
HAL Id: hal-01312250
https://hal.sorbonne-universite.fr/hal-01312250

Submitted on 5 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Algorithm Inspired by Constraint Solvers to Infer
Inductive Invariants in Numeric Programs

Antoine Miné, Jason Breck, Thomas Reps

To cite this version:
Antoine Miné, Jason Breck, Thomas Reps. An Algorithm Inspired by Constraint Solvers to Infer
Inductive Invariants in Numeric Programs. 25th European Symposium on Programming, ESOP 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Apr 2016, Eindhoven, Netherlands. pp.560-588, �10.1007/978-3-662-49498-1_22�. �hal-01312250�

https://hal.sorbonne-universite.fr/hal-01312250
https://hal.archives-ouvertes.fr

An Algorithm Inspired by Constraint Solvers to
Infer Inductive Invariants in Numeric Programs?

Antoine Miné1, Jason Breck2, and Thomas Reps2,3

1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6, Paris, France
2 University of Wisconsin; Madison, WI, USA

3 GrammaTech, Inc.; Ithaca, NY, USA

Abstract. This paper addresses the problem of proving a given invari-
ance property ϕ of a loop in a numeric program, by inferring automat-
ically a stronger inductive invariant ψ. The algorithm we present is
based on both abstract interpretation and constraint solving. As in ab-
stract interpretation, it computes the effect of a loop using a numeric
abstract domain. As in constraint satisfaction, it works from “above”—
interactively splitting and tightening a collection of abstract elements
until an inductive invariant is found. Our experiments show that the
algorithm can find non-linear inductive invariants that cannot normally
be obtained using intervals (or octagons), even when classic techniques
for increasing abstract-interpretation precision are employed—such as in-
creasing and decreasing iterations with extrapolation, partitioning, and
disjunctive completion. The advantage of our work is that because the
algorithm uses standard abstract domains, it sidesteps the need to de-
velop complex, non-standard domains specialized for solving a particular
problem.

1 Introduction

A key concept in formal verification of programs is that of invariants, i.e., prop-
erties true of all executions of a program. For instance, safety properties, such
as the fact that program variables stay within their expected bounds, are in-
variance properties, while more complex properties, such as termination, often
depend crucially on invariants. Hence, a large part of program-verification re-
search concerns methods for checking or inferring suitable invariants. Invariants
are particularly important for loops: an invariant for a loop provides a single

? The authors wish to thank Sriram Sankaranarayanan and Charlotte Truchet for the
very useful discussions that inspired this work. The work was supported, in part,
by the project ANR-15-CE25-0002 Coverif from the French Agence Nationale de
la Recherche; by a gift from Rajiv and Ritu Batra; by DARPA under cooperative
agreement HR0011-12-2-0012; by AFRL under DARPA MUSE award FA8750-14-2-
0270 and DARPA STAC award FA8750-15-C-0082; and by the UW-Madison Office
of the Vice Chancellor for Research and Graduate Education with funding from the
Wisconsin Alumni Research Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors, and do not
necessarily reflect the views of the sponsoring agencies.

2 Antoine Miné, Jason Breck, and Thomas Reps

entry:
x, y ∈ [−1, 1]

body:
x′ = 0.68 ∗ (x− y);
y′ = 0.68 ∗ (x+ y);
x = x′; y = y′;

invariant:
x, y ∈ [−2, 2]

F

0 2

2

-2

-2

0

-3 3
-3

-1 1

1

3

-1

0 2

2

-2

-2

0

-3 3
-3

-1 1

1

3

-1

(a) (b) (c)

Fig. 1. (a) A loop that performs a 45-degree rotation with a slight inward scaling; (b)
no box is an inductive invariant; (c) inductive invariant obtained by our algorithm.

property that holds on every loop iteration, and relieves one from having to
prove the safety of each loop iteration individually (which might not be possible
for infinite-state systems when the number of loop iterations is unbounded, and
not practical when it is finite but large). The main principle for proving that
a property is an invariant for a loop is to find a stronger property that is an
inductive invariant, i.e., it holds when entering the loop for the first time, and
is stable across a single loop iteration.

While an invariant associated with a safety property of interest can be rela-
tively simple (e.g., a variable’s value is bounded by such-and-such a quantity),
it may not always be inductive. In general, it is a much more complex task to
find an inductive invariant: inductive invariants can have much more complex
shapes, as shown by the following example.

Consider the program in Fig. 1. It has two variables, x and y, and its loop
body performs a 45-degree rotation of the point (x, y) about the origin, with a
slight inward scaling. Additionally, we are given a precondition telling us that,
upon entry to the loop, x ∈ [−1, 1] and y ∈ [−1, 1]. Intuitively, no matter how
many times we go around this loop, the point (x, y) will not move far away
from the origin. To make this statement precise, we choose a bounding box that

is aligned with the axes, such as I
def
= [−2, 2] × [−2, 2], and observe that the

program state, considered as a point (x, y), is guaranteed to lie inside I every
time that execution reaches the head of the loop. Consequently, I is an invariant
at the head of the loop.

Even though I is an invariant at the head of the loop, it is not an inductive
invariant, because there are some points in I, such as its corners, that do not
remain inside I after a 45-degree rotation. Actually, the corner points are not
reachable states; however, there is no way to express that fact using an axis-
aligned box. In fact, no box is an inductive invariant for this program.

To express symbolically the distinction between invariants and inductive in-
variants, we write E = [−1, 1] × [−1, 1] for the set of states that satisfy the

precondition, and write F (X)
def
= {(0.68∗ (x−y), 0.68∗ (x+y)) | (x, y) ∈ X} for

the function that represents the transformation performed by the loop body. The

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 3

set of program states reachable at the loop head after any number of iterations is
then

⋃
n∈N F

n(E). The box I is an invariant at the loop head because I includes
all states reachable at the loop head; that is,

⋃
n∈N F

n(E) ⊆ I. However, I is not
an inductive invariant because F (I) * I.

Suppose that we wish to prove that I is an invariant. It is not practical to do
so by directly computing the set of reachable states and checking whether that is
a subset of I, because that would require executing the loop an extremely large
(and possibly infinite) number of times. Instead, we will look for a set of boxes
like J , shown in Fig. 1(c). One iteration of the loop maps this set of boxes into
a subset of itself: the inward scaling, along with the rotation, maps the entire
shape, including the jagged edges, into its own interior. Thus, even though no
single box is an inductive invariant, a set of boxes, such as J , can be an inductive
invariant. Note that this property can be verified by analyzing the effect of just
one iteration of the loop applied to J . However, as this example illustrates, an
inductive invariant like J may be significantly more complicated, and therefore
more difficult to find, than an invariant such as I.

This paper is concerned with automatically strengthening a given invariant
into an inductive invariant for numeric programs that manipulate reals or floats.
In contrast to classical fixpoint-finding methods that start from the bottom of
a lattice of abstract values and iteratively work upwards (towards an overap-
proximation of the infinite union mentioned above), the algorithm described in
Sec. 4 starts with the invariant that the user wishes to prove and incrementally
strengthens it until an inductive invariant is found.

The contributions of our work include the following:

– We demonstrate that ideas and techniques from constraint programming,
such as an abstract domain consisting of disjunctions of boxes, and operators
for splitting and tightening boxes, can be used to find inductive invariants.

– We present an algorithm based on those techniques and demonstrate that it
is able to find inductive invariants for numerical, single-loop programs that
manipulate reals or floats.

– We demonstrate the generality of our approach by extending the algorithm
to optionally use an abstract domain based on octagons instead of boxes.

– We further extend our algorithm to optionally run in a “relatively-complete
mode”, which guarantees that an inductive invariant will be found if one
exists in the appropriate abstract domain and can be proven inductive using
boxes.

Organization. Sec. 2 presents an overview of our method and its connections
to abstract interpretation and constraint programming. Sec. 3 recalls key facts
about invariants, abstract interpretation, and constraint programming. Sec. 4
presents a basic version of our algorithm, using boxes to simplify the presenta-
tion. Sec. 5 discusses extensions, including the use of other numeric domains,
methods to tighten invariants, and a modified version of the algorithm that has
a relative-completeness property. Sec. 6 discusses our prototype implementation
and preliminary experiments. Sec. 7 surveys related work. Sec. 8 concludes.

4 Antoine Miné, Jason Breck, and Thomas Reps

entry:
s0, s1 ∈ [−0.1, 0.1]

body:
r = 1.5× s0 − 0.7× s1 + [−0.1, 0.1];
s1 = s0;
s0 = r;

invariant:
s0, s1 ∈ [−4, 4]

(a) (b)

Fig. 2. (a) Second-order digital-filter program, and (b) the inductive invariant found
by our method, composed of 181 boxes.

