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Abstract:  

This study explored the coordination between the components of the shoulder girdle 

(clavicle, scapula and humerus), and how they contribute to hand movement in the peri-

personal space. Shoulder girdle motion was recorded in 10 healthy subjects during pointing 

movements to 9 targets in the peri-personal space, using electromagnetic sensors fixed to the 

trunk, scapula and upper arm. Most of the 9 degrees of freedom (DoF) of the shoulder girdle 

were finely scaled to target position. Principle component analysis revealed that the 6 DoF of 

scapula-thoracic motion were coordinated in three elementary patterns (protraction, shrug and 

lateral rotation). The ratio of gleno-humeral to scapulo-thoracic global motion was close to 

2:1. A direct kinematic procedure showed that if no scapular motion occurred, the workspace 

would be reduced by 15.8 cm laterally, 13.7 cm vertically and 4.8 cm anteriorly. Scapulo-

thoracic motion should be taken into account when investigating the physiology of upper-limb 

movements.  
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Background  

The human upper limb has a large number of DoF with much redundancy (Bernstein, 

1967). The shoulder girdle is particularly complex since it is composed of three bones: the 

humerus, the scapula and the clavicle (Kapandji, 1980). The spherical head of the humerus 

inserts into the glenoid fossa of the scapula, creating a ball and socket joint with 3 degrees of 

freedom (DoF), the Gleno humeral joint (GH) (Codman, 1934 ). The two clavicular joints 

(Sterno-clavicular, and Acromio-clavicular), which each have 3 DoF, link the scapula to the 

thorax (Ludewig et al., 2009). In addition, there is a pseudo-joint formed by the surface of the 

scapula over the ribs and the muscles (scapulo-thoracic joint, ST), creating a closed kinematic 

chain (Lenarcic & Stanisic, 2003; Seth, Matias, Veloso, & Delp, 2015).  

However, detailed analyses of the motion within the shoulder girdle have often been 

limited to elevation of the arm in the plane of the scapula or in the frontal (abduction) or 

sagittal (flexion) planes (e.g. Ludewig et al., 2009; Robert-Lachaine, Marion, Godbout, Bleau, 

& Begon, 2015). Early studies of scapular motion (using goniometry or inclinometry) 

described a ratio of movement of 2:1 between GH and ST rotations during planar arm 

elevation. This ratio is termed “scapulo-humeral rhythm” (Codman, 1934; Inman, Saunders, 

& Abbott, 1996). It is generally agreed that scapulo-humeral rhythm varies with the degree of 

elevation such that ST rotation occurs mostly during larger amplitudes of elevation (McQuade 

& Smidt, 1998; Talkhani & Kelly, 1997). The development of 3D methods of motion analysis 

using external sensors during the last decade facilitated the study of motion of the different 

structures of the shoulder girdle (reviewed in Roren et al., 2015). ST motion can be recorded 

using a 6 DoF sensor (or a cluster of 3DoF sensors or markers) fixed on the skin over the 

acromion process, after calibration of the relative positions of defined scapular landmarks. 

This method, named the acromial method, has been reviewed in (Lempereur, Brochard, 
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Leboeuf, & Remy-Neris, 2014). These techniques demonstrated that there is a complex 

pattern of 3D rotations and translations of the scapula relative to the trunk during planar arm 

elevation (Fayad et al., 2006; Ludewig, Behrens, Meyer, Spoden, & Wilson, 2004; Ludewig, 

Cook, & Nawoczenski, 1996; McClure, Michener, Sennett, & Karduna, 2001; Pronk, van der 

Helm, & Rozendaal, 1993; Robert-Lachaine et al., 2015; Roren et al., 2015; van der Helm & 

Pronk, 1995). This was confirmed by invasive methods involving the insertion of pins into 

bones (Karduna, McClure, Michener, & Sennett, 2001; Ludewig et al., 2009; Lawrence, 

Braman, Staker, Laprade, & Ludewig, 2014; McClure et al., 2001) or x-ray imaging (Giphart 

et al., 2013). However, recent studies involving x-ray imaging of the GH joint have generally 

focused only on translation of the humeral head during joint rotations (Giphart et al., 2013). 

