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CINÉTICAS DE ADSORCIÓN LÍQUIDO/SÓLIDO
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France.
Received May 28, 2015; Accepted February 10, 2016

Abstract
The most popular formula used in the literature about liquid/solid adsorption kinetics to describe diffusion-controlled
processes is the intraparticle diffusion (IPD) equation. However, this formula was introduced originally for pure diffusion.
It does not account explicitly for the effect of adsorption (except in the limit of very low adsorbate concentration). In
this work, the problem of diffusion-controlled kinetics is studied by using a diffusion-adsorption model which should hold
when the solute concentration in the external solution is sufficiently high. The case of a finite amount of solute initially
in the stirred batch adsorber is solved analytically. For short times, the formula for the uptake turns out to have the same
form vs. time as the IPD equation. However, it also predicts a decrease of the fractional uptake with the initial bulk
concentration, as observed in the literature, and it shows that the IPD diffusion coefficient is a lumped parameter depending
on the experimental conditions. These theoretical results are used for a discussion of the IPD equation and for descriptions
of experimental results taken from the literature.
Keywords: adsorption, kinetics, shrinking core model, intraparticle diffusion equation.

Resumen
La fórmula más popular utilizada en la literatura sobre cinética de adsorción lı́quido/sólido para describir procesos
controlados por la difusión es la ecuación de difusión intrapartı́cula (DIP). Sin embargo, esta fórmula se introdujo
originalmente para difusión pura. No toma en cuenta de forma explı́cita el efecto de la adsorción (excepto en el lı́mite
de concentración adsorbida muy baja). En este trabajo, el problema de la cinética controlada por la difusión se estudió
mediante el uso de un modelo de difusión-adsorción, que debe ser válido cuando la concentración del soluto en la solución
externa es bastante alta. El caso de una cantidad finita de soluto inicialmente en el baño de solución está resuelto
analı́ticamente. Para tiempos cortos, la fórmula para la adsorción resulta tener la misma forma en función del tiempo
como la ecuación DIP. Sin embargo, predice una disminución de la fracción de adsorción con una concentración inicial
mayor, lo que ha sido observado experimentalmente en la literatura, y enseña que el coeficiente de DIP es un parámetro
agrupado que depende de las condiciones experimentales. Estos resultados teóricos son utilizados para una discusión de la
ecuación DIP y para descripciones de resultados experimentales tomados de la literatura.
Palabras clave: adsorción, cinética, modelo de núcleo contraı́do, ecuación de difusión intrapartı́cula.

1 Introduction

Sorption is of great value for the purification of waters
and industrial effluents containing contaminants or
pollutants. The modeling of the kinetics is important
for the prediction of uptake rates and for gaining more
insight into the mechanisms. However, this is still a
discussed problem (Qiu et al., 2009). Moreover, a
particular situation prevails in this field, which may be
viewed as follows.

It has long been recognized that most sorption

processes in macroscopic adsorbent beads are
controlled by diffusion in the particles, or in a layer
at the periphery of the particles (Ruthven, 1984; Do,
1998). Apparently (Do, 1998), this hypothesis was
put forward for the first time nearly one century ago
by McBain on the basis of experiments with carbon
(McBain, 1919). It was also first recognized by Boyd
(Boyd et al., 1947) in the case of ion exchange (Liberti
and Helfferich, 1983). In an article published in 1965,
Helfferich started by stating: “It has long been known
that ion-exchange rates are controlled by diffusion”
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(Helfferich, 1965).
Consequently it is surprising that descriptions of

experimental results based on a rate-limiting equation
for the adsorption reaction have become increasingly
popular in the past 30 years (Ho and McKay, 1999).
These empirical equations include the pseudo-first-
order (Lagergren, 1898) and the pseudo-second-order
rate law (Blanchard et al., 1984; Gosset et al., 1986).
Other more physical descriptions assumed a mixed
regime combining diffusion and local adsorption
reaction (Wen, 1968; Yang and Al-Duri, 2001; Che-
Galicia et al., 2014; Castillo-Araiza, 2015).

The other formula that is usually tested against
the chemical rate laws is the “intra-particle diffusion”
(IPD) equation (Kushwaha et al., 2010; Boparai et
al., 2011; Tofighy and Mohammadi, 2011) which
is supposed to be relevant in the case of diffusion-
controlled sorption processes (Weber and Morris,
1963; Rudzinski and Plazinski, 2008; Wu et al., 2009;
Haerifar and Azizian, 2013). This equation was first
employed by Boyd et al. in 1947 (Boyd et al., 1947) to
model ion exchange kinetics in zeolites. However, this
formula was established originally to describe pure
free diffusion of a solute in a sphere (see for instance
Eq. (6.20) of (Crank, 1975)). It does not account
explicitly for the effect of adsorption.