2 Overview

Consider Fig. 2(a), which presents a model of a loop that implements a second-
order digital filter. Its state is composed of two variables, s0 and s1, which are
initially set to values in [−0.1, 0.1]. On each loop iteration, the value of s0 is
shifted into s1, while s0 is assigned 1.5 × s0 − 0.7 × s1 + [−0.1, 0.1] (using a
temporary variable r). The evaluation of the interval [−0.1, 0.1] is understood
as choosing a fresh value between −0.1 and 0.1 on each loop iteration. The
evaluation occurs in the real field, and the use of an interval allows modeling
rounding errors that can occur in a floating-point implementation of the filter.
Note that the program is nondeterministic due to the indeterminacy in the initial
state and in the evaluation of the interval, with infinitely many executions and
an infinite state space.

We wish to prove that, on each iteration, the property s0, s1 ∈ [−4, 4] holds.
This property is indeed invariant; however, it is not inductive—and no box is
inductive—for reasons similar to those explained in Sec. 1. More generally, in-
terval arithmetic [23] is ineffective at proving that box invariants hold. Control
theory teaches us that there exist quadratic properties—ellipsoids—that can be
inductive. Verification techniques that exploit this knowledge a priori can be
developed, such as [12]. However, that approach constitutes a program-specific
method. Fig. 2(b) shows an inductive invariant found by our method in 76 ms.
While the shape of an ellipsoid is roughly recognizable, the inductive invari-
ant found is actually the set union of 181 non-overlapping boxes. Our method
employs only sets of boxes and does not use any knowledge from control theory.

Abstract interpretation. Abstract interpretation [8] provides tools to infer
inductive invariants. It starts from the observation that the most-precise loop
invariant is inductive and can be expressed mathematically as a least fixpoint or,
constructively, as the limit of an iteration sequence. In general, the most-precise
loop invariant is not computable because the iterates live in infinite-state spaces,
and the iteration sequences can require a transfinite number of iterations to reach
the least fixpoint. Abstract interpretation solves the first issue by reasoning in
an abstract domain of simpler, computable properties (such as intervals [8] or
octagons [20]), and the second issue by using extrapolation operators (widenings
and narrowings). Its effectiveness relies on the choice of an appropriate abstract

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 5

(a) (b) (c)

Fig. 3. Examples of boxes that should be (a) kept, (b) discarded, or (c) split, based
on the intersection of each box’s image with the other boxes.

domain, which must be able to represent inductive invariants, and also to sup-
port sufficiently precise operators—both to model program instructions and to
perform extrapolation.

The Astrée analyzer [4] makes use of a large number of abstract domains, some
of which are specific to particular application domains. In particular, the use of
digital filters similar to Fig. 2(a) in aerospace software, and the inability of the
interval domain to find any inductive invariant for them, motivated the design
of the digital-filter domain [12] and its inclusion in Astrée. Note that Fig. 2(b)
shows that an inductive invariant can, in fact, be expressed using a disjunction
of boxes. However, applying classical disjunctive-domain constructions, such as
disjunctive completion, or state- or trace-partitioning over the interval domain
does not help in finding an inductive invariant. Indeed, these methods rely on
program features, such as tests, control-flow joins, or user-provided hints, none
of which occur in Fig. 2(a).

Constraint programming. Constraint programming [22] is a declarative pro-
gramming paradigm in which problems are first expressed as conjunctions of
first-order logic formulas, called constraints, and then solved by generic meth-
ods. Different families of constraints come with specific operators—such as choice
operators and propagators—used by the solver to explore the search space of the
problem and to reduce its size, respectively.

Algorithm synopsis. The algorithm presented in Sec. 4 was inspired by one
class of constraint-solving algorithms—namely, continuous constraint solving—
but applies those ideas to solve fixpoint equations. The algorithm works by
iteratively refining a set of boxes until it becomes an inductive invariant. Fig. 3
illustrates the main rules used to refine the set of boxes. When the boxes form
an inductive invariant, one iteration of the loop maps each box into the areas
covered by other boxes (Fig. 3(a)). To refine a set of boxes that is not yet an
inductive invariant, two refinement rules are applied:
– Boxes that map to areas outside of all other boxes are discarded (Fig. 3(b)).
– If a box maps to an area partially inside and partially outside the set, then

we split it into two boxes (Fig. 3(c)).
These rules, along with a few others, are applied until either the set of boxes is
inductive or failure is detected.

Even when an inductive invariant can be represented in a given abstract do-
main, approximation due to widening can prevent an abstract interpreter from

6 Antoine Miné, Jason Breck, and Thomas Reps

prog ::= assume entry : bexpr ;
while true do

assert inv : bexpr ;
body : stat

done

expr ::= V V ∈ V
| [a, b] a, b ∈ R
| −expr
| expr ◦ expr ◦ ∈ {+,−,×, / }

stat ::= V ← expr V ∈ V
| if bexpr then stat else stat
| stat ; stat

bexpr ::= expr ./ expr ./ ∈ {<,≤,= }
| ¬bexpr
| bexpr ◦ bexpr ◦ ∈ {∧,∨}

Fig. 4. Simple programming language.

finding any inductive invariant—let alone the best one. The version of our algo-
rithm presented in Sec. 4 shares this deficiency (although not because widening is
involved); however, we modify our method to overcome this problem in Sec. 5.3.

The algorithm presented in this paper exploits simple, generic abstract do-
mains (such as intervals) to compute effectively and efficiently the effect of a loop
iteration, but (i) replaces extrapolation with a novel search algorithm inspired
from constraint programming, and (ii) proposes a novel method to introduce
disjunctions. Because of these features of the algorithm, it can sidestep the need
to invent specialized abstract domains for specialized settings. For instance, a
special digital-filter abstract domain (like the one created for Astrée [12]) is not
needed to handle a digital-filter program; the interval domain suffices.

3 Terminology and Notation

3.1 Language and Semantics

The language we consider is defined in Figs. 4 and 5. It is a simple numeric
language, featuring real-valued variables V ∈ V; numeric expressions expr , in-
cluding the usual operators and non-deterministic random choice ([a, b]); Boolean
expressions bexpr ; and various statements stat—assignments (V ← expr), condi-
tionals (if bexpr then stat else stat) and sequences (stat ; stat). A program prog
consists of a single loop that starts in an entry state entry specified by a Boolean
expression; a program is non-terminating, and executes a body statement. The
loop invariant to prove (a Boolean expression) is explicitly present in the loop.
Furthermore, the semantics is in terms of real numbers; if a floating-point se-
mantics is desired instead, any rounding error has to be made explicit, using for
instance the technique described in [19].

The concrete semantics of the language is presented in Fig. 5. It is a simple
numeric, big-step, non-deterministic semantics, where expressions evaluate to a

set of values EJ e Kρ ∈ P(R) given an environment ρ ∈ E def
= V → R; Boolean

expressions act as environment filters BJ b K : P(E) → P(E); and statements as
environment transformers SJ s K : P(E) → P(E). Given a program whose entry
states are given by entry ∈ bexpr , a formula for a candidate invariant for the
loop inv ∈ bexpr , and loop body body ∈ stat , the goal is to prove that inv is
indeed an invariant for the loop. This problem can be expressed as the following
fixpoint problem:

lfpP ⊆ BJ inv KE where P(X)
def
= BJ entry K E ∪ SJ body KX. (1)

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 7

EJ expr K : E → P(R)

EJV Kρ def
= { ρ(V) }

EJ e1 ◦ e2 Kρ def
= { v1 ◦ v2 | v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ }

EJ − e Kρ def
= {−v | v ∈ EJ e Kρ }

EJ [a, b] Kρ def
= {x ∈ R | a ≤ x ≤ b }

BJ bexpr K : P(E)→ P(E)

BJ e1 ./ e2 KS def
= { ρ ∈ S | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ, v1 ./ v2 }

BJ b1 ∨ b2 KS def
= BJ b1 K S ∪ BJ b2 KS

BJ b1 ∧ b2 KS def
= BJ b1 K S ∩ BJ b2 KS

SJ stat K : P(E)→ P(E)

SJV ← e KS def
= { ρ[V 7→ v] | ρ ∈ S, v ∈ EJ e Kρ }

SJ if b then s1 else s2 KS def
= SJ s1 K (BJ b KS) ∪ SJ s2 K(BJ¬b KS)

SJ s1; s2 KS def
= SJ s2 K (SJ s1 KS)

Fig. 5. Language semantics.
S]J stat K : D] → D]

S]JV ← e KS] def
= assign](V, e, S])

S]J if b then s1 else s2 KS] def
= S]J s1 K (guard](b, S])) ∪] S]J s2 K(guard](¬b, S]))

S]J s1; s2 KS] def
= S]J s2 K (S]J s1 KS])

B]J bexpr K(S])
def
= guard](bexpr , S])

P](S])
def
= B]J entry K>] ∪] S]J body KS]

Fig. 6. Abstract semantics.

We will abbreviate the problem statement as lfpP ⊆ I.
We can now formalize the notion of invariant and inductive invariant.

1. An invariant is any set I such that lfpP ⊆ I.
2. An inductive invariant is any set I such that P(I) ⊆ I.

By Tarski’s Theorem [29], P(I) ⊆ I implies lfpP ⊆ I. Moreover, lfpP is the
smallest invariant, and it is also an inductive invariant. Because computing or
approximating P(I) is generally much easier than lfpP, it is much easier to check
that a property is an inductive invariant than to check that it is an invariant.