Motion of the crank-shaped clavicle is particularly difficult to measure using external 

sensors. The only truly accurate method for the quantification of 3D rotations of the sterno-

clavicular and acromio-clavicular joints is invasive, involving the insertion of pins in the 

bones (Lawrence, Braman, Staker, Laprade, & Ludewig, 2014; Ludewig et al., 2009). We 

previously developed an indirect method to analyze the function of the clavicle and scapula 

together. Six DoF can be measured by quantifying 3D rotations of the scapula along with the 

displacement of its center (Roren et al., 2015). Using the acromial method with a 6 DoF 

electromagnetic sensor and to evaluate large shoulder movements (Roren et al., 2015), we 

showed that the rotation of the scapula and the translation of its center were coupled, and we 

suggested that this was the result of the constraints of the curved thoracic surface (Roren et 

al., 2015). This closed chain description of the shoulder complex is geometrically correct 

since it does not involve any hypothesis regarding the position of the instantaneous axis of 

rotation. It is consistent with the biomechanical model recently proposed by Seth et al. (Seth 

et al., 2015). 
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The purpose of the present study was to use the same kinematic method to study 

physiological motion of the shoulder girdle during goal directed movements in the peri-

personal space. Coordination between the different components of the shoulder girdle during 

reaching in 3D space is poorly understood. Most previous studies have overlooked the 

contribution of the clavicle and scapula, reducing the shoulder to a ‘humero-thoracic joint’ 

(HT) (Desmurget & Prablanc, 1997; Desmurget et al., 1995; Gielen, Vrijenhoek, Flash, & 

Neggers, 1997; Medendorp, Crawford, Henriques, Van Gisbergen, & Gielen, 2000; 

Nishikawa, Murray, & Flanders, 1999; Rosenbaum, Meulenbroek, Vaughan, & Jansen, 1999; 

Soechting, Buneo, Herrmann, & Flanders, 1995; van der Steen & Bongers, 2011). A few 

studies used Factor Analysis or the Uncontrolled Manifold approach to analyze motor 

synergies, however they did not present the specific variations of the shoulder DoFs relative 

to the spatial parameters of the task (Reisman & Scholz, 2006; Tseng, Scholz, & Schoner, 

2002; Tseng, Scholz, Schöner, & Hotchkiss, 2003; Yang, Scholz, & Latash, 2007). 

Coordination within the shoulder girdle has also been studied during specific movements to 

test the impact of shoulder pathology on function (Aizawa et al., 2010; Magermans, 

Chadwick, Veeger, & van der Helm, 2005; Roren et al., 2012) or to investigate physiological 

movement during sporting activities (particularly overhead throwing e.g. Seminati, Marzari, 

Vacondio, & Minetti, 2015).  

There is thus a lack of data on shoulder girdle kinematics during common goal directed 

movements in the 3D workspace within arm’s reach. Such knowledge is important for the 

analysis of upper-limb motor control, particularly to determine to which extent the scapula 

participates in generating shoulder range of motion versus providing postural stability (Veeger 

& van der Helm, 2007). The integration of ST motion in the kinematic chain for relatively 

small movements has significant consequences on both the biomechanical modeling and 

physiological aspects of motor control. The dynamics of the upper-limb are completely 
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changed if the moments and forces generating the movements are produced more proximally 

by a larger number of muscles, but with a larger lever arm (Zatsiorsky, 2002). Integrating ST 

into the kinematic chain implies that the neural control of hand movements in space involves 

the proximal muscles controlling the scapula. In addition, since the shoulder complex includes 

a closed chain, the mechanical constraints caused by the thoracic surface should be taken into 

account in the analysis of stability and mobility of the shoulder girdle (Seth et al., 2015).  

Globally, the shoulder complex illustrates the high redundancy of the motor system 

(Bernstein, 1967) and the interaction between the neural and biomechanical determinants of 

its control. Some evidence suggests that movements are planned as final reference postures 

involving all the joints of the limb (Desmurget & Prablanc, 1997; Feldman, 1998; 

Rosenbaum, Meulenbroek, Vaughan, & Jansen, 2001). In this framework, it is important to 

analyze how the position and orientation of the scapula, which is the most proximal segment 

of the upper-limb, are tuned as a function of the 3D spatial position of the target.  

The aim of this study was to describe the coordination of the different elements of the 

shoulder girdle and how they contribute to the 3D movement of the hand in the peri-personal 

workspace. Our first hypothesis was that the motion of the scapula would contribute largely to 

the movement of the hand in space, even for relatively low and close targets. Our second 

hypothesis was that during pointing movements, scapula rotation and translation of its center 

would be coupled because of the constraints of the curved thoracic surface, as previously 

demonstrated during larger arm movements (Roren et al., 2015).  

To this purpose, we calculated the range of motion of the different DoF of the shoulder 

girdle and the ratio of the GH to ST global angles during pointing movements. PCA was 

performed to analyze coupling between the DoF of the scapula. In addition, we used a direct 

kinematic procedure (Hanneton, Dedobbeler, Hoellinger, & Roby-Brami, 2011) to quantify 

the contribution of the shoulder girdle to the displacement of the hand in space. None of these 
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aspects of scapula-thoracic motion had been previously fully investigated during movements 

in the peri-personal workspace. 

