any ISR
in S1. We use procedure ReadDepISRs() to compute
S1 ∪ S2, as shown in Algorithm 2.

• After a statement (in the form of g = l) that writes a
shared variable g, we consider invoking ISRs in S3∪S4

where

– S3
def
= {I ∈ ISRs | g ∈ RSVars(I)}

– S4
def
= {I ∈ iGroup[I ′] | I ′ ∈ S3}

where S3 represents the set of ISRs that directly read
shared variable g and S4 represents the set of ISRs
that are in the influenced interrupt groups of any ISR

Algorithm 2 Algorithms for computing sets of ISRs that
need to be considered w.r.t. a shared variable

//Compute the set of ISRs that need to be considered

before a statement that reads a shared variable g

procedure ReadDepISRs(g: vars, p: int, imr: int)

directDepSet = {}: int set;

depSet = {}: int set;

i, j: int;

for (each i ∈ [p,N] ∧ imr|i == 1) do

if (g ∈WSVars(ISRi)) then

directDepSet ← directDepSet ∪ {i};
for (each j ∈ directDepSet) do

depSet ← depSet ∪ CompDepGroup(j, p, imr);

return depSet ;

end procedure

//Compute the set of ISRs that need to be considered

after a statement that writes a shared variable g

procedure WriteInfISRs(g: vars, p: int, imr: int)

directInfSet = {}: int set;

infSet = {}: int set;

i, j: int;

for (each i ∈ [p,N] ∧ imr|i == 1) do

if (g ∈ RSVars(ISRi)) then

directInfSet ← directInfSet ∪ {i};
for(each j ∈ directInfSet) do

infSet ← infSet ∪ CompInfGroup(j, p, imr);

return infSet ;

end procedure

in S3. We use procedure WriteInfISRs() to compute
S3 ∪ S4, as shown in Algorithm 2.

On this basis, we introduce a new schedule function namely
ScheduleG(group) to non-deterministically call those ISRs
in group, as shown in Fig. 4. According to the above strat-
egy, we consider adding the schedule functions only before
and after a statement St that accesses shared variables, but
we do not know how many times an interrupt may be fired
before the statement St. In fact, in practical IDPs, an inter-
rupt never fires too frequently in each task period, otherwise
the program may disobey the real-time restriction. Espe-
cially, the system designers of real-time embedded systems
often know an upper bound on the number of firing times of
each interrupt during one task period. Based on this insight,
to guarantee the soundness of the sequentialization following
the above strategy, we add the following assumption:

• We assume that the upper bound on the number of
firing times of each interrupt during one task period is
given by K where K is a positive integer that can be
+∞.

In Fig. 4, we introduce a function namely ScheduleG K(group)
to call the ScheduleG() function K times. In case where K
can not be specified, we can put K to +∞ (and then the
loop in ScheduleG K() becomes an unbounded loop that
can stop at any time or loop forever), which can still guar-
antee the soundness of the sequentialization following the
above strategy.

Now, we introduce functions namely InvokeBefore(St, group)
and InvokeAfter(St, group) to insert the ScheduleG K(group)
function respectively before and after a given statement St.
During the process of sequentialization, for a statement StR

that reads a shared variable, we use InvokeBefore(StR, group)
to obtain the following sequentialized result:

St′R
def
= ScheduleG K (group);StR;

For a statement StW that writes a shared variable, we will
use InvokeAfter(StW , group) to obtain the following sequen-
tialized result:

St′W
def
= StW ; ScheduleG K (group);

1: void ScheduleG(group: int set){
2: //Save current priority
3: int prevPrio = Prio;
4: for(int i = 1; i ≤ N ; i++){
5: if(i ≤ Prio ‖ i /∈ group) continue;
6: if(nondet()){
7: Prio = i;
8: ISRs seq [i].entry(group);
9: } }
10: //Restore priority
11: Prio = prevPrio;
12: }
13: //schedule K times
14: void ScheduleG K (group: int set){
15: for(int i = 1; i ≤ K; i++)
16: ScheduleG(group);
17: }

Figure 4: Scheduling functions calling only those
ISRs in a given interrupt group

Simplifying the sequentialized programs. We may no-
tice that the sequentialization method based on the above
strategy may still introduce unnecessary invoking of the func-
tion ScheduleG K (). For example, suppose the task is com-
prised of StW1 ; . . . ;StRn , where StW1 represents a statement
that write a shared variable g1 and StR1 represents a state-
ment that read a shared variable g2, while all statements
in between do not access any shared variables. Then the
sequentialized task will be:

St1; ScheduleG K (grp1);
St2;St3; . . . ;Stn−2;Stn−1;
ScheduleG K (grp2);Stn

When the interrupt groups grp1 and grp2 are the same, the
invoking of ScheduleG K (grp2) is unnecessary.