3.2 Abstract Interpretation

The key idea underlying abstract interpretation is to replace each operation in
P(E) with an operation that works in an abstract domain D] of properties.
Each abstract element S] ∈ D] represents a set of points γ(S]) through a con-
cretization function γ : D] → P(E). Additionally, we assume that there exist
abstract primitives assign](V, expr , S]), guard](bexpr , S]), ∪], ∩], ⊥], >] ∈ D]

that model, respectively, the effect of SJV ← expr K, BJ bexpr K, ∪, ∩, ∅, and E .
Then, the semantics of Fig. 5 can be abstracted as shown in Fig. 6.

Once an inductive invariant is found by abstract interpretation, it is a simple
matter to check whether the abstract inductive invariant entails the candidate

8 Antoine Miné, Jason Breck, and Thomas Reps

solutions ← ∅
toExplore ← ∅
push S into toExplore
while toExplore6= ∅ do

b ← pop(toExplore)
b ← Hull-Consistency(b)
if b = ∅ then nothing
else if b contains only solutions then solutions ← solutions ∪ { b }
else if b is small enough then solutions ← solutions ∪ { b }
else

split b in half along the largest dimension into b1 and b2
push b1 and b2 into toExplore

done
Fig. 7. Continuous solver, from [24].

invariant I. Note that abstract interpretation does not require any knowledge of
the invariant of interest to infer an inductive invariant, which is not a property
enjoyed by our algorithm (or, at least, its first incarnation in Sec. 4; Sec. 5.2 will
propose solutions to alleviate this limitation).

3.3 Continuous Constraint Solving

A constraint-satisfaction problem is defined by (i) a set of variables V1, . . . , Vn;
(ii) a search space S given by a domain D1, . . . , Dn for each variable; and (iii) a
set of constraints φ1, . . . , φp. Because we are interested in a real-valued program
semantics, we focus on continuous constraints: each constraint φi is a Boolean
expression in our language (bexpr in Fig. 4). Moreover, each domain Di is an
interval of reals, so that the search space S is a box. The problem to be solved is to
enumerate all variable valuations in the search space that satisfy every φi, i.e., to
compute BJ ∧i φi KS. Because the solution set cannot generally be enumerated
exactly, continuous solvers compute a collection of boxes with floating-point
bounds that contain all solutions and tightly fit the solution set (i.e., contains
as few non-solutions as possible). Such a solver alternates two kinds of steps:

1. Propagation steps. These exploit constraints to reduce the domains of vari-
ables by removing values that cannot participate in a solution. Ultimately,
the goal is to achieve consistency, when no more values can be removed.
Several notions of consistency exist. We use here so-called hull consistency,
where domains are intervals and they are consistent when their bounds can-
not be tightened anymore without possibly losing a solution.

2. Splitting steps. When domains cannot be reduced anymore, the solver per-
forms an assumption: it splits a domain and continues searching in that re-
duced search space. The search proceeds, alternating propagation and splits,
until the search space contains no solution, only solutions, or shrinks below a
user-specified size. Backtracking is then used to explore other assumptions.

This algorithm is sketched in Fig. 7. It maintains a collection of search spaces
yet to explore and a set of solution boxes. The algorithm always terminates, at
which point every box either contains only solutions or meets the user-specified
size limit, and every solution is accounted for (i.e., belongs to a box).

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 9

There are strong connections with abstract interpretation. We observed in
[24] that the classic propagator for hull consistency for a constraint φi, so-called
HC-4 [3], is very similar to the classic algorithm for guard](φi, S) in the interval
abstract domain. When there are several constraints, the propagators for each
constraint are applied in turn, until a fixpoint is reached; this approach is similar
to Granger’s method of local iterations [15] used in abstract interpretation. We
went further in [24] and showed that the algorithm of Fig. 7 is an instance
of a general algorithm that is parameterized by an arbitrary numeric abstract
domain. While standard continuous constraint programming corresponds to the
interval domain, we established that there are benefits from using relational
domains instead, such as octagons [20]. In abstract-interpretation terminology,
this algorithm computes decreasing iterations in the disjunctive completion of
the abstract domain. These iterations can be interpreted as an iterative over-

approximation of a fixpoint: gfpC where C(X)
def
= BJ ∧i φi K (X ∩ S), and we

can check easily that this concrete fixpoint gfpC indeed equals BJ ∧i φi KS.
In the following, we will adapt this algorithm to over-approximate a pro-

gram’s semantic fixpoint, lfpP, instead (Eqn. (1)). There are two main differ-
ences between these fixpoints. First, constraint programming approximates a
greatest fixpoint instead of a least fixpoint. Second, and less obvious, is that
constraint programming is limited to approximating gfpC, where C is reductive,
i.e., ∀S : C(S) ⊆ S. It relies on the fact that, at every solving step, the join
of all the boxes (whether solutions or yet to be explored) already covers all of
the solutions. In a sense, it starts with a trivial covering of the solution, the
entire search space, and refines it to provide a better (tighter) covering of the
solution. In contrast, when we approximate lfpP, P is a join morphism, but is
often neither extensive nor reductive. Moreover, the search will start with an
invariant that may not be an inductive invariant.

4 Inductive-Invariant Inference

We now present our algorithm for inductive-invariant inference. We assume that
we have the following abstract elements and computable abstract functions in
the interval domain D] (cf. Sec. 3.2 and Fig. 6):

– E] def
= B]J entry K>] ∈ D]: the abstraction of the entry states

– F] def
= S]J body K : D] → D]: the abstraction of the loop body

– I] ∈ D]: an abstract under -approximation of the invariant I we seek, i.e.,
γ(I]) ⊆ I (in general the equality holds). We assume that γ(E]) ⊆ γ(I]);
otherwise, no subset of γ(I]) can contain γ(E]) and be an inductive invariant.

We will manipulate a set of boxes, S] ∈ P(D]). Similar to disjunctive completion,
we define the concretization γ(S]) of a set of boxes S] as the (concrete) union
of their individual concretizations:

γ(S])
def
= ∪ { γ(S]) | S] ∈ S] }. (2)

We use γF](S]) to denote the (concrete) union of the box-wise application of
the abstract operator F] on S]:

γF](S])
def
= ∪ { γ(F](S])) | S] ∈ S] }. (3)

10 Antoine Miné, Jason Breck, and Thomas Reps

Our goal is to find a set of boxes S] that satisfies the following properties:

Property 1.
1. γ(E]) ⊆ γ(S]) (S] contains the entry)
2. γ(S]) ⊆ γ(I]) (S] entails the invariant)
3. γF](S]) ⊆ γ(S]) (S] is inductive)

Prop. 1 is indeed sufficient to ensure we have found our inductive invariant.

Theorem 1.
γ(S]) satisfying Props. 1.1–1.3 is an inductive invariant that implies I.

Proof. See the appendix of the technical report version of this paper [21]. ut

In addition to Prop. 1, we will ensure that the boxes in S] do not overlap.
Because we use the interval abstract domain, which allows non-strict inequality
constraints only, we do not enforce that S] forms a partition. That is, we may
have γ(S]

1) ∩ γ(S]
2) 6= ∅ for S]

1 6= S]
2 ∈ S]; however, intersecting boxes have an

intersection of null volume, vol(γ(S]
1) ∩ γ(S]

2)) = 0, where vol(S]) is the volume
of a box S].

In a manner similar to a constraint-solving algorithm, our algorithm starts

with a single box S] def
= {I]}, here containing the invariant to prove, and itera-

tively selects a box to shrink, split, or discard, until Props. 1.1–1.3 are satisfied.
Prop. 1.1 (entry containment) holds when the algorithm starts, and we take care
never to remove box parts that intersect E] from S]. Prop. 1.2 (invariant entail-
ment) also holds when the algorithm starts, and naturally holds at every step
of the algorithm because we never add any point to γ(S]). Prop. 1.3 (induc-
tiveness) does not hold when the algorithm begins, and it is the main property
to establish. We will start by presenting a few useful operations on individual
boxes, before presenting our algorithm in Sec. 4.2.

4.1 Box operations

Box classification. To select a box to handle in S], we must first classify the
boxes. We say that S] ∈ S] is:
– necessary if γ(S]) ∩ γ(E]) 6= ∅;
– benign if γ(F](S])) ⊆ γ(S]);
– doomed4 if γ(F](S])) ∩ γ(S]) = ∅;
– useful if γ(S]) ∩ γF](S]) 6= ∅.

A necessary box contains some point from the entry E], and thus cannot be
completely discarded. A benign box has its image under F] completely covered
by γ(S]), and so does not impede inductiveness. Our goal is to make all boxes
benign. In contrast, a doomed box prevents inductiveness, and no shrinking or
splitting operation on this or another box will make it benign. A useful box
S] intersects the image of a box S]

0 in S], i.e., S] helps make S]
0 benign and

therefore S] is worth keeping.

4 If F](S]) is empty, then S] satisfies our definition of benign and our definition of
doomed; in this case we consider S] benign, not doomed.