Methods 

Subjects  

Ten right-handed healthy subjects with no neurological or orthopaedic pathology of the 

upper arm were included. Five subjects were female and mean age was 51 years (range 29-

71). These subjects were the control group in a study of stroke patients presented in a previous 

paper (Robertson, Roche, & Roby-Brami, 2012). Ethical approval was obtained for the study 

and all subjects gave informed consent. 

Experimental set up and task 

The participants were comfortably seated on a chair adjusted so that the table was 

approximately level with the navel. Movements of both arms were recorded in a controlled 

balanced order. Subjects wore a wrist splint to which a pointer was attached, mimicking an 

extended index finger, in order to limit variability due to the distal joints. The trunk was fixed 

to a chair using a wide strap that limited trunk flexion.  

The starting position was with the hand placed on a red cross marked on the table in line 

with the shoulder, the forearm in mid-prone and the elbow flexed to 90°. Targets consisted of 

1 cm-wide red tape wrapped around a vertical stick of 1.5 cm diameter. The nine targets 

covered the typical workspace of the upper-limb with 3 forward and 6 lateral targets as 

indicated on Figure 1A-B. Target distance was adjusted for each subject as a function of 

anatomical arm length, measured from the acromion process to the end of the pointer. There 

were 3 close (at 65% of arm length) and 3 far targets (at 90% of arm length) placed 7 cm 

above the surface of the table and 3 high targets (level with the subject’s acromion) positioned 

above the far distance. Targets were presented in a standardized order (close-middle, far-
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internal, high-external, far-middle, close-external, high-internal, close-internal, far-external, 

high-middle).  

Subjects were instructed to touch the target with the tip of the pointer at a self-selected 

speed, with the wrist in a mid-prone position. The movement was carried out with eyes open. 

One familiarization trial was allowed then 3 repetitions of each movement were recorded. 

Data collection 

A 6-degree-of-freedom electromagnetic tracking device, the Polhemus Fastrak (SPACE 

FASTRAK, Colchester, VT, USA) was used to record the kinematic data at 30 Hz. The 

transmitter, fixed under the table, gives the global frame of reference. Polhemus sensors were 

attached to each subject using tape on the manubrium, the acromion process, the upper third 

of the humerus (attached to a custom-made velcro cuff) and on the dorsum of the wrist splint. 

This method, which involves external markers, is sensitive to artifacts caused by skin sliding, 

however the level of error is considered to be acceptable for movements below 100° of 

elevation following comparisons with invasive techniques involving sensors inserted directly 

into the bones (Lawrence et al., 2014; Ludewig et al., 2009), and biplane fluoroscopy (Giphart 

et al., 2013). 

Computation of the 3D positions of the body landmarks  

The initial calibration procedure was performed before the experiment with the subjects 

sitting. Bony landmarks of the trunk, scapula and upper arm were digitized in accordance with 

international recommendations (van der Helm, 1997) (Figure 2A), as well as the tip of the 

“finger” pointer, which was rigidly fixed to the splint (Figure 1C). The local coordinates of 

each body landmark were computed in the reference frame of the sensor fixed to the 

corresponding segment. The position of the center of rotation of the gleno-humeral joint was 

computed using a regression procedure on the data points recorded during circumduction 

movements of the arm (Biryukova, Roby-Brami, Frolov, & Mokhtari, 2000).  
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The 3D position of each point was then computed at each instant by projecting its local 

coordinates in the global reference frame using the instantaneous position and orientation of 

the sensor. The 3D position of the geometrical center of the scapula and the thorax were also 

computed (see Appendix 1). Appropriate geometrical transformations were used to project 

left side data on the right side. The 3D position of the targets was also calibrated.  

Characterization of initial and final shoulder postures 

Shoulder posture was measured at the onset of movement (initial posture) and when the 

subject pointed at the target (final posture). The times were automatically detected using the 

velocity profile of the hand (with a threshold of 0.05 m/s) then visually checked and validated 

using an interactive custom-made program. Movement accuracy was calculated as the 3D 

distance between the tip of the pointer and the target at the time of pointing. Displacement of 

the pointer-tip during the movement was also calculated.  

The angles describing the initial and final posture of the shoulder complex were calculated. 

To that purpose, the relative orientations of the segments were computed according to the 

international ISB protocol and expressed as sequences of three ordered rotations (Euler angles 

(van der Helm, 1997) (Figure 2B). The orientation of the trunk relative to the global reference 

frame is expressed as flexion-extension, lateral bending and axial rotation. The orientation of 

the scapula relative to the trunk (scapulo-thoracic joint, ST) is expressed as the three ordered 

Euler angles: internal-external rotation, medial-lateral rotation and antero-posterior tilt. The 

position of the center of the scapula was also computed relative to the center of the thorax in 

the reference frame of the thorax (Roren et al., 2015). The orientations of the upper-arm 

relative to the scapula (gleno-humeral joint, GH) and relative to the trunk (humero thoracic 

joint, HT) are expressed as the three ordered Euler angles: horizontal abduction, elevation and 

axial rotation. Elbow flexion-extension and prono-supination angles were computed within 

the direct kinematic procedure (see infra), but are not presented here.  
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Coordination within the shoulder girdle 