Based on this insight, we design a simplification procedure
Simplify() to remove unnecessary invoking of ScheduleG K ().
The Simplify() procedure removes the second invoking of
ScheduleG K (grp1) in the following two patterns:

• StW1 ; ScheduleG K (grp1); . . . ; ScheduleG K (grp1);StRn ;

• ScheduleG K (grp1);StR1 ; . . . ; ScheduleG K (grp1);StRn ;

where for all i ∈ [2, n− 1] the statement Sti does not write
any shared variable.

3.3 Sequentializing IDPs by considering IMR
IDPs usually use an interrupt mask register (IMR) to con-

trol the interference between tasks and interrupts. Each bit
of IMR corresponds to an interrupt and represents whether
that interrupt is enabled or disabled. In our IDPs, program-
mers can use disableISR(i) and enableISR(i) to change the

value of IMR to disable and enable the i-th interrupt respec-
tively. Hence, the value of IMR may be different at different
program points.

Computing data flow dependency considering IMR.
The value of IMR may affect the data flow dependency
among interrupts. For example, suppose there are two shared
variables x, y and three interrupts ISRi , ISRj , ISRk where
RSVars(ISRi) = WSVars(ISRj) = x and RSVars(ISRj) =
WSVars(ISRk) = y. Without considering the value of IMR,
we have the following data flow dependency: ISRi → ISRj ∧
ISRj → ISRk ∧ ISRi � ISRk . However, if ISRj is disabled,
there is no data flow dependency among ISRi , ISRj , ISRk .

To obtain a precise analysis of data flow dependency, we
need to consider only enabled interrupts when computing
the data flow dependency among interrupts. As shown in Al-
gorithm 1 and Algorithm 2, in procedures CompDepGroup(),
CompInfGroup(), ReadDepISRs(), WriteInfISRs(), we have
considered the value of IMR. Essentially, these procedures
consider data flow dependency among enabled interrupts.
In these two algorithms, we use imr|j to represent the j-th
bit of the imr value which indicates whether ISRj is enabled
(when the bit is 1) or disabled (when the bit is 0).

Pre-analysis for analyzing the value of IMR. In order
to obtain the value of IMR at each program point, we need
a pre-analysis to analyze the value of IMR (for each entry
function of the task and interrupts separately) before se-
quentializing an IDP. In other words, we need a pre-analysis
for analyzing the value of IMR without considering the in-
terleaving between tasks and interrupts. However, inside
an ISR function, programmers may also call disableISR(i)
and enableISR(i) to change the value of IMR. Hence, the
value of IMR at the entry-point of an ISR may be different
from the value at the exit-point of the same ISR. Thus, the
pre-analysis that analyzes the value of IMR for each entry
function of the task and interrupts separately may be not
sound in general. In this paper, we essentially model in-
terrupt preemption as a function call to the corresponding
ISR. To this end, throughout this paper, we presume the
following assumption:

• We assume that at the exit-point of an ISR, the IMR
is reset to the initial value of IMR at the entry-point
of this ISR.

In fact, this assumption is followed in most practical IDPs.
Based on this assumption, we design a procedure namely

ComputeIMR() to compute the value of IMR at each pro-
gram point for each entry function of the task and interrupts
separately. The value of IMR is modeled as a bit vector. For
the i-th bit, we use 0 to represent that the i-th interrupt is
disabled, 1 to represent that the i-th interrupt is enabled
or inconclusive (i.e., either enabled or disabled). Note that
when we can not conclude whether the i-th interrupt is en-
abled or disabled, we assign 1 to the i-th bit of IMR, which
means that we assume the interrupt is enabled in this case.
Essentially, the procedure ComputeIMR() performs a flow-
sensitive data flow analysis using a bitwise abstract domain.
For disableISR(i) and enableISR(i) statements, we set the
i-th bit of the IMR bit-vector to 0 and 1 respectively. For
the branch statement, at the control-flow join, we perform
the bit-wise OR operation over the two resulting bit-vectors
from different branches. In other words, for each bit, the
join operation returns 0 if and only if the two corresponding
input bits are 0, and otherwise returns 1.