In the present work we focus on diffusion-
controlled adsorption processes and propose to revive
a model that takes into account the influence of
adsorption on solute transport in the adsorbent. This
model was first proposed in the seminal work by
Crank (Crank, 1957, 1975). When applied to sorbent
spherical beads, it is an example of the well-known
so-called “shrinking unreacted core” model (Yagi and
Kunii, 1961; Ruthven, 1984; Levenspiel, 1999; Leyva-
Ramos et al., 2010, 2012, 2015) in which adsorption
of the diffusing solute progressively builds up an ash
shell of reacted material at the periphery of the bead
and leaves an unreacted core at the centre, that shrinks
in the course of time. The model introduced by
Crank was solved in the case of a very large (virtually
infinite) amount of solute, in which the external
solution concentration could be taken as constant
(Crank, 1957, 1975; Ruthven, 1984; Levenspiel,
1999). In practice, this model should be applicable
when the solute concentration in the batch adsorber is
sufficiently large (see section 2).

In this paper, we first recall briefly the main
ingredients and results of the model in one dimension
(1D). The method used here serves to gain more
insight into the main features of the process. Next,
the model is solved in the case of spherical beads for

a finite amount of adsorbate present initially in the
batch adsorber, in which case its bulk concentration
varies with time. The result is used to derive a formula
valid at short contact times, for particles of arbitrary
(but smooth) shape, and for a discussion of the IPD
equation. It is shown that the diffusion coefficient
introduced in the IPD equation is in fact a lumped
parameter that, besides diffusion, also includes the
effect of the experimental conditions. The conditions
required for applying the model to real experiments
are discussed. The obtained formulas are utilized to
describe experimental data taken from the literature.

2 Modeling

2.1 Ingredients of the model

We consider an adsorbent medium (denoted by A)
in contact with a perfectly stirred batch adsorber,
denoted by B, containing all of the solute initially. The
adsorbate diffuses freely in A until it is immobilized
when it encounters a free site.

As shown in the literature (Ruthven, 1984;
Grathwohl, 2012), in the case of very low
concentration of solute, the latter obeys a diffusion
equation with an effective diffusivity, De f f = D(1 +α)
(Ruthven, 1984; Grathwohl, 2012), in which D is the
diffusivity of free solute and ? is the slope of the
adsorption isotherm for very low concentration.

On the opposite, in the present work, the initial
concentration in the batch adsorber will be sufficiently
high so that the ash layer of the adsorbent operates in
the plateau region of the adsorption isotherm. In this
case, the degree of adsorption in the reacted zone will
not vary appreciably in the course of time as long as
the external concentration remains high enough.

In the model, the medium will be considered to
possess a uniform concentration of sites, denoted by
Cs, onto which the solute molecules form a monolayer.
It will be supposed that the adsorption process is
diffusion-controlled, i.e. the adsorption process is very
fast compared to diffusion. The latter will be described
by using an average diffusion coefficient in A,
which will account for the various possible diffusion
pathways in the medium (micropore, mesopore,
macropore, and surface diffusion (Do, 1998)). The
total amount of solute will be sufficiently high so that
the ash layer thickness in A at equilibrium is not very
small. So, the concentration of solute on the surface
of A will be taken equal to that in the batch adsorber,
denoted by CB. The boundary condition for the solute
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concentration in A will be that the concentration of
free solute is continuous at the mouth of a pore.

The classic quasi-steady state (QSS)
approximation (Briggs and Haldane, 1925; Kramers,
1940; Crank, 1975; Simonin et al., 1991) will be used
to derive analytical results. Generally, the QSS regime
does not hold at the very beginning of the process, but
it settles after a short induction time.

2.2 Adsorption in a semi-infinite slab (1D
case)

Before examining the spherical case, it is useful to
first present shortly the model introduced by Crank
(Crank, 1957, 1975) in the one-dimensional (1D) case
and solve it in the QSS approximation because this has
not been done before in the literature and some results
will then be used for the spherical case. Moreover this
derivation gives more insight into the process.

We consider a semi-infinite porous slab of
adsorbent that is put in contact at t = 0 with a very
large bath of batch adsorber of constant concentration,
C(0)

B (see Fig. 1). When the solute diffuses in A in the
direction x perpendicular to the surface of A, it binds
to free sites and progressively builds up a reacted zone
in which all adsorption sites are occupied. We denote
by δ1 the thickness of this ash layer in 1D.

The concentration of free solute, C(x, t), in
this zone obeys Fick’s second law which reads
∂C(x, t)/∂t = −∂J(x, t)/∂x = D∂2C(x, t)/∂x2, with t
the time, D the diffusion coefficient of the adsorbate
in A, and J the flux of solute molecules per unit
cross-section area given by Fick’s first law, J(x, t) =

−D∂C(x, t)/∂x. It results from the definition of δ1 that
C = 0 at x = δ1.

The variation of δ1 in a time interval dt is given by
the relation,

Cs [δ1(t + dt)− δ1(t)] = J(x = δ1, t) dt (1)

17 

 
Figure 1: Sorption in a flat slab. 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 2: Sorption into a sphere. 
 
 
 

  

Fig. 1. Sorption in a flat slab.

which expresses the fact that the variation of the
number of occupied sites in the lapse of time dt is
equal to the number of solute molecules arriving at the
position x = δ1 at time t. At this location, the adsorbent
acts like a sink for the solute.