Classically, coordination between the ST and GH joints is quantified by the ratio of GH 

elevation to ST lateral rotation during planar elevation movements. This method is not 

suitable for the study of 3D movements involving complex shoulder rotations. Instead, we 

used the formalism of axis-angle (see Appendix 2) to compute the global angles of the GH, 

ST and HT joints during pointing. The rotation matrices for each joint were computed by 

projecting the matrix describing the final orientation of the segment in the matrix describing 

its initial orientation. The global rotation angles of ST, GH and HT were then computed 

according to the formula given in Appendix 1.  

The dimensionality of ST motion was investigated by Principal Component Analysis 

(PCA). Anatomically, ST motion depends on the coordination of both clavicular joints 

(Sterno-clavicular, and Acromio-clavicular: 6 DoF). ST motion was quantified by 6 DoF (3 

Euler angles and 3D displacement of the center of the scapula). PCA was performed on the 

data for all the subjects and conditions (data input matrix of 6 columns and 180 lines: 10 

subjects x 2 sides x 9 targets) with varimax transformation (Statview software). This analysis 

yields the amount of variance explained by each PC and the correlation between principal 

components (PCs) and DoF. 

Direct kinematic procedure 

The influence of scapula rotations on the extent of the hand workspace was studied using a 

direct kinematic procedure. This procedure involves the computation of the position of the 

end-effector of a multi-link chain from the joint rotation values. We used individualized direct 

kinematic models fully described in a previous study (Hanneton et al., 2011) and summarized 

in Appendix 3. Briefly, the kinematic chain was defined by the initial position of the bony 

landmarks of the trunk, scapula, arm and forearm of each subject, and the endpoint was the tip 

of the pointer. The time course of the rotations measured for each DoF during the real 
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movement was fed into the model for computation of the resulting displacement of the 

endpoint in the global reference frame. The accuracy of the model was quantified by 

comparison of the computed to the measured hand movements. 

In the present study, a direct kinematic simulation was carried out for all the pointing 

movements performed by each participant. Pointer displacement was computed by the direct 

model in the global 3D frame, and then reported to its initial position. The computed and 

measured pointer movements were compared on an individual basis. The direct simulations 

were repeated with a reduced kinematic model: the time course of joint rotations fed into the 

direct model were modified so that the rotations between the thorax and the scapula remained 

constant (i.e. equal to the initial posture, measured at the beginning of the recording). This 

reduced model simulated a ‘humero-thoracic joint’ (i.e. no scapula), with the position of the 

center of GH fixed relative to the thorax. The contribution of ST rotations to the hand 

workspace was quantified by comparison of the output of the reduced model to the measured 

pointer movement, independently from the trunk and more distal upper-limb rotations (that 

were the same during the execution and simulation of the movement). 

Statistics 

The means of the three trials to each target were averaged for use in the statistical analyses.  

Three factors ANOVA was performed with subjects as repeated measures. Range of 

motion (2 levels: initial and final shoulder postures) Side (2 levels), Target (9 levels), and 

Model (2 levels) were the independent variables. The dependent variables were the variables 

that described the posture of the shoulder girdle (Euler angles, global rotation angles, position 

of the center of the scapula) and the positions of the tip of the pointer (measured and 

computed). Post-Hoc analysis was performed with Two Factors ANOVA (Side and Target) 

separately for the initial and final postures, and Tukey-Kramer tests. Because of the large 
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number of variables involved (3 DoF for GH, 6 DoF for ST, and 2 sides) we used a Bonferoni 

correction with an alpha level of 0.004 for ST and 0.008 for the other 3 DoF measures. 

Regression analyses were used to study the relationship between global GH and ST angles 

as a function of the global HT angle. 

RESULTS 

Motion of the structures of the shoulder girdle during pointing 

As shown in Figure 3, initial ST posture varied slightly with the target. Mean initial 

posture for the right side was: ST internal rotation: 32.2° ± 0.4; ST lateral rotation: 10.3° ± 0.7 

and ST tilt -8.4° ± 0.4 (i.e. anterior tilt); GH elevation 9.8° ± 0.7. Most rotation angles varied 

during pointing. The trunk flexed (particularly for far and high targets) and rotated axially 

internally (particularly for internal targets). The scapula rotated internally (particularly for 

internal targets), laterally (particularly for high targets) and the initially anterior tilt tended to 

decrease. The gleno humeral elevation also varied with the distance and direction of the 

target. The results of the statistical analyses are provided in Table 1 and developed below. 

Range of motion during pointing. 