Invoking ISRs for enableISR(i) and disableISR(i). Un-
til now, we have considered adding calls to the schedule
function only before statements that read shared variables
and after statements that write into shared variables. How-
ever, when if an IDP includes statements enableISR(i) and
disableISR(i), the above strategy may miss some invoking of
related ISRs. For example, Fig. 5 shows an IDP involving
statements enableISR(i) and disableISR(i), wherein y is the
shared variable. If we add invocation of ISRs only before
statements that read shared variables and after statements
that write shared variables, we will not invoke ISR1 because
ISR1 is disabled when the shared variable y is read (i.e., in
line 7). However, this program may cause a division-by-zero
error when ISR1 fires between line 5 and line 6 in the task().

1: int y;
2: void task(){
3: int x, tmpy, z, c;
4: c = 1; x = c;
5: c = 2; y = c;
6: disableISR(1);
7: tmpy = y;
8: z = 1/(x− tmpy);
9: enableISR(1);
10: }

1: void ISR1(){
2: y = 1;
3: }

Figure 5: An example with disableISR and enableISR

Hence, when dealing with statements enableISR(i) and
disableISR(i), we may also need to add an invocation of
certain related ISRs. We use the following strategy to add
invocation of certain related ISRs during dealing with state-
ments enableISR(i) and disableISR(i).

When dealing with disableISR(i), we presume that all
shared variables in WSVars(ISRi) are read during the ex-
ecution of the statement disableISR(i). In this situation,
we need add the schedule function to invoke ISRi and all
those interrupts in dGroup[ISRi] before disableISR(i). Sim-
ilarly, when dealing with enableISR(i), we presume that all
shared variables in RSVars(ISRi) are written during the ex-
ecution of the statement enableISR(i). In this situation, we
need add the schedule function to invoke ISRi and all those
interrupts in iGroup[ISRi] after enableISR(i).

Algorithm 3 shows how to insert calls to related ISRs be-
fore each statement. IMRValTbl represents a map from each
program statement to its IMR value, which is computed by
computeIMR(). InvokeBefore() and InvokeAfter() represent
a call to the corresponding interrupts before or after a state-
ment.

3.4 The overall sequentialization algorithm con-
sidering data flow dependency and IMR

Algorithm 4 shows the overall sequentialization algorithm
considering both the data flow dependency and IMR. In Al-
gorithm 4, the procedure SeqIDP() is the main entry func-
tion of the overall sequentialization algorithm. N is the num-
ber of interrupts. task and ISRs[N] respectively represent
the entry function of the task and interrupts. IMRValTbl is
a hash table that maps each program statement to the value
of IMR at that statement. IMRValTbl is computed by the
procedure computeIMR() discussed in Sect. 3.3.

For an IDP consisting of one task and N interrupts, the
overall sequentialization algorithm shown in Algorithm 4
works as follows: First, we compute the value of IMR at each
program point and build the data flow dependency graph

Algorithm 3 Algorithm calling ISRs for each statement

procedure StmtInvokeISRs(st : stmt, p : int)

imr : int;

group : int set;

match st with

| l = g →
imr ← IMRValTbl .find(st);

group← ReadDepISRs(g, p, imr);

InvokeBefore(st, group);

| g = l →
imr ← IMRValTbl .find(st);

group←WriteInfISRs(g, p, imr);

InvokeAfter(st, group);

| disableISR(i)→
imr ← IMRValTbl .find(st);

group← CompDepGroup(i , p, imr);

InvokeBefore(st, group);

| enableISR(i)→
imr ← IMRValTbl .find(st);

group← CompInfGroup(i , p, imr);

InvokeAfter(st, group);

| S1;S2

| if e then S1 else S2 →
StmtInvokeISRs(S1, p); StmtInvokeISRs(S2, p);

| while e do S →
StmtInvokeISRs(S, p);

| → ();

end procedure

among ISRs. Then, we sequentialize the task and each inter-
rupt separately. For each program statement in the task and
ISRs, we first get the value of IMR from IMRValTbl , com-
pute the dependent/influenced interrupt group, and then
add the schedule function to invoke ISRs in the correspond-
ing group before or after that statement. Finally, we use the
procedure Simplify() to remove certain unnecessary calls to
ISRs in the sequentialized IDPs.