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 11

Coverage. In addition to these qualitative criteria, we define a quantitative
measure of coverage:

coverage(S],S])
def
=

∑
{ vol(γ(F](S])) ∩ γ(T])) | T] ∈ S] }

vol(γ(F](S])))
. (4)

The coverage is a measure, in [0, 1], of how benign a box is. A value of
1 indicates that the box is benign, while a value of 0 indicates that the box
is doomed. Because our goal is to make all boxes benign, the algorithm will
consider first the boxes with the least coverage, i.e., which require the most work
to become benign. If a box is doomed, there is no hope for it to become benign,
and it should be discarded. Similarly, if a box’s coverage is too small, there is
little hope it might contain a benign sub-box, and—as a heuristic—the algorithm
could consider discarding it. For this reason, the algorithm is parameterized by
a coverage cut-off value εc.

Tightening. Given a box S] ∈ S], not all parts of γ(S]) are equally useful.
Using reasoning similar to the notion of consistency in constraint solvers, we can
tighten the box. In our case, we remove the parts that do not make it necessary
(intersecting E]) nor useful (intersecting γF](S])). The box S] is replaced with:

tighten(S],S])
def
= (S] ∩] E]) ∪] (∪] {S] ∩] F](T]) | T] ∈ S] }), (5)

which first gathers all the useful and necessary parts from S], and then joins
them in the abstract domain to obtain a box that contains all those parts.
Because the ∪] operator of the interval domain is optimal, tighten(S]) is the
smallest box containing those parts. Replacing S] with tighten(S],S]) in S] has
precision benefits. Because we keep useful parts, ∀T] 6= S] : coverage(T],S])
remains unchanged while F](S]) decreases—assuming that when S] shrinks so
does F](S]).5

Splitting. As in constraint solvers, we define the size size(S]) of a box S] def
=

[a1, b1]× · · · × [an, bn] as the maximum width among all variables, i.e.:

size(S]) = max { bi − ai | i ∈ [1, n] }. (6)

Box splitting consists of replacing a box S] def
= [a1, b1]× · · · × [an, bn] ∈ S] with

two boxes: L] def
= [a1, b1]× · · · × [ai, c]× · · · × [an, bn] and U] def

= [a1, b1]× · · · ×
[c, bi]× · · · × [an, bn], where c = (ai + bi)/2 is the middle of the interval [ai, bi],
and i is such that bi − ai = size(S]), i.e., it is an interval whose size equals the
size of the box. That way, a sequence of splits will reduce a box’s size. We will
refrain from splitting boxes below a certain size-parameter cut-off εs, and we are
guaranteed to reach a size less than εs after finitely many splits.

Splitting a box also carries precision benefits. In general, abstract func-
tions F] are sub-join morphisms: γ(F](L])) ∪ γ(F](U])) ⊆ γ(F](L] ∪] U])) =
γ(F](S])). Splitting S] corresponds to a case analysis, where the effect of the

5 See the note about monotonicity on p. 16.

12 Antoine Miné, Jason Breck, and Thomas Reps

loop body is analyzed separately for Vi ≤ c and Vi ≥ c, which is at the core of
partitioning techniques used in abstract interpretation. While replacing S] with
{L], U]} in S] does not change γ(S]), it is likely to shrink γF](S]), helping
Prop. 1.3 to hold. Further improvements can be achieved by tightening L] and
U] after the split.

Discarding. Constraint solvers only discard boxes when they do not contain
any solution. Likewise, we can discard boxes that are neither necessary (no inter-
section with E]) nor useful (no intersection with γF](S])). However, we can go
further, and also remove useful boxes as well. On the one hand, this may shrink
γF](S]), and help Prop. 1.3 to hold. On the other hand, given T] for which
S] is useful, i.e., γ(F](T])) ∩ γ(S]) 6= ∅, it will strictly reduce T]’s coverage,
and possibly make T] not benign anymore. Nevertheless, in this latter case, it
is often possible to recover from this situation later, by splitting, shrinking, or
discarding T] itself. The possibility to remove boxes that are unlikely to be in
any inductive invariant is a particularly interesting heuristic to apply after the
algorithm reaches the cut-off threshold for size or coverage. Such a removal will
trigger the removal of parts of boxes whose image intersects the removed box,
until—one hopes—after a cascade of similar effects, the algorithm identifies a
core of boxes that forms an inductive invariant.

4.2 Algorithm

Our algorithm is presented in Fig. 8. It maintains, in S], a set of boxes to explore,
initialized with the candidate invariant I] of interest. Then, while there are boxes
to explore, the box S] with smallest coverage (Eqn. (4)) is removed from S]. If
S] has a coverage of 1, then so have the remaining boxes in S]; hence all of the
boxes are benign and the algorithm has found an inductive invariant: we add
back S] to S] and return that set of boxes. Otherwise, some work is performed
to help make S] benign. In the general case, where S] is not necessary (does not
intersect E]), we are free to discard S], which we do if it is useless, too small to
be split, or its coverage makes it unlikely to become benign; otherwise, we split
S]. When S] is necessary, however, we refrain from removing it. Hence we split
it, unless it is too small and we cannot split it anymore. At this point there is
no way to satisfy all of Prop. 1.1, Prop. 1.3 and the user’s specified minimum
box size; consequently, the algorithm fails.

Normally, the search function always returns through either the success or
failure return statements in the loop body. Normal loop exit corresponds to the
corner case where all boxes have been discarded, which means that no box was
ever necessary, i.e., BJ entry KE = ∅; we return ∅ in that case, because it is indeed
an inductive invariant for loops with an empty entry state set.

The splitting procedure takes care to tighten the two sub-boxes S]
1 and S]

2

generated from the split. split is always called with a box of non-zero size, and
it generates boxes smaller than S].

Note that, given a box S], it is possible that γ(F](S])) ∩ γ(S]) 6= ∅, i.e., a
box is useful to itself. For this reason, after removing S] from S], we take care

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 13

search(E], F], I]):

S] ← {I]}
while S] 6= ∅ do

S] ← popMinCoverage(S])

if coverage(S], S] ∪ {S]}) = 1 then return S] ∪ {S]}
else if S] is not necessary then

if S] is not useful or size(S]) < εs or coverage(S], S] ∪ {S]}) < εc
then discard(S])

else split(S])
else

if size(S]) < εs then return failed

else split(S])
done
return ∅

split(S]):

(S]
1, S

]
2)← S] split in half along the largest dimension

S]
1 ← tighten(S]

1, S
] ∪ {S]

1, S
]
2})

S]
2 ← tighten(S]

2, S
] ∪ {S]

1, S
]
2})

push S]
1 and S]

2 into S]

Fig. 8. Inductive invariant search algorithm.

to compute the coverage as coverage(S],S]∪{S]}) and not as coverage(S],S]),
and similarly after a split.

The following theorem states the correctness of the algorithm:

Theorem 2. search always terminates, either with a failure, or returns a set
S] of boxes satisfying Props. 1.1–1.3.

Proof. See the appendix of the technical report version of this paper [21]. ut

Failure. It is important to note that, unlike constraint solvers, but similarly to
iteration with widening, the algorithm may fail to find an inductive invariant,
even if there exists one that can be represented with boxes whose size is greater
than εs. In our case, the primary cause of failure is a bad decision to discard
a useful box that actually intersects the smallest inductive invariant, a fact we
cannot foresee when we decide to discard it. In Sec. 5.3, we present a modified
version of the algorithm that handles this problem by changing the rules for
discarding and tightening boxes, in exchange for a performance cost. Another
method to avoid discarding such boxes is to lower the values of εs and εc, but this
change can also make the algorithm slower, because it can now spend more time
splitting boxes that cannot be part of an inductive invariant. Thus, another idea
for future work is to provide more clever rules for discarding boxes, and using
adaptive ε cut-off values. We discuss one such a technique in Sec. 5.2.

Example. Fig. 9 presents the evolution of S] for the program from Fig. 2
through the execution of the algorithm. The benign boxes are shown in blue
(dark gray), while the non-benign ones are shown in red (lighter gray). The

14 Antoine Miné, Jason Breck, and Thomas Reps

iter. 1 iter. 10 iter. 100 iter. 200

iter. 400 iter. 600 iter. 800 iter. 965

Fig. 9. Various stages of the analysis of the program from Fig. 2.

small dotted box at the center of each figure is the entry state E] = [−0.1, 0.1]×
[−0.1, 0.1]. The algorithm runs for 965 iterations in 76 ms before finding an
inductive invariant included in I] = [−4, 4]× [−4, 4] and composed of 181 boxes,
shown in Fig. 2.b. We use as cut-off values: εs = 0.01 × size(I]) and εc = 0.1 ×
size(I]). The size of the invariant box is size(I]) = 8 as I]

def
= [−4, 4]× [−4, 4].

4.3 Implementation details

The algorithm of Fig. 8 requires maintaining some information about boxes in
S], such as their coverage and whether they are benign or useful. It is important
to note that modifying a single box in S] may not only modify the coverage or
class of the modified box, but also of other boxes in S]. We discuss here data
structures to perform such updates efficiently, without scanning S] entirely after
each operation.