Trunk flexion (1.9° ± 0.1) and axial rotation (1° ± 0.1) contributed significantly to the 

movement (Significant effect of Range and Target 72,1=56.4 and F72,8=6.3, p<0.0001, with 

Range x Target interactions F72,8=18.6, p<0.0001, Table 1A), but lateral bending did not.  

Most rotational DoF of the shoulder complex contributed significantly to pointing. This 

was the case for ST internal (7° ± 0.3) and lateral (6.4° ± 0.3) rotations (Range effect 

F72,1=360.8, F72,1=167.2) and GH elevation (19.4° ± 0.9, Range effect F72,1=204.7 

p<0.0001). At movement initiation, the upper-arm was near vertical, this resulted in a 

frequent occurrence of gimbal-lock for GH horizontal abduction and axial rotation (in 3 



13 

 

subjects for the right side and 6 subjects for the left side). Statistical analyses on the initial 

posture and range of motion were therefore not performed on those DoF
1
.  

The center of the scapula also moved during pointing as shown on Figure 4. There was a 

significant Range effect on the lateral and 3D displacements (F72,1=148.9, p<0.0001 and 

F72,1=141.6 respectively, p<0.0001,Table 1B). The global 3D displacement varied from 0.5 

cm for the Close External target to 2.1 cm for the Far-Internal target. 

There was no significant effect of Side. 

Initial posture 

The initial position of the pointer remained stable during the experiment with only small (< 

0.5 cm) differences. The initial posture varied slightly with the Target (thick line on Figure 3). 

This was significant for trunk flexion-extension (F72,8=4 p<0.001, maximum difference 1.3°) 

and ST lateral rotation (F72,8= 9.4, p<0.0001, maximum difference of 1.3°). There was no 

significant effect of Side.  

Final posture. 

Pointing accuracy was measured by the distance between the final position of the pointer 

and the target. Mean error varied with Target (two Factors ANOVA F72,8=7.86, p<0.0001) 

but remained relatively low (between 0.8 to 1.5 cm). 

There was no effect of Side on the final trunk or shoulder girdle postures.  

Final trunk orientation depended on the target. Despite the restraining belt, the trunk was 

more flexed for far than for close targets (F72,8=9.1p<0.0001, maximum difference 2.3°) and 

more internally rotated for internal than for external targets (F72,8=20.5,p<0.0001, maximum 

difference 3.6°). 

                                                 

1
 This problem does not affect the measure of the final posture or that of the global GH rotation. 
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The final orientation of all the structures of the shoulder girdle varied with Target (Table 

2). There was a significant effect of Target for ST internal-external rotation (F72,8=89.7, 

p<0.0001) and medial-lateral rotation (F72,8=92.5, p<0.0001) but not for antero-posterior tilt. 

Internal rotation was mainly related to target direction: it was greater for internal than for 

external targets, particularly for high targets (47.6 ± 1.6° versus 39.5 ± 1.6°). Lateral rotation 

was greater for high (22.9 ± 0.9°) than for far (17 ± 0.9°) and close (14.3 ± 0.8°) targets.  

There was an effect of Target on the displacement of the center of the scapula relative to 

the trunk (Figure 4). This was significant for the lateral and vertical components and the 3D 

displacement (F72,8=36.1, F72,8=20.7 and F72,8=69.4, respectively, p<0.0001). 

There was a significant effect of Target on the final posture of the three DoF of GH 

(horizontal abduction F72,8=4.2, p<0.001; elevation F72,8=263.7, p<0.0001 and axial 

rotation F72,8=8.7, p<0.0001). Horizontal abduction was mainly related to target direction (it 

was greater for internal than for external targets, except for close targets). Elevation was 

greater for high (40.9 ± 0.9°) than for far (31.2 ± 1°) and close (17.1 ± 1°) targets. The upper-

arm was more externally rotated for high (-74.7 ± 2.1°) and far targets (-70.4 ± 2.2°) but less 

so for close targets (-57.6 ± 3.5°). 

Coordination between GH and ST rotations 

The amount of global rotation of the HT, ST and GH joints varied with Target (Two 

factors ANOVA F72,8 = 155.2, F72,8 = 275.0 and F72,8 = 516.7 respectively, p<0.0001) but 

not Side. 

The global angles of both ST and GH varied linearly with the global HT angle (Figure 5) 

with strong regression coefficients for all subjects (r
2
 from 0.780 to 0.985, p<0.0001). 

Correlations were significantly stronger on the left side (F18,1=16.4, p<0. 001).  