4. ANALYZING SEQUENTIALIZED IDPS VIA
ABSTRACT INTERPRETATION

As we mentioned before, embedded software often involves
lots of numerical computations and thus have the potential
to contain numerical related program errors. To this end,
in this section, we make use of abstract interpretation [8] to
analyze numerical properties of IDPs. To be more clear, we
would like to leverage existing numerical abstract interpre-
tation techniques for sequential programs to analyze numer-
ical properties of sequentialized IDPs given by the methods
described in Sect. 3.

4.1 Analyzing entry functions of sequential-
ized IDPs

The resulting sequentialized IDPs given by the methods
described in Sect. 3 consist of entry functions of the sequen-
tialized task and the sequentialized ISRs. The entry func-
tion of the task is the main entry function of the whole IDP.
Hence, we need to analyze the entry function of the sequen-
tialized task first. In most cases, the sequentialized task will
invoke all the sequentialized ISRs. For the sequentialized
ISR that is invoked in the sequentialized task, we do not need

Algorithm 4 A sequentialization algorithm considering
data flow dependency

Require: task, ISRs[N] : stmt list;//Task and ISR entry
//IMR value for each program point
IMRValTbl : (stmt, int) Hashtbl;
procedure SeqIDP()

IMRValTbl ← ComputeIMR();
BuildDepGraph();
SeqEach(task);
for (i = 1 to N) do

SeqEach(ISRs[i − 1], i);
Simplify();

end procedure
//Sequentialize task and each ISR
procedure SeqEach(fn : stmt list, p : int)

for(each sti ∈ fn) do
StmtInvokeISRs(sti, p);

end procedure

to analyze the entry function of this ISR again after analyz-
ing the task. However, there may exist special cases where
an interrupt ISRi may never be invoked in the sequential-
ized result of the task function by the algorithm described
in Sect. 3.4. This is exemplified by Example 2. This situa-
tion may happen when there is no (direct or transitive) data
flow dependency relations between ISRi and task. Hence,
when analyzing the sequentialized IDPs, we need to analyze
not only the entry function of the sequentialized task, but
also the entry functions of those sequentialized ISRs that
are never invoked in the sequentialized task.

Example 2. Suppose that an IDP is comprised of one task
and two interrupts:

• task : {tmp = x; }

• ISR1 : {tmp1 = x; tmp1 = 1/tmp1; }

• ISR2 : {tmp2 = 0;x = tmp2; }

where ISR2 is of higher priority than ISR1, x is a shared
variable and tmp, tmp1, tmp2 are non-shared variables. Fol-
lowing the strategy that we only consider invoking relevant
ISRs before statements reading shared variables and after
statements writing shared variables, ISR1 will never be in-
voked in the sequentialization result of the task . However,
in this IDP, there will be a division-by-zero in ISR1 when
ISR2 fires before ISR1 . Hence, when performing static anal-
ysis over sequentialized IDPs, we need to analyze not only
the entry function of sequentialized task but also the en-
try function of sequentialized ISR1 . If we analyze the entry
function of sequentialized ISR1 , the division-by-zero error
will be detected, since in the sequentialized ISR1 a non- de-
terministic call to the higher-priority ISR2 is added before
the statement {tmp1 = x; }.

Hence, given a sequentialized IDP, we first perform nu-
merical static analysis to analyze the entry function of the
sequentialized task. And then we separately analyze entry
functions of those sequentialized ISRs that are never invoked
in the sequentialized task.

4.2 Specific abstract domains for IDPs
To perform numerical static analysis, there exist a vari-

ety of numerical abstract domains in the literature. For

example, the interval abstract domain [7] is a kind of non-
relational abstract domains and can be used to infer nu-
merical bounds for variables, i.e., x ∈ [c, d]. The octagon
abstract domain [14] is a kind of weakly relational abstract
domain and can be used to infer numerical invariants in the
form of ±x±y ≤ c (where c is a constant). We employ these
general numerical abstract domains for analyzing IDPs.