Partitioning. We enrich the algorithm state with a set P] ∈ P(D]) of boxes
that, similarly to S], do not overlap, but—unlike S]—always covers the whole
invariant space I]. Moreover, we ensure that every box in P] contains at most one
box from S], hence, we maintain a contents-of function cnt : P] → (S] ∪ {∅})
indicating which box, if any, of S] is contained in each part of P]. Because the
algorithm can discard boxes from S], some parts in P] ∈ P] may have no box
at all, in which case cnt(P]) = ∅; otherwise γ(cnt(P])) ⊇ γ(P]). This property
can be easily ensured by splitting boxes in P] whenever a box in S] is split.
When a box from S] is tightened or discarded, no change in P] is required.

We then maintain a map post : S] → P(P]) to indicate which parts of P]

intersect the image of a box S] ∈ S]:

post(S])
def
= {P] ∈ P] | γ(F](S])) ∩ γ(P]) 6= ∅ }, (7)

which is sufficient to compute the coverage and determine if a box is benign:

coverage(S])
def
=

∑
{ vol(γ(F](S])) ∩ γ(cnt(P]))) | P] ∈ post(S]) }

vol(γ(F](S])))
(8)

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 15

S] is benign ⇐⇒ γ(F](S])) ⊆ γ(I]) ∧
∀P] ∈ post(S]) : γ(P]) ∩ γ(F](S])) ⊆ γ(cnt(P])) .

(9)

A box S] is benign if, whenever F](S]) intersects some partition P] ∈ P], their
intersection is included in cnt(P]) ∈ S]. Note, however, that this test only takes
into account the part of F](S]) that is included in γ(P]), i.e., in γ(I]); hence,
we additionally also check that F](S]) is included within I].

Likewise, to compute tighten (Eqn. (5)) and determine whether a box is
useful, it is sufficient to know, for each box S] ∈ S], the boxes T] ∈ S] whose
image F](T]) intersects S], which we denote by:

pre(S])
def
= {T] ∈ S] | γ(S]) ∩ γ(F](T])) 6= ∅ } . (10)

The sets post(S]) and pre(S]) are significantly smaller than S], leading to effi-
cient ways of recomputing coverage information, usefulness, etc. They are also
quite cheap to maintain through box tightening, splitting, and discarding.

We rely on the fact that, apart from the initial box I], every new box con-
sidered by the algorithm comes from a parent box by splitting or tightening,
and is thus smaller than a box already in S]. Assuming for now that, when S]

is shrunk into T], F](T]) is also smaller than F](S]) (see the note on mono-
tonicity below), we see that post(T]) and pre(T]) are subsets, respectively, of
post(S]) and pre(S]), so that it is sufficient to iterate over these sets and filter
out elements that no longer belong to them. Finally, to quickly decide for which
S] we must update post(S]) and pre(S]) whenever some element in P] or S] is
modified or discarded, we maintain post−1 and pre−1 as well.

Float implementation. While it is possible to use exact numbers—such as
rationals with arbitrary precision—to represent interval bounds, more efficiency
can be achieved using floating-point numbers. Floats suffer, however, from round-
ing error. It is straightforward to perform sound abstract interpretation with
floating-point arithmetic. In particular, to construct a suitable F] function from
the program syntax, it is sufficient to round—in every computation—upper
bounds towards +∞ and lower bounds towards −∞. In addition to the require-
ment that we have a sound F], our algorithm requires that we can (i) compute
the coverage of a box, and (ii) determine whether it is benign, necessary, or use-
ful. Because intersection, inclusion, and emptiness checking are exact operations
on float boxes, we can exactly determine whether a box is benign, necessary, or
useful; it is also possible to compute a box size exactly.

In contrast, it is difficult to compute exactly the volume of a box using
floating-point arithmetic, which is a necessary operation to compute coverage
(Eqns. (4),(8)). Fortunately, our algorithm does not require exact coverage infor-
mation to be correct; thus, we settle for an approximate value computed naively
using Eqn. (8) with rounding errors. However, it is critical that we use the exact
formula Eqn. (9), which uses exact inclusion checking, to determine whether a
box is benign; this is almost equivalent to checking whether the coverage of a
box equals 1, except that the coverage calculation is subject to floating-point

16 Antoine Miné, Jason Breck, and Thomas Reps

round-off error, so it is not safe to use here. This approach also requires chang-
ing, in Fig. 8, the test “if coverage(b, S] ∪ {b}) = 1” into a test that all the
boxes in S] are benign, using Eqn. (9).

Note on monotonicity. Throughout this section, we assumed that replacing
a box S] with a smaller one T] ⊆] S] also results in a smaller image, i.e.,
F](T]) ⊆] F](S]). This property is obviously the case if F] is monotonic, but
the property does not hold in the general case (e.g., if F] employs widening or
reduced products). We now argue that we can handle the general case, by forcing
images of boxes to decrease when the boxes decrease as follows: we remember
with each box S] its image img(S]); when S] is replaced with a smaller box T],
we set its image to:

img(T]) := F](T]) ∩] img(S]) (11)

instead of F](T]). We rely again on the fact that each new box comes
from a larger parent box, except the initial box I], for which we set

img(I])
def
= F](I]). We note that because the concrete semantics SJ body K is

monotonic, γ(img(T])) ⊆ SJ body K(γ(T])); that is, the use of equation (11) pro-
vides as sound an abstraction of SJ body K as F] but, in addition, it is monotonic.
Hence, by replacing F](S]) with img(S]) in the definitions from Sec. 4.1, our
algorithm is correct, even if F] is not monotonic.

5 Extensions

5.1 Octagonal invariants

Following the custom from constraint solvers for continuous constraints, the
algorithm presented in Sec. 4 is based on boxes: the loop body F] is evaluated
in the interval abstract domain. However, we showed in [24] that, in constraint
solvers, boxes can be replaced with arbitrary numeric abstract domains, for
instance relational domains such as polyhedra or octagons, provided that certain
needed operators are provided. Similarly, the algorithm from the present paper
can be generalized to use an arbitrary abstract domain D]. Existing domains
readily provide abstractions F] of the loop body, together with the abstractions
of ∪, ∩, and ⊆ required for tightening as well as testing whether an abstract
element is necessary, benign, or useful. We only need three extra operations not
found in classical abstract domains for our algorithm: the volume vol (used to
compute the coverage), the size operation, and a split operation. As discussed
in Sec. 4.3, it is not necessary for vol to compute the exact volume, as long as it
is possible to determine exactly whether an abstract element is benign, which is
the case using Eqn. (9). Likewise, we have a great deal of freedom in defining the
size and split operations. The only requirement is that, to ensure the termination
of the algorithm, after a sufficient number of splits are performed, an abstract
element will be reduced below an arbitrary size.

Example. Consider the octagon domain [20], which is more expressive than
intervals because it can represent relational information of the form ±X±Y ≤ c,
with two variables and unit coefficients. We choose to approximate the volume
of an octagon as the volume of its bounding box, which is far easier to compute

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 17

(a) 181 boxes, 965 iterations, 76 ms (b) 42 octagons, 224 iterations, 89 ms

Fig. 10. Abstract-domain choice: box solving (a) versus octagon solving (b).

than the actual volume of the octagon. Likewise, to create a simple and efficient
implementation, we use the same split operation as for boxes, splitting only along
an axis, and use the “size” of the bounding box as the “size” of an octagon. As
a consequence, the elements of the partition P] remain boxes. Nevertheless, the
elements of S] can be more complex octagons, due to tightening. We refer the
reader to [24] for more advanced size and split operators for octagons.

Figure 10 compares the result of our algorithm on the program of Fig. 2
using intervals and using octagons. Inference with intervals takes 965 iterations
and 76 ms and produces an inductive invariant composed of 181 parts, while,
using octagons, it takes 224 iterations and 89 ms, and the inductive invariant
is composed of only 42 parts. As can be seen in Fig. 10, the slant of octagons
allows a much tighter fit to an ellipsoid, with far fewer elements. Octagons are
also slightly slower: they require far fewer iterations and elements, but the ma-
nipulation of a single octagon is more costly than that of a single box.

Domain choice. The choice of abstract domain D] may affect whether or
not an inductive invariant is found, and it may also affect the cost of running
the algorithm; this situation is somewhat similar to what happens in abstract
interpretation. Depending on the problem, a more expressive domain, such as
octagons, can result in a faster or slower analysis (see Sec. 6).

5.2 Invariant refinement

The algorithm assumes that a candidate invariant I is provided, and by removing
points only looks for an inductive invariant sufficient to prove that I holds.
It over-approximates a least fixpoint from above and, as a consequence, the
inductive invariant it finds may not be the smallest one. In fact, because it stops
as soon as an inductive invariant is found, it is more likely to output one of
the greatest inductive invariants contained in I. In contrast, the iteration-with-
widening technique used in abstract interpretation over-approximates the least
fixpoint, but approaches it from below. Although such iterations may also fail to
find the least fixpoint, even when decreasing iterations with narrowing are used,6

6 This situation happens when the widening overshoots and settles above a fixpoint
that is not the least one, because decreasing iterations can only refine up to the
immediately smaller fixpoint, and not skip below a fixpoint.