The slopes of the linear regression lines were 0.76 ± 0.01 for GH and 0.33 ± 0.01 for ST 

(significant difference, p<0. 0001) with no effect of Side. The ratio between the slopes (slope 
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for GH divided by the slope for ST) was 2.45 ± 0.16. The regression lines for GH crossed the 

axis of abscissas at zero (0.95° ± 0.79, ns), showing that GH rotation was at the origin of the 

HT rotation. The regression lines for ST crossed the axis of abscissa at 2.7° ± 1.3 (different 

from zero, p< 0.01) showing that ST rotation began after GH, but within a few degrees of HT 

rotation. 

PCA analysis: dimension of ST motion  

Three PCs explained a total 76.5 % of the variance of the 6 DoF of ST motion. 

Correlations between DoF and PCs are shown in Table 3. The first PC (31.8 %) was 

correlated with internal rotation (r=0.717) and lateral (r=0.812) and anterior (r=0.735) 

displacement of the scapula center. The second PC (22.8% of variance) was correlated with 

lateral rotation (r=0.883). The third PC (21.9% of variance) was negatively correlated with tilt 

(r=-0.804) (i.e. correlated with anterior tilt) and correlated with the upward displacement of 

the scapula center (r=0.804).  

Contribution of the shoulder girdle to the workspace of the hand 

The contribution of the scapula to the extent of the workspace was evaluated by a direct 

kinematic procedure. We compared the measured 3D pointer displacement with that 

computed by our basic and reduced direct kinematic models. Figure 6 illustrates the mean 

displacement of the pointer, projected in the horizontal (A) and the frontal planes (B). 

The models were compared two by two, due to numerical singularities when including 3 

levels of the factor Model in the three factors ANOVA (Model, Side, Target).  

The approximation of the basic model described in (Hanneton et al., 2011) was evaluated 

by comparison of the measured and computed pointer displacements (Figure 6, compare black 

and grey symbols). There was no effect of Side. 

The contribution of ST rotations to the 3D displacement of the hand in space (for the same 

trunk and distal upper-limb joint rotations) was evaluated by comparison of pointer 
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displacement computed by the basic and reduced kinematic models (Figure 6, compare grey 

and open symbols). There was a highly significant effect of Model (F72,8=425.6, F72,8=57.3 

and F72,8=151.9 for the lateral, antero-posterior and vertical directions respectively, 

p<0.0001) and Target (F72,8=1255, F72,8=148.2 and F72,8=556.0, respectively p<0.0001) 

and strong interactions between Target and Model (F72,8=274.6, F72,8=133.8 and 

F72,8=556.0,p<0.0001). There was no significant effect of Side. If no scapular rotation 

occurred, the workspace would be reduced by 15.8 ± 2.4 cm laterally, 12 ± 2.3 cm vertically 

and 4.1 ± 1.2 cm anteriorly. 

The difference between the measured and computed workspaces is summarized by the 

amount of 3D pointer displacement during the movement which varied from 10 cm for the 

Close-Middle target to 41 cm for the High-Internal Target (Figure 7). There was a highly 

significant effect of Model (F72,8=322.9, p<0.0001) and Target (F72,8=532.8, p<0.0001) and 

strong interactions between Target and Model (F72,8=145.4, p<0.0001). The amount of 

pointer displacement was smaller with the computed basic model than the measured 

displacement, and even smaller with the reduced model. The difference varied widely with the 

target: it was null for the Close-External target but attained 13.5 ± 2.4 cm for the High-

Internal target.  

DISCUSSION 

Scapulo-thoracic motion contributes to pointing. 

This study analyzed motion of the shoulder girdle during pointing movements in the peri-

personal space (i.e. a relatively wide 3D space within reach, similar to gestures carried out in 

daily life sitting at a table). The accuracy of pointing varied with the target but we considered 

that the relatively low level of error (less than 1.5 cm) was tolerable in the framework of this 

study. The results confirmed that the clavicle and scapula (determining ST motion) are 
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significant elements of the upper-limb kinematic chain. This was demonstrated by the facts 

that i) the initial and final postures of most ST DoF (scapular rotation and displacement of the 

scapula center, which both depend on clavicular motion) differed, and ii) most joint motion 

was consistently scaled to the 3D position of the target. Despite the restraining strap, the 

initial and final position of the trunk varied slightly during the experiment. However, this does 

not minimize the role of the shoulder complex since the motion of the scapula was calculated 

relative to the trunk. The present study thus demonstrates that the shoulder girdle contributed 

to the reaching movement of the hand. (It is highly likely that the elbow joint also contributed 

to the movement but not the distal joints that were immobilized in a splint). 

Coordination within the shoulder girdle 

We used two methods to analyze coordination within the shoulder girdle. The coordination 

between the clavicle and scapula was quantified by the dimension of ST motion obtained with 

PCA, and the coordination between the scapula and the humerus was quantified by the ratio 

between global GH to ST rotations. 