However, sequentialized IDPs also have their own specific
features that are not common in generic programs. To im-
prove the precision of numerical static analysis of sequen-
tialized IDPs, we need to design certain specific abstract
domains according to the specific features of IDPs. In the
following, we give an example of specific abstract domains
for IDPs.

From practical IDPs, we observe that there is a specific
family of interrupts which are fired after a fixed time inter-
val. For example, some interrupts are triggered by timers.
We call this kind of interrupts periodic interrupts. Further-
more, there is a kind of periodic interrupts whose periods
are larger than one task period, which means that this kind
of periodic interrupts are fired at most once during one task
period. In this paper, we call this specific kind of interrupts
as at-most-once fired periodic interrupts.

During numerical static analysis of IDPs that involve an
at-most-once fired periodic interrupt ISRi , whether ISRi has
happened or not is an important information for the preci-
sion of the analysis. However, numerical abstract interpreta-
tion often performs flow-sensitive analysis rather than path-
sensitive analysis. Consider analyzing {if(notdet()) ISRi(); }.
Let A1 denote the abstract value in an abstract domain
before this statement. After this statement, abstract in-
terpretation will perform a join operation to compute the

post abstract value as A1 t A2 where A2
def
= [[ISRi()]]](A1)

wherein [[ISRi()]]] denotes the abstract transfer function of
ISRi(). Intuitively, in A1 t A2, A1 denotes the abstract
value when ISRi has never been fired while A2 denotes the
abstract value after ISRi has been fired. However, after the
join operation, most numerical abstract domains will lose
the information that the abstract values are different for the
case where ISRi has been fired or not.

Our basic idea is to use a boolean flag variable f in the ab-
stract domain to distinguish whether an at-most-once fired
periodic interrupt ISRi has already been fired or not. In the
abstract domain, for each boolean flag variable, we main-
tain a pair of abstract values (Af , A¬f) where Af denotes
the abstract value when ISRi has already been fired and
A¬f denotes the abstract value when ISRi has not been
fired. As an example, we now use the boolean flag abstract
domain to analyze {if(notdet()) ISRi(); }. Let (Af

1 , A
¬f
1)

denote the abstract value in the boolean flag abstract do-
main before this statement. After the then branch, we get
the post abstract value ([[ISRi()]]](A¬f1),⊥). After the else

branch, nothing changes and thus we get the pair (Af
1 , A

¬f
1).

Then, at the control-flow join, we perform a join operation
to compute the post abstract value as

([[ISRi()]]](A¬f1),⊥) t (Af
1 , A

¬f
1)

and then by element-wise join, it will result in

(Af
1 t [[ISRi()]]](A¬f1), A¬f1)

Example 3. Suppose that an IDP is comprised of one task
and one interrupt where x is a shared variable, all other

variables are non-shared variables and ISR is an at-most-
once fired periodic interrupt:

• task : {x = 0; tx = x; tx = tx + 1; x = tx; z = x; }

• ISR : {tx = x; tx = tx + 10; x = tx; }

If we use the interval abstract domain to analyze the pro-
gram, at the end of the task, the resulting variable bounds
are (x ∈ [1, 21], z ∈ [1, 21]). However, if we use the boolean
flag abstract domain on top of intervals, at the end of the
task, the results will be (x ∈ [11, 11], z ∈ [11, 11]) when ISR
has been fired and (x ∈ [1, 1], z ∈ [1, 1]) when ISR has not
been fired. Obviously, the results given by the boolean flag
abstract domain are more precise.

5. IMPLEMENTATION AND EXPERIMENT
RESULTS

We have implemented a prototype tool to sequentialize
IDPs, which uses CIL [18] as its front-end. We use a CIL
supported inline tool to deal with function calls. We have
also developed a numerical static analyzer for analyzing se-
quentialized IDPs based on the front-end CIL and the Apron
[11] numerical abstract domain library.