18 Antoine Miné, Jason Breck, and Thomas Reps

they are more likely to find a small inductive invariant, because they start small
and increase gradually.

We propose here several methods to improve the result of our algorithm
towards a better inductive invariant. They also mitigate the need for the user to
provide a candidate invariant I, which was a drawback of our method compared
to the iteration-with-widening method approaching from below. In fact, we can
start the algorithm with a large box I (such as the whole range of a data type)
and rely on the methods given below to discover an inductive invariant whose
bounding box is much smaller than I, effectively inferring an interval invariant,
alongside a more complex inductive invariant implying that invariant.

Global tightening. The base algorithm of Fig. 8 only applies tightening (Eqn.
(5)) to the two boxes created after each split. This approach is not sufficient
to ensure that all the boxes in S] are as tight as possible. Indeed, shrinking
or removing a box S] also causes γF](S]) to shrink. Hence, boxes in S] that
contained parts of γF](S]) that have been removed may be tightened some more,
enabling further tightening in a cascading effect. Hence, to improve our result,
we may iteratively perform tightening of all the boxes in S] until a fixpoint is
reached. Because this operation may be costly, it is better to apply it rarely,
such as after finding a first inductive invariant.

Reachability checking. The concrete semantics has the form lfpλX.E∪G(X),

where E
def
= BJ entry K E is the entry state and G

def
= SJ body K is the loop body.

This fixpoint can also be seen as the limit ∪i≥0 SJ body Ki E, i.e., the points
reachable from the entry state after a sequence of loop iterations. To improve
our result, we can thus remove parts of γ(S]) that are definitely not reachable
from the entry state. This test can be performed in the abstract domain by
computing the transitive closure of cnt ◦post (Eqn. (7)), starting from all the
necessary boxes (i.e., those intersecting E]). This operation may also be costly
and is better performed after an inductive invariant is found.

Shell peeling. Like iteration with narrowing, the methods given above are
only effective at improving our abstraction of a given fixpoint, but are unable
to reach an abstraction of a smaller fixpoint. The shell-peeling method builds
on the reachability principle to discard boxes more aggressively, based on their
likelihood of belonging to the most-precise inductive invariant. Intuitively, as
imprecision accumulates by repeated applications of F] from necessary boxes,
boxes reachable in many steps are likely to contain the most spurious points.
For each box S] ∈ S], we compute its depth, i.e., the minimal value i such that
S] ∩] (cnt ◦post)i(T]) 6= ⊥] for some T] ∈ S] that intersects E]. Given the

maximal depth ∆
def
= max {depth(S]) | S] ∈ S] }, we merely remove all the

boxes with depth greater than ∆ − δ, for some user-specified δ, i.e., the boxes
farthest away from the entry state in terms of applications of F]. Because the
resulting S] is not likely to be inductive, we again run the algorithm of Fig. 8
to try to recover an inductive invariant.

Resplitting. As explained in Sec. 4.1, splitting boxes in S] may, by itself, im-
prove the precision because F] is generally a sub-join morphism, and so, even

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 19

though it leaves γ(S]) unchanged, γF](S]) will decrease. As a consequence,
some parts of S] that were reachable from E] through post may become un-
reachable. Hence, we suggest splitting boxes in S] proactively, and prioritize the
boxes S] that are likely to reduce the size of post(S]) (i.e., the number of boxes
intersecting F](S])), before using other techniques such as global tightening or
reachability checking. More precisely, we split all the boxes such that |post(S])|
exceeds a user-defined threshold R.

Application. We apply all four methods on the example of Fig. 2 as follows.
First, we apply the algorithm of Fig. 8, followed by global tightening and reach-
ability checking. Then, we perform several rounds of the following steps: resplit-
ting, shell peeling, applying the algorithm of Fig. 8, global tightening, followed by
reachability checking. The result of this process is shown in Fig. 11. We set δ = 1
for shell peeling, and R = 12 as the resplitting threshold. Moreover, each time
the algorithm from Fig. 8 is run again, the ε values are halved, to account for the
general reduction of box sizes due to resplitting and to allow finer-granularity
box covering. Each refinement round results in a much tighter inductive invari-
ant. We see a large gain in precision at the cost of higher computation time and
a finer invariant decomposition (i.e., more and smaller boxes). Almost all the
work goes into the four refinement methods, with just a few box-level iterations
to re-establish inductiveness.

Failure recovery. The algorithm is parameterized with ε values, and, as dis-
cussed in Sec. 4, a too-high value may result in too many boxes being discarded
too early, and a consequent failure to find an inductive invariant. For instance,
when setting εs to 0.1 × size(I]) instead of 0.01 × size(I]), we fail to find an
inductive invariant for the program from Fig. 2. A natural, but costly, solution
would be to restart the algorithm from scratch with lower ε values. Alternatively,
we can also apply the refinement techniques above. Given the failure output S]

of the algorithm from Fig. 8, which satisfies Prop. 1.1 and Prop. 1.2, but not
Prop. 1.3, we iterate the following steps: global tightening, reachability check-
ing, resplitting, and reapplying the algorithm of Fig. 8, always feeding the failure
output of each round to the following one without resetting S] to {I]} until an
inductive invariant is found. Using the same δ and R parameters as before, and
also halving the ε values at each round, starting from εs = 0.1 × size(I]), we
find in 5 rounds an inductive invariant, and it is as good as the one in Fig. 11.5
which was found with εs = 0.01× size(I]).

5.3 Relative Completeness

Our algorithm searches for loop invariants in a particular abstract domain,
namely, sets of boxes with size between εs and εs/2. As noted in Sec. 4.2, how-
ever, the algorithm is not guaranteed to find an inductive invariant even if one
exists in this abstract domain. In this section, we define a different abstract
domain and present a modified version of the algorithm that has the following
relative-completeness property [17]: if there is an inductive invariant in the ab-
stract domain, and its inductiveness can be proven using boxes, then the modified
algorithm will find an inductive invariant. Thus, when the modified algorithm

20 Antoine Miné, Jason Breck, and Thomas Reps

(1) 181 boxes, 965 iters., 76ms (2) 243 boxes, 223 iters., 53ms (3) 335 boxes, 53 iters., 60ms

(4) 485 boxes, 1 iters., 127ms (5) 786 boxes, 5 iter., 370ms (6) 1566 boxes, 1 iter., 1287ms

Fig. 11. Inductive-invariant refinement, using 6 rounds of tightening, reachability
checking, shell peeling, resplitting, and the algorithm from Fig. 8. (Diagrams are to
scale.)

fails to find an inductive invariant, it provides a stronger guarantee than the
original algorithm, because a failure of the modified algorithm can only occur
when there exists no inductive invariant in the abstract domain. The modified
algorithm is slower than the original, however, so we have implemented it as a
variant that can be used when completeness is more important than speed.

During a run of the algorithm, if no boxes are ever discarded or tightened, the
algorithm’s process of box-splitting, beginning with some (abstract) candidate
invariant I], will eventually produce a regular grid of boxes of minimal size—
i.e., having size between εs and εs/2. Denote by Q the set of all boxes that can
be produced in such a run. In the two-dimensional case, the boxes of Q may
be conceptualized as a binary space partition; it is almost like quadtree, except
that boxes are actually split along one dimension at a time, so each node in the
tree has two children, not four. The width of the minimal-size boxes of Q along
dimension i is max{2−kwi | k ∈ N, 2−kwi < εs}, where wi is the width of the
given invariant I] along dimension i. However, Q also contains the larger boxes
(unions of the minimal-size ones) that were produced at intermediate stages of
the splitting process. We define the abstract domain CQ for the modified version
of the algorithm to be the set of all non-overlapping sets of boxes from Q.

There are two reasons why the original algorithm, presented in Fig. 8, lacks
the relative-completeness property. First, the algorithm discards a box S] if its
coverage is less than εc; however, it is possible that S] intersects every induc-
tive invariant, in which case discarding S] guarantees that a failure will occur.
Second, the tightening operation can replace a box S] that is part of Q with a
box T] that is not part of Q. In many cases an inductive invariant can still be
found; the invariant can contain boxes that are not part of Q, and the vertices
of boxes in such an invariant might not correspond to the vertices of any box

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 21

from Q. However, it is also possible that T], along with the other boxes of S],
cannot be refined into an inductive invariant.

For an example of the problem with tightening, see Fig. 12. Suppose that
splitting S] yields boxes S]

1 and S]
2, both having size below εs, such that S]

1

needs to be discarded, because it is not (and will never become) benign, and

S]
2 needs to be kept, because it is necessary. Suppose that T] is the result of

applying tightening to S] instead of splitting S]. It is possible that T] has size
below εs, and so cannot be split, even though it contains enough of both S]

1 and

S]
2 so that it is necessary and yet it is also not benign (and will never become

benign). Consequently, neither discarding nor keeping T] will yield an inductive
invariant. In this case, the choice to tighten S] prevented the algorithm from
finding an invariant that could have been found by splitting S] instead.