In the QSS approximation one has, ∂C(x, t)/∂t ≈ 0
in the ash layer (and C = 0 for x > δ1). Then J(x, t) is
approximately constant in space in this layer by virtue
of Fick’s second law, so that J = J(t). Consequently,
the concentration profile is approximately linear in
this zone because of Fick’s first law. Because of the
boundary condition, C = pC(0)

B at x = 0+, J is therefore
given by,

J(t) ≈ D
pC(0)

B

δ1(t)
(2)

By combining Eqs. (1) and (2) one gets the equation,

Cs
dδ1

dt
= D

pC(0)
B

δ1(t)
(3)

which yields,
δ1(t) =

√
2aD0t (4)

with

a ≡
C(0)

B

Cs
(5)

and
D0 ≡ pD (6)

the effective diffusion coefficient in the porous
adsorbent. In what follows it will be taken as a
constant because the solute concentration will be very
low (see Results and discussion section). The total
uptake of solute by A (per unit cross-section area) is

Q ≈Csδ1 (7)

because in practical applications one may neglect the
concentration of free solute in A as compared to that of
adsorbed solute. Therefore one gets from Eqs. (4)-(7),

Q ≈C(0)
B

√
2D0t/a =

√
2C(0)

B CsD0t (8)

We notice that in this relation Q varies as
√

C(0)
B . It is

not proportional to C(0)
B . This point is further discussed

below in section 2.4.

2.3 Adsorption in spherical beads

We now consider sorbent spheres of radius R that
are immersed at t = 0 in a well-stirred batch
adsorber of initial concentration C(0)

B . In general,
the particles used in adsorption experiments may be

www.rmiq.org 163
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Figure 1: Sorption in a flat slab. 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 2: Sorption into a sphere. 
 
 
 

  

Fig. 2. Sorption into a sphere.

represented by spheres with a good accuracy
(Ruthven, 1984). They will typically be made of a
porous material like activated carbon.

In this section, we use the same type of model
as in the 1D case. Its application to adsorption in
spheres has been solved in the literature in the case
of an infinitely large amount of solution, in which
the adsorbate concentration remained constant (Crank,
1957, 1975; Levenspiel, 1999). It is solved below in
the case of a finite amount of adsorbate, whose bulk
concentration varies with time.

Let us define the maximum site occupancy ratio
of a sphere as the ratio of the total number of solute
molecules to the total number of sites,

ρ ≡
C(0)

B VB

Csv
= a

VB

v
(9)

with v the volume of a sphere and VB the volume of
batch adsorber per sphere (volume of the bath divided
by the number of spheres).

A spherical bead is depicted in Fig. 2. We
denote by r0 the position of the moving boundary
delimiting the shrinking unreacted core, at which the
concentration of free solute concentration vanishes,
and by δ the thickness of the ash (reacted) shell.

The free solute concentration at position r and time
t,C(r, t), obeys Fick’s law, ∂u/∂t = D∂2u/∂r2, with u ≡
rC(r, t) (Crank, 1975). The QSS approximation in the
sphere reads: ∂u/∂t ≈ 0. Then, using the latter relation
and the boundary condition, C(r = R−, t) = pCB, and
solving Fick’s law one obtains,

C(r, t) =
R

R− r0

(
1−

r0

r

)
pCB (10)

The relation for the time variation of r0, similar to Eq.
(1), reads,

dn
dt

= −4πr0
2J(r = r0, t) = −Cs

d( 4
3πr0

3)
dt

= −Cs(4πr0
2)

dr0

dt
(11)

in which n is the number of moles of solute arriving at
r0 and the flux per unit cross-section area is given by
J = −D∂C/∂r.

It stems from Eqs. (10) and (11) after a simple
manipulation that,

−D0
CB

Cs
dt = r0

(
1−

r0

r

)
dr0 (12)

in which CB is obtained from the conservation of total
solute amount in the course of time: C(0)

B VB = CBVB +

Q, with Q the amount of adsorbed solute,

Q =
4
3
π(R3 − r0

3)Cs (13)

in which we also used Eq. (7). Then one gets,

CB = C(0)
B
ρ+ z3 − 1

ρ
(14)

in which we have used Eq. (9) and introduced the non-
dimensional radius of the core,

z ≡
r0

R
(15)

Insertion of Eq. (14) into Eq. (12) gives the following
separable differential equation obeyed by z,

D0a
R2 dt = −z(1− z)

ρ

ρ+ z3 − 1
dz (16)

with a defined by Eq. (5). The two sides of this
equation can be integrated separately (e.g. with the
help of Maple), between the states (t = 0,z = 1) and
(t,z(t)). After some rearrangements of terms, one
arrives at the following result,

τ =
2(1− λ3)(1− λ)

λ
ln

(
1− λ
z− λ

)
+

(1− λ3)(2λ+ 1)
λ

ln
(

z2 + zλ+ λ2

1 + λ+ λ2

)
+

2
√

3(1− λ3)
λ

arctan
 √

3λ(1− z)
z(λ+ 2) + λ(2λ+ 1)

 (17)

in which

τ ≡ 6
aD0

R2 t (18)
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is a non-dimensional reduced time, and the parameter
λ defined by,

λ ≡ (1− ρ)1/3 (19)

has been introduced for convenience. In practice, one
generally has ρ < 1. Then it is easy to show that the
minimum value of z satisfies the relation, ρ = 1− z3

min,
from which one gets using Eq. (19),

zmin = λ (20)

which expresses the concrete meaning of the
parameter λ.