Our experiments were conducted on a selection of bench-
mark examples listed in Fig. 6. Motv Ex is the motivat-
ing example shown in Fig. 1. DataRace Ex and Privatize
come from a data race detection tool Goblint [21]. Nxt gs is
a robot controller program from LEGO company samples1.
UART (Universe Asynchronous Receiver and Transmitter)2

is from an open source website which implements a First-In
First-Out (FIFO) buffer. Ping pong is an implementation
of ping-pong buffer (or double buffering that is a technique
to use two buffers to speed up a computer that can overlap
I/O with processing). Some of these examples originally do
not include interrupts, such as Nxt gs, but tasks in these
programs are scheduled by the priorities of tasks, which is
quite similar to IDPs. Thus we adapt them into IDPs.

Fig. 6 shows the sequentialization results of all the bench-
marks. OLT and OLI represent respectively the original
code size in lines of task and interrupts. #Vars represents
the number of variables in programs. #ISR represents the
number of interrupts. SEQ represents the sequentializa-
tion method described in Sect. 3.1 which is inspired from
[12]. DF SEQ represents the sequentialization method de-
scribed in Sect. 3.4 which considers data flow dependency
and IMR. From the results, we can see that the code size of
the program given by DF SEQ is much smaller than that
given by SEQ. For example, for UART , the code size of the
program given by DF SEQ is around 20% of the code size
of that given by SEQ.

Fig. 7 shows the analysis results of analyzing sequential-
ized IDPs by numerical abstract interpretation. We use box
and octagon abstract domains to analyze the sequentialized
IDPs. For all the examples in Fig. 7, using the box do-
main and the octagon domain for both the programs given
by SEQ and DF SEQ can find the same properties or er-
rors in the program. For Motv Ex , we find the expected
division-by-zero error. For DataRace Ex and Privatize,
our method can prove their assertions. For example, Privatize
asserts that a shared variable is always equal to 1. For

1http://lejos-osek.sourceforge.net/
2http://www.mikrocontroller.net/topic/101472#882716

Program Sequentialization

Name OLT OLI #Vars #ISR
SEQ DF SEQ DF SEQ/SEQ

LOC Time (s) LOC Time (s) (%LOC)

Motv Ex 10 7 8 1 158 0.004 134 0.006 84.81
DataRace Ex 20 40 9 2 385 0.004 242 0.005 62.86

Privatize 25 37 7 2 393 0.006 168 0.004 42.75
Nxt gs 23 154 27 1 1199 0.005 552 0.006 46.04
UART 129 15 47 1 5940 0.010 1215 0.010 20.45

Ping pong 130 53 21 1 3159 0.006 842 0.006 26.65

Figure 6: Experimental results on Sequentializing IDPs

Nxt gs, our analysis issues a number of integer overflow
alarms. This is due to the fact that in Nxt gs many vari-
ables are assigned data from sensors. For soundness, our
analysis sets these variables to unknown values and then
arithmetic operations over these variables may cause inte-
ger overflow. For UART and Ping Pong , our method can
prove that there is no array-out-of-bound error. From the
analysis time, we can see that analyzing the sequentialized
program given by DF SL is much faster than analyzing that
given by SL. This is due to the fact that the code size of
the resulting sequentialized IDPs given by DF SL is much
smaller than that given by SL. Although the resulting se-
quentialized IDPs given by DF SL may contain more loops,
abstract interpretation can deal with loops efficiently using
extrapolation techniques such as widening.

Fig. 8 shows the analysis results of analyzing IDPs with
at-most-once fired periodic interrupts. In Fig. 8, we use
BF to denote the boolean flag abstract domain described in
Sect. 4. #FP denote the number of false alarms. Example 3
is an adapted version of the program in Example 3 in Sec-
tion 4.2 by adding an assertion x ≤ 20 at the end of the
task. Division Ex is an example that involves a division
operation in the task. For Example 3 and Division Ex, the
analysis using only the octagon domain issues false alarms,
while using our boolean flag abstract domain on top of the
octagon domain (denoted by bf+oct) can eliminate these
false alarms. This is because our boolean flag abstract do-
main can make use of the information that the interrupt is
an at-most-once fired periodic interrupt.