Two simple modifications, which address the above two problems, allow the
algorithm to have the relative-completeness property. First, we set εc = 0, and
second, we never perform tightening. For each of these two modifications, we
have constructed an input program for which the modified algorithm finds an
invariant, but the original algorithm does not. Note that there also exist pro-
grams for which the original algorithm can find an inductive invariant, but the
modified algorithm cannot, because there is no inductive invariant in the modi-
fied abstract domain CQ. As an optimization to the modified algorithm, which
performs no tightening, we could reintroduce the tightening operation in a mod-
ified form: instead of tightening down to an arbitrary smaller box T], we could
tighten down to the smallest box in Q that contains T]. We present a proof of
the relative-completeness property of the modified algorithm in [21].

6 Experiments

We have implemented a prototype analyzer, written in OCaml. It supports a sim-
ple toy language similar to Fig. 4, with only real-valued variables, no functions,
and no nested loops. It implements our main algorithm (Fig. 8) with arbitrary
numeric domains (Sec. 5.1). It also implements invariant-refinement and failure-
recovery methods (Sec. 5.2). It is parameterized by a numeric abstract domain,
and currently supports boxes with rational bounds, boxes with float bounds, as
well as octagons with float bounds (through the Apron library [18]). It exploits
the data structures described in Sec. 4.3 and is sound despite floating-point
round-off errors. Floating-point arithmetic is used in the implementation.

The results of our experiments are shown in Fig. 13. We show, for the floating-
point interval and octagon domains, the number of iterations and time until a

S♯

S♯1 S♯2

T♯

needs to be

discarded

needs to be

kept

too small

to split

Fig. 12. If tightening is applied to a box S], it may become too small to split in a case
where splitting S] is the only way to find an inductive invariant.

22 Antoine Miné, Jason Breck, and Thomas Reps

first inductive invariant is found, and the number of elements in each result.7 We
do not give details about the memory consumption for each example, because it
always remains low (a few hundred megabytes). For most examples, we used an
εs value of 0.05 or 0.01. We have analyzed a few simple loops, listed above the
double line in Fig. 13:
– Filter is the second-order filter from Fig. 2. As discussed earlier, it performs
well with intervals and octagons.
– Linear iterates t = t + 1; τ = τ + [0.25, 0.5] from t = τ = 0 until t < 30. To
prove that τ < 30, it is necessary to find a relation τ ≤ 0.5 × t, which cannot
be represented by intervals or octagons (without disjunctive completion). Non-
linear is similar, but iterates τ = [1, 1.1] × τ starting from τ ∈ [0, 1], and also
requires a non-linear inductive invariant: τ ≤ 1.1t. These examples require very
few iterations of our main algorithm, but rely heavily on resplitting, and hence
output a large set of elements and have a relatively high run-time, on the order
of a few seconds. When using octagons, the method times out after 300s.
– Logistic map iterates the logistic function xn+1 = r × xn × (1− xn), starting
from x ∈ [0.1, 0.9], for r ∈ [1.5, 3.568]. Our goal is to prove that x remains within
[0.1, 0.9] at all times. The choice of r ∈ [1.5, 3.568] corresponds to various cases
where the series oscillates between one or several non-zero values; it is beyond
the zone where it converges towards 0 (r ≤ 1), but before it becomes chaotic
(r ≥ 3.57). The inductive invariant covers the whole space [0.1, 0.9]× [1.5, 3.568]
(hence, the number of elements equals the number of iterations), but needs to
be partitioned so that the desired invariant can be proved in our linear abstract
domains. Our algorithm performs this partitioning automatically.
– Newton iterates Newton’s method on a polynomial taken from [11].
– The next two examples come from the conflict-driven learning method pro-
posed in [11]: Sine and Square root compute mathematical functions through
Taylor expansions. Unlike our previous examples, they do not perform an iter-
ative computation, only a straight-line computation; nevertheless, they require
partitioning of the input space to prove that the target invariant holds after the
straight-line computation. These examples demonstrate that the algorithm is
able to compute a strongest-postcondition of a straight-line computation, which
helps to show how the algorithm could be generalized to handle programs with
a mix of straight-line and looping code. In both cases, the inductive invariant
matches closely the graph of the function (up to method error and rounding
error), and hence provide a proof of functional correctness. As in the Linear and
Non-Linear examples, these examples rely heavily on resplitting and tightening.

For more details about these examples, see the appendix of [21].
In a second batch of experiments, shown in Fig. 13 below the double line,

we ran our algorithm on benchmark programs from the literature. These exper-
iments were designed to answer the following questions:
1. Can our algorithm find invariants for programs studied in earlier work?
2. How fast is our algorithm when analyzing such programs?

7 We include failure-recovery rounds from Sec. 5.2 when needed to find the first in-
variant, but do not perform any refinement rounds after an invariant is found.

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 23

Program boxes octagons
elems. # iters. time (s) # elems. # iters. time (s)

Filter 181 965 0.076 42 224 0.089
Linear 6734 10 2.08 – – –
Non-linear 5987 10 2.64 – – –
Logistic map 376 376 0.127 885 885 2.94
Newton 32 57 0.009 16 16 0.008

Sine 132 425 0.094 81 99 0.076
Square root 8 8 0.002 4 4 0.002

Lead-lag controller 44 46 0.327 30 30 65.6
Lead-lag controller (reset) 24 24 2.44 24 24 105.0
Lead-lag controller (saturate) 44 46 0.341 30 30 76.7
Harmonic oscillator 32 36 0.04 42 46 1.62
Harmonic oscillator (reset) 34 39 0.047 – – –
Harmonic oscillator (saturate) 4 4 0.035 3 3 0.44
Dampened oscillator 850 45400 1.49 929 45404 18.7
Dampened oscillator (reset) 925 57329 37.2 – – –
Dampened oscillator (saturate) 22 22 0.004 22 22 0.036

Filter2 9 160 0.01 5 5 0.003
Arrow-Hurwicz 80 1904 0.367 18 839 0.451

Fig. 13. Experimental results. For octagons, the timeout value was 300 seconds.

3. Are we able to verify some invariants found by other algorithms?
To answer these questions, we selected three programs, in three variations each,
from [26], and two programs from [1]. For each of the programs from [26], the
parameter I] for our algorithm (i.e., the invariant that we attempted to verify)
was the bounding box of an invariant described in either the text of the publica-
tion or its additional online materials. For the programs from [1], we chose small
boxes for I]. We analyzed the Arrow-Hurwicz loop as a two-variable program by
discarding the loop condition and the two variables u and v that are not needed
in the body of the loop; the algorithm was able to verify that the variables x
and y remain within the box [−2, 2]× [−2, 2]. For Filter2, we showed that x and
y remain within [−0.2, 1]× [−0.2, 1].

Our results show that we were able to find inductive invariants for all of
these programs, often in less than half a second. In the case of the dampened
oscillator, we were not able to verify the bounds described in the text of [26],
but we were able to verify a different bounding box described in the additional
online materials.

7 Related Work

A recent line of work has identified conceptual connections between SAT-solving
and abstract interpretation [10,31], and has exploited these ideas to improve
SAT-solving algorithms. That idea is similar in spirit to work described in [24],
except that the latter focuses on other classes of algorithms—those used in
continuous constraints programming—that work on geometric entities, such as
boxes, instead of formulas.

As mentioned in Sec. 2, even when an inductive invariant can be represented
in the chosen domain, approximation due to widening can prevent an abstract
interpreter from finding any inductive invariant—let alone the best one. A certain
amount of recent work has been devoted to improved algorithms for computing
fixpoints in abstract domains. In particular, methods based on policy iteration

24 Antoine Miné, Jason Breck, and Thomas Reps

can guarantee, in certain cases, that the exact least fixpoint is computed [1]. The
version of our algorithm presented in Sec. 5.3 uses a modified abstract domain
and has the following relative-completeness property [17]: if there is an inductive
invariant in the modified abstract domain, and its inductiveness can be proven
using boxes, then the modified algorithm will find an inductive invariant.

Garg et al. [13] developed a framework for loop-invariant synthesis called
ICE. ICE has a property that they call robustness, which is similar to relative
completeness. They observed that many earlier algorithms consist of a teacher
and a learner that communicate using a restricted protocol, and that this pro-
tocol sometimes prevents the algorithms from finding an invariant. In the re-
stricted protocol, the teacher only communicates positive and negative examples
of states, and the learner tries to find an invariant consistent with these. The
authors propose an alternative protocol that also allows the teacher to commu-
nicate implication pairs (p, p′), to convey that state p can transition to state p′;
this generalization allows the algorithm to postpone the decision of whether to
include or exclude p and p′ from the invariant, instead of arbitrarily—and per-
haps incorrectly—choosing to classify p and p′ as examples or counterexamples.