First, the present study confirmed that the displacement of the scapula center and ST 

rotation, which both depend on motion at the sterno-clavicular and acromio-clavicular joints, 

are finely coordinated since 3 PCs explained the variance in the motion of the 6 ST DoF 

(Roren et al., 2015). Remarkably, this is similar to what we found for large amplitude 

movements (maximal elevation, voluntary shoulder roll and simulation of hair combing and 

back washing) in a previous study (Roren et al., 2015). This suggests that the DoF of the 

clavicle and scapula are associated in three elementary movement patterns: protraction 

(internal rotation and antero-lateral displacement), shrug (anterior tilt and upward 

displacement) and lateral rotation, which can be combined to induce different upper-limb 

movements. Such a description of ST motion, consistent with the model proposed by Seth et 
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al. (Seth et al., 2015), could lead to functional and clinical indexes which would be easier to 

interpret than those of the ISB protocol.  

Second, we proposed a new method to compute the ratio between GH and ST rotations. 

Previous studies have often quantified this coordination by calculating the ratio of GH 

elevation to ST lateral rotation during planar elevation tasks (Codman, 1934; Inman et al., 

1996). The consideration of all the DOF of the shoulder girdle during unconstrained 3D 

movements complicates the definition of scapulo-humeral rhythm (Robert-Lachaine et al. 

2015). The Euler angle formalism is also difficult to interpret (Michaud, Jackson, Prince, & 

Begon, 2012). Using the global angle approach, we found that both ST and GH rotations were 

linearly related to the global rotation of the HT joint. Moreover, the regression lines passed 

near the origin, showing that ST motion began within the first degrees of HT motion. This 

contrasts with the common belief that ST motion mainly contributes to larger amplitude HT 

movements (Forte, de Castro, de Toledo, Ribeiro, & Loss, 2009; McQuade & Smidt, 1998; 

Scibek & Carcia, 2012; Talkhani & Kelly, 1997). This difference may be due to the direction 

of the studied movement (forward for reaching versus upward during elevation) and/or to the 

low sensitivity of the previously used clinical methods. The ratio of the slopes of the 

regression lines between the global GH and ST angles generalizes the notion of “scapulo-

humeral rhythm” to 3D space: we found a constant ratio of 2.4:1 confirming that the ST joint 

contributes around one third of HT motion (Inman et al., 1996).  

Contribution of ST motion to the extent of the hand workspace 

We estimated the functional impact of ST motion on the peri-personal workspace using a 

direct kinematic procedure. Our basic model is oversimplified since it lacks a clavicle 

(Hanneton et al., 2011). The difference between the computed and measured pointer 

displacements (~ 2 cm) was in the same range as the measured displacement of the scapula 

center (0.5 to 2 cm). This suggests that most of the difference between the computed and 
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measured pointer displacements could be attributed to the lack of clavicle, consistently with 

our previous study on trunk assisted reaching (Hanneton et al., 2011). In addition, we 

compared the measured pointer displacement to that which would occur if there was no 

rotation at the ST joint (reduced model). Comparison of the output of the basic and reduced 

models demonstrated that 3D scapular rotations contributed significantly to the extent of the 

workspace. Finally, the comparison of the output of the reduced model with the measured 

hand displacement provides an overall estimation of the contribution of scapulo-thoracic 

motion (clavicle and scapula as a whole) to the workspace.  

As expected, the contribution of ST motion to the workspace varied with the target: it was 

minimal for the external targets that were roughly in the resting plane of the scapula, but 

reached ~15 cm in the upper-internal peri-personal space. This finding is not unexpected since 

it is well known that the shoulder girdle contributes to the mobility of the hand (Veeger & van 

der Helm, 2007), however the present study is the first to precisely quantify this contribution. 

More surprisingly, we found that ST motion clearly contributed to the height of the hand 

above the table, even for low targets. Due to anatomical considerations, this effect is probably 

due to the reduction in anterior tilt during forward reaching movement, although its variation 

according to the target was not significant.  

Implications for motor control 

The results of this study clearly demonstrated that most DoF of the shoulder girdle 

(including the clavicle and scapula) were active and well-coordinated during movements.  

The coupling between scapula rotation and the displacement of its center could either be 

the result of a synergic organization of movement by the central nervous system (Bernstein, 

1967; Latash, 2008) or, more likely, of biomechanical constraints caused by the sliding of the 

scapula around the curved thoracic wall (Bolsterlee, Veeger, & van der Helm, 2014; Seth et 

al., 2015). These hypotheses are not incompatible with each other since movement is shaped 
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both by central neural networks and local biomechanical constraints (Schaal & Sternad, 

2001). 