6. RELATED WORK
Sequentialization. Much work has been done on sequen-
tializing concurrent programs. Qadeer et al. [19] propose a
context bounded analysis (CBA) method for concurrent pro-
grams via sequentialization. Their sequentialization method
employs a non-deterministic scheduler model for two threads
and two context switches. Lal et al. [13] propose a CBA
method based on sequentialization with an arbitrary given
context bound. Inverso et al. [10] propose a lazy sequential-
ization method that reduces the nondeterminism of sequen-
tialized programs to avoid exponentially growing formula
sizes during model checking the sequentialized programs.
Recently, Chaki et al. [5] present a CBA method for an-
alyzing periodic programs based on sequentialization.

Kidd et al. [12] propose a sequentialization method for
priority preemptive scheduling systems in which each task
is periodic. The key idea is to use a single stack for all
tasks and model preemptions by function calls. Edwards [9]
surveys a variety of approaches for translating concurrent
specifications (these concurrent specifications are more ab-
stract than concurrent programs) into sequential code which

can be efficiently executed.
Compared with the above work, our sequentialization method

is specifically for IDPs. Moreover, our method makes use of
the data flow dependency among tasks and interrupts to re-
duce the size of the sequentialized program. In addition, we
consider analyzing numerical properties of the sequentialized
programs using numerical abstract interpretation.

Numerical static analysis of embedded software. Most
of the existing numerical static analysis approaches consider
sequential programs. Astree [2] is one of the famous numeri-
cal static analyzers for sequential programs, which has been
successfully used in analyzing flight control software.

Miné [15, 16] proposes a numerical static analysis method
for parallel embedded software. The main idea of his method
is to iterate each thread in turn until all thread interferences
stabilize. Compared with his work, our work is specially for
IDPs and we can get more precise analysis results for IDPs.

Cooprider et al. [6] propose a static analysis method for
embedded software to reduce the code size. Beckschulze et
al. [1] propose a data race analysis method for lockless mi-
cro controller programs considering hardware architecture.
Compared with their work, our method focuses on numeri-
cal properties of IDPs and considers data flow dependency
among tasks and interrupts. Monniaux [17] proposes a static
analysis method for a concurrent USB driver, which is lim-
ited to two threads. Compared with his method, our method
supports multiple tasks and interrupts.

Analysis of interrupt-driven programs. In the litera-
ture, there are a few work on analyzing and verifying IDPs
[3, 4, 20, 21]. Brylow et al. [3] propose a static analy-
sis method for interrupt-driven Z86-based software. Their
method uses model checking to analyze upper bounds of
stack size and interrupt latencies of IDPs. Most of the ex-
isting work focus on object code and consider problems such
as interrupt latency, stack size, and data race.

Compared with the above work, our method analyzes the
source code of IDPs rather than object code and focuses on
numerical properties of IDPs.

7. CONCLUSION
We have presented a sound numerical static analysis ap-

proach for IDPs. The key idea is to sequentialize IDPs into
sequential programs before analysis. The idea of sequential-
izing IDPs into sequential programs enables the use of exist-
ing analysis and verification techniques (e.g., bounded model
checking, symbolic execution, etc.) for sequential programs
to analyze and verify IDPs. We have proposed a sequen-
tialization algorithm specifically for IDPs, by considering
the data flow dependency among ISRs and specific hard-
ware features of IDPs. After that, we have shown how to
use numerical abstract interpretation to analyze numerical

Program
Analysis time of SEQ (s) Analysis time of DF SEQ (s)

Founded properties or errors
box oct box oct

Motv Ex 0.007 0.011 0.006 0.007 division-by-zero error
DataRace Ex 0.042 0.053 0.011 0.015 assertions hold

Privatize 0.029 0.036 0.005 0.007 assertions hold
Nxt gs 0.113 0.140 0.040 0.046 integer overflow alarms
UART 0.732 5.782 0.128 1.177 no array-out-of-bound

Ping pong 0.429 2.434 0.054 0.251 no array-out-of-bound

Figure 7: Experimental results on analyzing sequentialized IDPs

Program Analysis of SEQ (s) Analysis of DF SEQ (s)

Name OLT OLI SL
oct bf+oct

DF SL
oct bf+oct

time (s) #FP time (s) #FP time (s) #FP time (s) #FP

Example 3 6 11 158 0.007 1 0.012 0 122 0.005 1 0.010 0
Division Ex 8 10 189 0.007 1 0.013 0 99 0.004 1 0.007 0

Figure 8: Experimental results on analyzing IDPs with at-most-once fired periodic interrupts

properties of the sequentialized IDPs. By considering spe-
cific features of sequentialized IDPs, we design and make use
of specific abstract domains to analyze sequentialized IDPs.
The preliminary results show that our method is promising.