In our algorithm, the analogue of ICE’s implication pairs, counterexamples,
and examples is the set of boxes S and their images. Where ICE would store
a concrete implication pair to represent the fact that state p leads to state p′,
our algorithm would store a box containing state p along with the image of that
box. As with ICE, this stored information can later lead to the box (and its
image) being included in the invariant, or it can lead to the box being excluded
if the image is excluded (or if part of the image is excluded and the box is
too small to split). It can also happen that a box is split—an operation that
has no analogue in ICE. The relative-completeness of our algorithm depends on
using this information to delete a box only when necessary. Our algorithm also
differs in the sense that it considers a set of boxes S whose concretization only
grows smaller over time; it works by iteratively strengthening an invariant until
an inductive invariant is found. In contrast, an ICE-learner might successively
consider larger or smaller candidate invariants.

Bradley presents an algorithm called ic3 [5], which synthesizes loop invariants
in a property-directed manner by incrementally refining a sequence of formulas
that overapproximate the program states reachable after different numbers of
iterations of the loop. An ic3-like approach could be applied to the synthesis
of loop invariants for the kind of programs that we investigated. However, the
performance of this approach would depend on the precision and efficiency of
the underlying SMT solver for (sometimes non-linear) floating-point arithmetic
queries. Our algorithm has a performance advantage because it can test whether
one area of the program’s state space maps into another by using abstract in-
terpretation, instead of calling an SMT solver.

To exclude unreachable states efficiently, an ic3 implementation needs to
generalize from concrete counterexamples to some larger set of states; other-
wise, it might only exclude one concrete state at a time. The generalization
method determines the abstract domain of invariants that is being searched.

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 25

Our “quadtree” abstract domain CQ (see Sec. 5.3) could be used to generalize
each counterexample p to the largest box from Q that (i) contains p and (ii) can
be soundly excluded from the invariant.

Two recent works [30,14] search for inductive invariants using abstract in-
terpretation, and use SMT solvers to help ease the burden of designing sound
abstract transformers. Both works need to represent the program’s transition
relation in a logic supported by the underlying SMT solver. Both also construct
their inductive invariants by iteratively weakening a formula until it is induc-
tive. In contrast, the algorithm described in this paper constructs its inductive
invariants by iterative strengthening.

The algorithm presented in this paper can be compared to the large literature
on abstraction refinement [9,27]. It is similar to that work, in that splitting a
box can be likened to the introduction of a new predicate that distinguishes the
cases where a program variable is above or below some value. Note, however,
that the algorithm described in this paper works in one continuous process; the
analysis does not have to be restarted when a new split is introduced. Note also
that the splitting of boxes has a useful locality property: splitting one box at
some value does not automatically split other boxes at the same value; thus, the
new predicates are introduced locally, and on demand. The algorithm in this
paper differs from counterexample-guided abstraction refinement [6] in that it
makes no direct use of concrete counterexamples.

Constraint programming is a popular paradigm, with numerous applications
(scheduling, packing, layout design, etc.). It has also been applied to program
analysis, and in particular invariant inference, where off-the-shelf linear and non-
linear solvers [7,28], SAT solvers [32], and SMT solvers [16] have been employed.
In those works, a pre-processing, or abstraction, step is necessary to transform
the problem of inferring an inductive invariant, which is inherently second-order,
into a first-order formula.

Our method combines abstract interpretation and constraint solving, a con-
nection that has also been made by others. Apt observed that applying propaga-
tors can be seen as an iterative fixpoint computation [2]. Pelleau et al. expanded
on this connection to describe a constraint-solving algorithm in terms of abstract
interpretation; they exploited the connection to design a new class of solvers pa-
rameterized by abstract domains [24], thereby importing abstract-interpretation
results and know-how into constraint programming. This paper goes the other
way, and imports technology from constraint programming into abstract inter-
pretation to help solve program-analysis problems. Several previous works, e.g.,
[25], combine abstract interpretation and constraint-based techniques, but gen-
erally delegate the problem of inductive-invariant inference to classic abstract-
interpretation methods. Our work differs in that we devised a new algorithm for
inferring inductive invariants, not a new use of an existing algorithm.

8 Conclusion

In this paper, we were inspired by one class of constraint-solving algorithms,
namely, continuous constraint solving, and adapted the methods employed for
such problems to devise a new algorithm for inferring inductive invariants. In-

26 Antoine Miné, Jason Breck, and Thomas Reps

stead of classical increasing iterations, as ordinarily used in abstract interpreta-
tion, our algorithm employs refinement (decreasing) iterations; it tightens and
splits a collection of abstract elements until an inductive invariant is found. The
algorithm is parameterized on an arbitrary numeric abstract domain, in which
the semantics of the loop body is evaluated. The method is sound and can be
implemented efficiently using floating-point arithmetic. We have shown the effec-
tiveness of our method on small but intricate loop analyses. In particular, loops
that do not have any linear inductive invariant, and thus would traditionally re-
quire the design of a novel, specialized abstract domain, have been successfully
analyzed by our method, employing the interval domain only.

References

1. A. Adjé, S. Gaubert, and E. Goubault. Coupling policy iteration with semi-definite
relaxation to compute accurate numerical invariants in static analysis. In PLS’10,
volume 6012 of LNCS, pages 23–42. Springer, 2010.

2. K. R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221, 1999.

3. F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revisiting hull and
box consistency. In ICLP’99, pages 230–244, 1999.

4. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival.
Static analysis and verification of aerospace software by abstract interpretation. In
AIAA Infotech@Aerospace, number 2010-3385 in AIAA, pages 1–38. AIAA, 2010.

5. A. Bradley. Sat-based model checking without unrolling. In VMCAI’11, pages
70–87, 2011.

6. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV’00, volume 1855 of LNCS, pages 154–169. Springer,
2000.

7. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using
non-linear constraint solving. In CAV’03, volume 2725 of LNCS, pages 420–432.
Springer, 2003.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL’77,
pages 238–252. ACM, Jan. 1977.

9. S. Das, D. Dill, and S. Park. Experience with predicate abstraction. In CAV’99,
pages 160–171. Springer, 1999.

10. V. D’Silva, L. Haller, and D. Kroening. Satisfiability solvers are static analysers.
In SAS’12, volume 7460 of LNCS, pages 317–333. Springer, 2012.

11. V. D’Silva, L. Haller, D. Kroening, and M. Tautschnig. Numeric bounds analysis
with conflict-driven learning. In TACAS’12, volume 7214 of LNCS, pages 48–63.
Springer, 2012.

12. J. Feret. Static analysis of digital filters. In ESOP’04, volume 2986 of LNCS, pages
33–48. Springer, Mar. 2004.

13. P. Garg, C. Löding, P. Madhusudan, and D. Neider. ICE: A robust framework for
learning invariants. In CAV’14, pages 69–87. Springer, 2014.

14. P.-L. Garoche, T. Kahsai, and C. Tinelli. Incremental invariant generation using
logic-based automatic abstract transformers. In NFM’13, 2013.

15. P. Granger. Improving the results of static analyses of programs by local decreasing
iterations. In FSTTCS’92, 1992.

16. S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as constraint
solving. In PLDI’08, pages 281–292. ACM, 2008.

An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants 27

17. S. Itzhaky, N. Bjørner, T. Reps, M. Sagiv, and A. Thakur. Property-directed shape
analysis. In CAV’14, pages 35–51. Springer, 2014.

18. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static
analysis. In CAV’09, volume 5643 of LNCS, pages 661–667. Springer, June 2009.

19. A. Miné. Relational abstract domains for the detection of floating-point run-time
errors. In ESOP’04, volume 2986 of LNCS, pages 3–17. Springer, Mar. 2004.

20. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

21. A. Miné, J. Breck, and T. Reps. An algorithm inspired by constraint solvers to infer
inductive invariants in numeric programs. TR 1829, CS Dept., Univ. of Wisconsin,
Madison, WI, January 2016.

22. U. Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Information Science, 7(2):95–132, 1974.

23. R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs N. J., USA, 1966.
24. M. Pelleau, A. Miné, C. Truchet, and F. Benhamou. A constraint solver based on

abstract domains. In VMCAI’13, LNCS, page 17. Springer, Jan. 2013.
25. O. Ponsini, C. Michel, and M. Rueher. Combining constraint programming and

abstract interpretation for value analysis of floating-point programs. In CSTVA’12,
pages 775–776, 2012.

26. P. Roux and P.-L. Garoche. Practical policy iterations - A practical use of policy
iterations for static analysis: the quadratic case. FMSD, 46(2):163–196, 2015.

27. H. Säıdi and N. Shankar. Abstract and model check while you prove. In CAV’99,
pages 443–454. Springer, 1999.

28. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-based linear-relations
analysis. In SAS’04, volume 3148 of LNCS, pages 53–68. Springer, 2004.

29. A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–310, 1955.

30. A. Thakur, A. Lal, J. Lim, and T. Reps. PostHat and all that: Automating abstract
interpretation. ENTCS, 311:15–32, 2015.

31. A. Thakur and T. Reps. A generalization of St̊almarck’s method. In SAS’12,
volume 7460 of LNCS, pages 334–351. Springer, 2012.

32. Y. Xie and A. Aiken. Saturn: A SAT-based tool for bug detection. In CAV’05,
LNCS, pages 139–143, Berlin, Heidelberg, 2005. Springer.

	An Algorithm Inspired by Constraint Solvers to Infer Inductive Invariants in Numeric Programs