The fractional uptake (proportion of solute
immobilized in the sphere) is (Do, 1998),

P ≡
Q

C(0)
B VB

(21)

By using Eqs. (9), (13) and (15) in Eq. (21) one gets,

P =
1− z3

ρ
(22)

from which it stems that,

z = (1− ρP)1/3 (23)

Therefore, τ can be expressed as a function of P and ρ
alone by inserting Eqs. (19) and (23) into Eq. (17).

2.4 Formula at short times

For small diffusion times, P is small. In that case, one
gets from Eq. (23) that z ≈ 1 − ρP/3, which relation
may be inserted into Eq. (17). A Taylor expansion of
this expression for τ to the second order in powers of
P leads to P ≈

√
3τ/ρ, which may be rewritten using

Eq. (18) as,

P ≈
1
R

√
18

aD0

ρ2 t (24)

or, together with Eqs. (5) and (9),

P ≈
1
R

v
VB

√
18

Cs

C(0)
B

D0t (25)

In fact, Eq. (25) may be obtained in another way,
by noting that for small contact times the solute is
adsorbed in a shell of small thickness given by the
formula in 1D (Eq. (4)) and area 4πR2, so that, Q ≈
Cs4πR2δ1, which together with Eq. (21) leads to Eq.
(24) or (25).

Moreover, as a consequence, we notice that this
treatment may be applied to particles of arbitrary, yet

smooth, shape in the first moments of the process.
Then, the amount of solute adsorbed in the particle is
given by,

Q ≈CsAδ1 = A
√

2CsC
(0)
B

√
D0t (26)

with A the area of the particle, and consequently,

P ≈
A

VB

√
2

Cs

C(0)
B

√
D0t (27)

An important result of this latter formula is that the
fractional uptake, P, not only varies as t1/2. It is
also noticed that P should decrease with C(0)

B as

1/
√

C(0)
B (for constant CS ), which is not a trivial result.

This is due to the fact that the adsorbed amount, Q
(which increases with C(0)

B as expected, see Eq. (26)),

varies as
√

C(0)
B , because the ash layer thickness, δ1,

varies in this way (Eq. (4)). This property clearly
distinguishes a diffusion-controlled adsorption process
from a simple pure diffusion process, for which P is
independent of C(0)

B .

2.5 Intraparticle diffusion equation

The classic intraparticle diffusion (IPD) equation
(Boyd et al., 1947; Weber and Morris, 1963;
Rudzinski and Plazinski, 2007; Wu et al., 2009) in the
case of a sphere is expressed as,

PIPD(t) ≡
QIPD(t)

Q(0)
B

= 1−
6
π2

∞∑
n=1

1
n2 exp(−n2π2DIPDt/R2)

(28)
in which PIPD is the fractional uptake of solute, QIPD

is the uptake, Q(0)
B is the initial amount of solute in

B (Q(0)
B ≡ C(0)

B VB), and DIPD is an ad hoc diffusion
coefficient. Eq. (28) was written in such a way that the
uptake satisfies the two conditions: QIPD(t = 0) = 0,
and QIPD(t =∞) = Q(0)

B .
It seems that this relation was first used by Boyd et

al. (1947) to describe adsorption kinetics in zeolites.
However, as said previously, it does not take into
account explicitly the effect of adsorption. It is the
solution to the problem of free diffusion of a solute
from a batch adsorber of constant concentration into
a sphere that does not possess adsorption sites (Eq.
(6.20) of (Crank, 1975)).

At the beginning of the process, Eq. (28) may be
approximated by the following equation (Crank, 1975;
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Rudzinski and Plazinski, 2007),

P ≈
6
R

√
DIPD

π
t (29)

In the literature, the IPD equation has generally
been used in the latter form preferentially to the full
formula, Eq. (28). It is worth noting that Eq. (29)
coincides with the result from the present model, Eq.
(24), that is PIPD ≈ P at short times, provided that
the diffusion coefficient appearing in the IPD equation
satisfies the relation,

DIPD =
π

2
a
ρ2 D0 (30)

or, by using Eqs. (25) and (29),

DIPD =
π

2
Cs

C(0)
B

(
v

VB

)2

D0 (31)

This result shows that the IPD diffusion coefficient
is in fact a lumped parameter which depends on
the experimental conditions. In particular, within
the present model, for a given type of sorbent
particles and a given volume of bath per particle, this
pseudo-diffusion coefficient is expected to be inversely
proportional to C(0)

B . We note that a decrease of DIPD
with the initial bulk solute concentration has often
been reported in the literature, e.g. in (Kumar et al.,
2003; Rudzinski and Plazinski, 2007, 2008).

When DIPD is given by Eq. (30), then PIPD ≈ P at
short times, but PIPD becomes larger than P for longer
times. It was observed that the maximum deviation
grows with the value of ρ. It reaches 7.2% for ρ = 0.1,
ca.13% for ρ = 0.5 and ca. 20% for ρ = 0.9.