For future work, we will consider designing more specific
abstract domains that fit IDPs and conducting more experi-
ments on large realistic IDPs. We also plan to handle shared
variables involving pointers during sequentialization.

Acknowledgments. This work is supported by the 973
Program under Grant No. 2014CB340703, the NSFC under
Grant Nos. 61120106006, 61202120, 91318301.

8. REFERENCES
[1] E. Beckschulze, S. Biallas, and S. Kowalewski. Static

analysis of lockless microcontroller C programs. In
SSV’12, pages 103–114, 2012.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In
PLDI’03, pages 196–207. ACM, 2003.

[3] D. Brylow, N. Damgaard, and J. Palsberg. Static
checking of interrupt-driven software. In ICSE’01,
pages 47–56. IEEE, 2001.

[4] D. Brylow and J. Palsberg. Deadline analysis of
interrupt-driven software. IEEE Trans. Software Eng.,
30(10):634–655, 2004.

[5] S. Chaki, A. Gurfinkel, and O. Strichman. Verifying
periodic programs with priority inheritance locks. In
FMCAD’13, pages 137–144, 2013.

[6] N. Cooprider and J. Regehr. Pluggable abstract
domains for analyzing embedded software. In
LCTES’06, pages 44–53. ACM, 2006.

[7] P. Cousot and R. Cousot. Static determination of
dynamic properties of programs. In Proc. of the 2nd
International Symposium on Programming, pages
106–130. Dunod, Paris, 1976.

[8] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
POPL’77, pages 238–252. ACM, 1977.

[9] S. A. Edwards. Tutorial: Compiling concurrent
languages for sequential processors. ACM Trans.

Design Autom. Electr. Syst., 8(2):141–187, 2003.
[10] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and

G. Parlato. Bounded model checking of multi-threaded
C programs via lazy sequentialization. In CAV’14,
volume 8559 of LNCS, pages 585–602. Springer, 2014.

[11] B. Jeannet and A. Miné. Apron: A library of
numerical abstract domains for static analysis. In
CAV’09, volume 5643 of LNCS, pages 661–667.
Springer, 2009.

[12] N. Kidd, S. Jagannathan, and J. Vitek. One stack to
run them all - reducing concurrent analysis to
sequential analysis under priority scheduling. In
SPIN’10, volume 6349 of LNCS, pages 245–261.
Springer, 2010.

[13] A. Lal, T. Touili, N. Kidd, and T. W. Reps.
Interprocedural analysis of concurrent programs under
a context bound. In TACAS’08, volume 4963 of
LNCS, pages 282–298. Springer, 2008.

[14] A. Miné. The octagon abstract domain. Higher-Order
and Symbolic Computation, 19(1):31–100, 2006.

[15] A. Miné. Static analysis of run-time errors in
embedded critical parallel C programs. In ESOP’11,
volume 6602 of LNCS, pages 398–418. Springer, 2011.

[16] A. Miné. Relational thread-modular static value
analysis by abstract interpretation. In VMCAI’14,
volume 8318 of LNCS, pages 39–58. Springer, 2014.

[17] D. Monniaux. Verification of device drivers and
intelligent controllers: a case study. In EMSOFT’07,
pages 30–36. ACM, 2007.

[18] G. C. Necula, S. McPeak, S. P. Rahul, and
W. Weimer. CIL: intermediate language and tools for
analysis and transformation of C programs. In CC’02,
volume 2304 of LNCS, pages 213–228. Springer, 2002.

[19] S. Qadeer and D. Wu. KISS: keep it simple and
sequential. In PLDI’04, pages 14–24. ACM, 2004.

[20] J. Regehr, A. Reid, and K. Webb. Eliminating stack
overflow by abstract interpretation. ACM Trans.
Embedded Comput. Syst., 4(4):751–778, 2005.

[21] M. D. Schwarz, H. Seidl, V. Vojdani, P. Lammich, and
M. Müller-Olm. Static analysis of interrupt-driven
programs synchronized via the priority ceiling
protocol. In POPL’11, pages 93–104. ACM, 2011.