2.6 Application of the model to experiments

The value for the concentration of sites, Cs, to be taken
in the model must be determined. To illustrate, let
us assume that the adsorption isotherm of A may be
parameterized using the Langmuir equation, which is
generally written as,

qa =
KLC(eq)

B

1 + aLC(eq)
B

(32)

with qa the amount of solute adsorbed in A per mass
unit of A, C(eq)

B the concentration of solute in the
bath in equilibrium with the sorbent, and KL and aL
parameters that are characteristic of the adsorbent.

This relation may be rewritten in the following
different form,

qa =
C(eq)

B

C(eq)
B + C1/2

qsat (33)

with qsat = KL/aL the amount at saturation and C1/2 =

1/aL. This form expresses the fact that qa = qsat/2 for
C(eq)

B = C1/2, and qa ∼ qsat when C(eq)
B �C1/2.

If the adsorption process is sufficiently fast, one
may assume a local equilibrium in a pore between the
free solute and the solute adsorbed on the wall of the
pore. Then, Eq. (33) may be extended to express the
space-averaged concentration of adsorbed solute at a
position in a pore as,

Ca =
C′

C′ + C1/2
Csat (34)

in which Csat is the space-averaged concentration of
adsorbed solute in A at saturation and C′ is the real
free solute concentration in the pore, C′ = C/p. If
qsat is the mass of solute adsorbed per mass unit
of adsorbent, then Csat = qsatd, with d the apparent
density of the adsorbent particles. In passing from Eq.
(33) to Eq. (34), it is assumed that the concentration of
free solute in the pores is equal to that in the external
bath (C′(eq) = C(eq)

B ), and the fact that the quantity of
free solute may be neglected as compared to that of
adsorbed solute.

If the initial concentration of solute in the batch
adsorber, C(0)

B , is sufficiently larger than C1/2, namely
in the plateau region of the adsorption isotherm, then
the concentration of free solute in A in the vicinity of
the surface of A will also be much larger than C1/2
in the first moments of the experiment. Accordingly,
the local amount of adsorbed solute will be nearly
constant in that zone according to Eq. (34) because
C′ � C1/2. Further away from the interface where the
solute concentration drops to zero, the concentration
of adsorbed solute will also become vanishingly small.
However the flux of solute entering into a bead should
be governed mainly by what happens near its surface,
where the amount of adsorbed solute nearly does not
vary with the distance. Therefore we may expect
the present model to give satisfactory results when
C(0)

B � C1/2, and as long as CB remains sufficiently
larger than C1/2.

In the present study, a natural choice for
the effective value of CS was the value of the
adsorbed concentration of solute at equilibrium for a
representative value of the solute concentration in the
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pores, C′0, that is,

Cs = Ca(C′ = C′0) (35)

in which Ca is given by Eq. (34). A sensible choice
for C′0 is C′0 = C(0)

B /2 for a description of P varying
between 1 and 0. Of course, this choice is not critical
if C(0)

B � C1/2, in which case one then has Cs ∼ Csat
for any value of C′0.

3 Results and discussion

3.1 Description of experimental results

First, the accuracy of the analytical expressions
derived assuming a QSS in the adsorbent was
examined through comparison with results from finite-
difference (FD) calculations in the case of constant
external concentration. The FD algorithm was based
on a diffusion-equilibration scheme used in previous
work (Simonin et al., 1988). The main result is that the
QSS hypothesis is valid, and the analytical expressions
are accurate, when a ≤ 0.1.

Then, the results obtained in this work were
applied to describe experimental results. The
variation of the kinetics with the initial bulk adsorbate
concentration and the validity of the predictions found
in the theoretical section were examined. Kinetic data
were found for various adsorbents, including chitosan
(Wu et al., 2001), resin (Hosseini-Bandegharaei et
al., 2010), fly ash (Panday et al., 1985), home made
activated carbon (Demirbas et al., 2008; Periasamy
and Namasivayam, 1996; Santhy and Selvapathy,
2006) and commercial activated carbon (Kumar et al.,
2003; Choy et al., 2004; Yang and Al-Duri, 2001,
2005).

The present model is not supposed to be applicable
to systems in which ion exchange is the mechanism
of adsorption because this process involves electric
coupling between the diffusing ions. This is what we
found when we analyzed for instance the data about
the adsorption of Pb(II) in an algae gel (Vilar et al.,
2007). It was observed that P varied approximately

as t1/2 but it did not vary as 1/
√

C(0)
B . Actually it

exhibited a non-monotonous variation with C(0)
B .

On the other hand, satisfactory results were
found in the case of experiments carried out with
commercial carbon like Filtrasorb. Hereafter, we
present an analysis of the data reported by Choy et
al. (Choy et al., 2004), and by Yang and Al-Duri
(Yang and Al-Duri, 2001) about the adsorption of

two different dyes, acid yellow 117 and Cibacron
reactive yellow F-3R (RY, molar mass ∼ 712 g mol−1),
respectively, in porous beads of activated carbon,
Filtrasorb 400 (F400). The data of Yang and Al-
Duri were particularly interesting because the main
physical-chemical characteristics of the beads have
been reported. Besides these results with Filtrasorb
carbon, we present in the next section the result
obtained in the case of the adsorption of Cu(II) on
chitosan (Wu et al., 2001) at short times.

The numerical values for the experimental kinetic
measurements were obtained by digitizing the figures
presented in the references.

3.1.1 Analysis of data at short times: variation of P
with time and C(0)

B

Experimental data may be represented using the
approximate expression, Eq. (24) or (27), at short
times, when the adsorption rate P is typically smaller
than ∼0.3 or 0.4 (Rudzinski and Plazinski, 2007,
2008).

It was first interesting to study the effect of varying
the initial external concentration in (Choy et al., 2004)
and (Yang and Al-Duri, 2001). In these two references
the initial bulk concentrations of the adsorbate were
appreciably larger than C1/2. One gets from Table
3 of (Choy et al., 2004) that C1/2 ≈ 4.6 ppm, which
is indeed much smaller than all initial concentrations
C(0)

B that were in the range 50-200 ppm. In (Yang
and Al-Duri, 2001), the values for aL and KL in Eq.
(32) give C1/2 = 1/aL ≈ 7.46 mg L−1, which is much
smaller than the values for C(0)

B that ranged from ∼ 34
mg L−1 to 131 mg L−1.

In the experiments of (Choy et al., 2004), most
of the values of the fractional uptake did not exceed
0.4, so that the approximate expression for P (Eq.
(27)) was sufficient to analyze nearly all of the data.
In (Yang and Al-Duri, 2001), the fractional uptake
nearly reached its equilibrium value at the end of the
experiments. Next, these data were analyzed here at
short times and, besides, in the whole time range.

The results for the analysis of the fractional uptake
P as a function of the square root of time are shown in
Fig. 3 and Fig. 4.

The upper frames show the variation of P as
a function of

√
t. The straight lines drawn for P

smaller than ≈0.4 materialize the result of using the
IPD equation at short times (Eq. (28)). These
lines have different slopes so that the value of the
IPD pseudo-diffusion coefficient, DIPD, is observed to
depend on the initial solute concentration in the batch
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Figure 3: Sorption rates as a function of time in the experiments of (Choy {\it et al}., 2004) for various 
initial concentrations of solute in the bath. Upper plot: experimental values of P vs. t1/2; bottom plot: 
experimental values of )0(

BCP  (in ppm1/2 vs. t1/2. Symbols: (●) )0(
BC = 50 ppm, (▽) 75 ppm, (n) 100 

ppm, (◇) 150 ppm and (▲) 200 ppm. Lines: linear adjustments of points at short times (for P<0.4). 

  

Fig. 3. Sorption rates as a function of time in
the experiments of (Choy et al., 2004) for various
initial concentrations of solute in the bath. Upper
plot: experimental values of P vs. t1/2; bottom plot:

experimental values of P
√

C(0)
B (in ppm1/2 vs. t1/2.

Symbols: (•) C(0)
B = 50 ppm, (O) 75 ppm, (�) 100

ppm, (♦) 150 ppm and (N) 200 ppm. Lines: linear
adjustments of points at short times (for P < 0.4).

adsorber, C(0)
B . In Fig. 4, DIPD is found to decrease

monotonously from ≈ 1.3× 10−13 m2s−1 for the lower
concentration (C(0)

B =35.4 mg L−1), to ≈ 0.61 × 10−13

m2s−1 (for C(0)
B =131 mg L−1).

The bottom frames show the plots of the function

P
√

C(0)
B as a function of

√
t. According to Eq. (27),

this function is expected to be independent of C(0)
B if

Cs is constant, which was the case for all values of
C(0)

B because C(0)
B �C1/2. It is observed in the bottom

frames of Fig. 3 and Fig. 4 that the experimental

points for P
√

C(0)
B fall on a common straight line. So

this result definitely points to a diffusion-controlled
adsorption process in these experiments.

Besides these findings in the case of a commercial
activated carbon (Filtrasorb), experimental data were
analyzed in the case of other materials, spanning a
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Figure 4: Sorption rates as a function of time in the experiments of (Yang and Al-Duri, 2001) for 
various initial concentrations of solute in the bath. Upper plot: experimental values of P vs. t1/2; bottom 
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Fig. 4. Sorption rates as a function of time in the
experiments of (Yang and Al-Duri, 2001) for various
initial concentrations of solute in the bath. Upper
plot: experimental values of P vs. t1/2; bottom plot:

experimental values of P
√

C(0)
B (in mg1/2L−1/2 vs.

t1/2. Symbols: (•) C(0)
B = 35.4 mg L−1, (4) 60.3 mg

L−1, (�) 87.2 mg L−1 and (O) 131 mg L−1. Lines:
linear adjustments of points at short times.

wide range of available sorbent types, namely for
dyes and Cu(II) in home-made activated carbons
(Demirbas et al., 2008; Santhy and Selvapathy, 2006;
Periasamy and Namasivayam, 1996); and for Cu(II)
in a resin impregnated with an extractant (Hosseini-
Bandegharaei et al., 2010), in a chitosan gel (Wu et
al., 2001), and in fly ash (Panday et al., 1985). In
most cases, the fractional uptake was found to vary
as
√

t (or as
√

t+A, with A a constant) at short times
(for P ≤ 0.4) and to decrease with C(0)

B , but it did not

accurately vary as 1/
√

C(0)
B .

However, the case of the data for Cu(II) in chitosan
(Wu et al., 2001) gave an interesting result, which is
shown in Fig. 5. The mechanism proposed in this
reference (Wu et al., 2001) for the adsorption of Cu(II)
was the chelation by unprotonated amino groups of
chitosan, without ion exchange.
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Table 1: Values of input parameters in the model (in Eq. 17) for the data of (Yang and Al-Duri, 2001) for RY of
molar mass ∼ 712 g mol−1, and for which R=0.0536 cm and Csat= 279.6 mol m−3.

21 

 
 
 

Figure 6: Concentration of solute remaining in the batch adsorber as a function of time in the 
experiment of (Yang and Al-Duri, 2001) for several values of the initial concentration and a diameter of 
0.0536 cm. Symbols: (●) )0(

BC = 35.4 mg L-1, (△) 60.3 mg L-1, (n) 87.2 mg L-1 and (▽) 131 mg L-1. 
Solid lines: results for $C_B$ obtained using Eqs. (17) and (22) with D0= 5.83 × 10-12 m2 s-1 (see text). 

 
 
 
 
 
 

Table 1: Values of input parameters in the model (in Eq. 17) for the data of (Yang and Al-Duri, 2001) 
for RY of molar mass ~ 712 g mol-1, and for  which R=0.0536 cm and Csat= 279.6 mol m-3. 

)0(
BC  Cs a    ρ   λ 

(mg L-1) (mol m-3)    
35.4 196.7 2.529 × 10-4 0.08429 0.971 
60.3 224.2 3.780 × 10-4 0.1260 0.956 
87.2 238.8 5.132 × 10-4 0.1711 0.939 
131 251.0 7.333 × 10-4 0.2444 0.911 

   
 

20 

 
 
 

Figure 5: Sorption rates as a function of time in the experiments of (Wu {\it et al}., 2001) for various 
initial concentrations of solute in the bath. Upper plot: experimental values of P vs. t1/2; bottom plot: 
values of )0(

BCP  (in mol1/2 m-3/2) vs. t1/2. Symbols: (●) )0(
BC = 0.93 mol m-3, (▽) 1.40 mol m-3, (n) 1.95 

mol m-3 and (◇) 2.92 mol m-3. Lines: linear adjustments of points at short times. 
 

Fig. 5. Sorption rates as a function of time in the
experiments of (Wu et al., 2001) for various initial
concentrations of solute in the bath. Upper plot:
experimental values of P vs. t1/2; bottom plot: values

of P
√

C(0)
B (in mol1/2 m−3/2) vs. t1/2. Symbols: (•)

C(0)
B = 0.93 mol m−3, (O) 1.40 mol m−3, (�) 1.95 mol

m−3 and (♦) 2.92 mol m−3. Lines: linear adjustments
of points at short times.

It is seen in this figure that the experimental points

for P
√

C(0)
B are fairly aligned on a common straight

line. This result strongly suggests that the adsorption
of Cu(II) was limited by diffusion in this medium.

3.1.2 Analysis of data in the whole time range

The experimental results of (Yang and Al-Duri, 2001)
were also described in the whole time range by using
the full equation, Eq. (17), together with Eqs. (19)
and (23). For this purpose, the values of a and ρ were
determined as follows. One gets the value of qsat in
Eq. (33): qsat = KL/aL ≈ 199 mg g−1, from which
one obtains the value of Csat in Eq. (34): Csat = 199
g L−1 (with d = 1 g mL−1 (Chang et al., 2004)). For
each initial concentration, C(0)

B , the value of Cs (Eq.
(35)) with C′0 = C(0)

B /2 was employed to compute the
values of a and ρ from Eqs. (5) and (9), respectively.
The set of values for a and ρ is collected in Table 1.
It is observed that a is always very small, smaller than
10−3, so that the present model could be used because
a� 0.1, as found from FD calculations.

Eq. (17), together with Eqs. (19) and (23), was
used to calculate the concentration of solute remaining
in the batch adsorber, CB, as a function of time for
various initial bulk concentrations. The value of D0
was optimized ‘manually’ by plotting the experimental
points together with the results from the model. The
plots for CB are shown in Fig. 6 for a common value,
D0 = 5.83 × 10−12 m2 s−1 or D = 1.08 × 10−11 m2

s−1 because of Eq. (6) with the value for the porosity,
p =0.54 (Chang et al., 2004). We are not aware of
any direct true diffusion coefficient measurements in
porous carbon. However, some diffusivity values have
been reported recently, that were obtained from the use
of true diffusional models (not from the IPD equation):
D of the order of 3 × 10−10 m2 s−1 for the fluoride
ion in bone char (Leyva-Ramos et al., 2010); of a few
10−11 m2 s−1 for pyridine in activated carbon (Leyva-
Ramos et al., 2015) and for Rhodamine B in a zeolite
(Castillo-Araiza et al., 2015); and D in the range from
0.5 × 10−12 m2 s−1 to 27 × 10−12 m2 s−1 for various
organic compounds in activated carbon (Leyva-Ramos
et al., 2012). Our value D = 1.08 × 10−11 m2 s−1

therefore falls in the range of values obtained in these
references. Besides, the diffusivity value of RY in bulk
water should be of the order of a few 10−10 m2 s−1,
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as found by using the Stokes-Einstein formula (D =

kBT/6πηR) at 25°C with a radius of the order of 8-10
Å for the solute molecule. Then, it is plausible that
this value may be reduced by a factor of several tens
because of effects due to tortuosity, and to confinement
in the micropores which constitute the major part of
the pores in F400 carbon (Chang et al., 2004).

It is seen in Fig. 6 that the model gives results
in rather good agreement with experiments for the 4
initial concentrations, with C′0 = C(0)

B /2, in view of
the asphericity and polydispersity of the beads used in
these experiments (Yang and Al-Duri, 2001). For the
higher concentration of 131 mg L−1, the agreement is
satisfactory down to CB ≈ 36 mg L−1, which is ca.
3.6 times smaller than the initial value. For the lower
concentration of 35.4 mg L−1, the model gives a result
for CB that is in keeping with experiment at all times,
even when CB falls down to concentrations of the order
of C1/2.

The agreement with experiment is a little less
accurate than that reported in (Yang and Al-Duri,
2001) in the framework of the branched pore diffusion
model. However, this latter treatment involved 4
adjustable parameters instead of only one here (D).

Conclusion
In this work we have used an intraparticle diffusion-
adsorption model to describe diffusion-controlled
adsorption kinetics. It is expressed in terms of
measurable physicochemical parameters. In principle,
it is free of any adjustable parameter. However, the
solute diffusion coefficient in the adsorbent must be
available, which is generally not the case. Moreover,
it is difficult to measure experimentally. Then D is the
only unknown parameter.

An approximate solution was obtained for short
diffusion times, which has the same form as the
classical IPD equation, i.e. it varies as t1/2. It has been
shown that the diffusion coefficient introduced in the
IPD equation is a lumped parameter. According to the
present model, this pseudo-diffusion coefficient should
decrease with the initial solute concentration in the
bath, as the inverse square root of this concentration.
Such a decrease has been observed experimentally in
the literature.

The best adsorbents for the application of the
present model are those in which the mechanism of
sorption is not ion exchange. The model may be used
when the external solute concentration is in the plateau
region of the adsorption isotherm of the material.

At a more general level, it may be put forward
that rate control by a chemical reaction is unlikely,
especially in the (most frequent) case of sorbent
particles of macroscopic size, in which complete
adsorption takes an appreciable time (hours or
sometimes days). On the other hand, limitation
by a chemical reaction, or mixed chemical-diffusion
control, may occur in the case of particles of small
size in which diffusive transport may be fast (as e.g.
in (Sharma et al., 1990)). It should also be recollected
that the best way to discriminate between chemical
and diffusion control is to carry out experiments with
beads of various sizes. Indeed, as underlined long
ago by (Boyd et al., 1947), the size of the adsorbent
particles should have no influence on the uptake rate
if adsorption is controlled by a chemical reaction,
so long as the mass of adsorbent is kept constant.
Furthermore, the shape of the particles should have no
influence in this case, which is a very useful feature.
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Nomenclature

Roman letters

a ≡C(0)
B /Cs, dimensionless

aL Langmuir isotherm parameter, m3 kg−1

A area, m2

C concentration of free solute, mol m−3

Ca concentration of adsorbed solute, mol m−3

C(eq)
B mass concentration of solute in batch adsorber

at equilibrium, kg m−3

C(0)
B concentration of solute in batch adsorber, mol

m−3

CS concentration of adsorption sites, mol m−3

C1/2 mass concentration of solute in batch adsorber
at which qa = qsat/2, kg m−3

C′ mass concentration of free solute in pore, kg
m−3

C′0 mean mass concentration of free solute in
pore, kg m−3

D diffusivity of solute in sorbent, m2 s−1

DIPD IPD diffusivity of solute in sorbent, m2 s−1

D0 effective diffusivity of solute in sorbent (Eq.
(6)), m2 s−1

J flux of solute per unit area, mol s−1 m−2

KL Langmuir isotherm parameter, m3 kg−1

n solute mole number, mol
p porosity, adimensional
P fractional uptake, adimensional
qa mass of solute adsorbed per mass of A,

adimensional
qsat mass of solute adsorbed per mass of A at

saturation, dimensionless
Q quantity of adsorbed solute, mol
Q(0)

B quantity of solute in batch adsorber at t = 0,
mol

QIPD quantity of adsorbed solute in IPD equation,
mol

r radial coordinate in sphere, m
r0 radius of shrinking core, m
R sphere radius, m
t time, s
v volume of sphere, m3

VB volume of solution, m3

x space coordinate, m
z reduced radius ≡ r0/R, dimensionless

Greek letters
δ thickness of ash layer, m
λ ≡ (1− ρ)1/3, dimensionless
ρ maximum site occupancy ratio, dimensionless
τ reduced time, dimensionless
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