It is well known that the coordination between ST and GH is organized by synergies 

involved in pointing and reaching movements (Reisman & Scholz, 2006; Tseng et al., 2002; 

Tseng et al., 2003; Yang et al., 2007). The present study is the first to demonstrate a fine 

tuning of the different elements of the shoulder girdle to the 3D position of the target and thus 

to the direction of hand movement. This is consistent with the hypothesis that motor control is 

based on reference joint postures (Desmurget & Prablanc, 1997; Feldman, 1998; Rosenbaum 

et al., 2001). However, kinematic observations and direct modeling are insufficient to 

investigate the relationship between intended hand movement and upper-limb coordination. 

Our claim is that further studies on the control of inter-joint coordination of the upper-limb 

should include an analysis of ST motion as an integral part of the kinematic chain. 

It is also important to consider ST motion in the study of the organization of muscle 

activity and cerebral control of upper-limb movements. The fact that ST motion began as soon 

as the first degrees of HT elevation occurred shows that all the muscles which attach to the 

clavicle and the scapula (i.e. all the thoracic muscles except the erector spinae and 

inconstantly latissimi dorsi) may be involved in even the smallest displacement of the hand. 

The fine scaling of internal and lateral scapula rotations to target position was continuous 

across the internal (involving more HT flexion) and external targets (involving more HT 

abduction). This suggests that the functional anatomy of the shoulder girdle muscles is more 

subtle than that usually described during planar elevation movements. In particular, we 

suggest that the activation of the muscles which reduce the anterior tilt, along with scapula 

lateral rotation during planar arm elevation (serratus anterior and the upper trapezius/lower 

trapezius force couple (Borstad & Ludewig, 2005; McClure et al., 2001; Phadke, Camargo, & 
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Ludewig, 2009, review in Kibler et al., 2013)) is needed to prevent the hand from dropping 

during reaching movements.  

Implications for the clinical examination and rehabilitation of the shoulder.  

ST motion is commonly evaluated during clinical examinations of the shoulder (Watson, 

2005). However quantitative measures (such as inclinometry) are imprecise and limited to the 

analysis of planar elevation. The present study could provide a basis for the development of 

new indexes for patho-physiological investigations of shoulder girdle function in the peri-

personal workspace and/or during daily life activities (Aizawa et al., 2010; Roren et al., 

2012). In orthopedics, many shoulder pathologies are associated with neuro-muscular 

disorders which induce changes in scapular posture and movement, termed dyskinesis (Kibler 

& Sciascia, 2010). Scapula dyskinesis can also occur in the case of specific muscle paralysis 

(Roren et al., 2013). Altered activity of the serratus anterior and trapezius muscles could 

explain the impaired tilting observed in patients with shoulder impingement (Cools, 

Witvrouw, Declercq, Vanderstraeten, & Cambier, 2004 ; Ludewig & Reynolds, 2009; Phadke 

et al., 2009).  

Conversely, abnormal scapula positioning due to poor functional habits may induce strain 

and lead to impingements, thus creating or exacerbating shoulder pathologies (Kibler et al., 

2013). Dysfunction around the cervical spine may also impact shoulder function (Cools et al., 

2014). These effects can be explained by the coupling between the upward motion of the 

center of the scapula and anterior tilt that we observed. If the scapula is shrugged due to a 

slouched posture or an excessive contraction of the trapezius muscle, the workspace of the 

hand would be globally tilted down imposing greater GH contribution for similar target 

height. Thus, it is important to characterize scapula dyskinesis using instrumental methods 

since it can be difficult to detect clinically and because it can be targeted by specific 

rehabilitation methods (Kibler et al., 2013).  
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More generally, scapulo-thoracic motion enhances the large redundancy of the upper-limb 

for goal directed movements in space and thus the possibility of motor equivalence and 

compensation (Levin, Kleim, & Wolf, 2009; Scholz & Schoner, 2014). Our individualized 

direct kinematic procedure could be used to study the contribution of scapular motion to the 

workspace in shoulders with neurological or orthopedic pathology. This could lead to new 

and interesting clinical indexes to differentiate between impaired scapula motion (decreased 

contribution of the scapula to the workspace of the hand) and compensatory strategies 

(increased contribution of scapula to the workspace of the hand). 

Limitations 

The small number of middle-aged participants of both genders is a strong limitation of the 

present study. This is an exploratory, descriptive study that may encompass a variety of 

physiological situations but it is possible that some participants had sub-clinical shoulder 

pathology. Further studies should include larger groups of participants to define normative 

values of ST motion. 

Conclusions and perspectives 

In conclusion, the present study confirmed the hypothesis that scapula-thoracic motion 

largely contributes to the workspace of the hand: the range of motion of most of the studied 

DoF was relatively large and it was finely scaled to the spatial position of the targets. As 

expected, ST particularly contributed to hand movement in the high-internal part of the 

workspace and also maintained the hand above the table.  

The physiology of shoulder motion should be further analyzed with EMG or other 

recording or imagery methods. This would allow the anatomo-functional roles of the thoracic 

muscles to be specified during medium-range hand movements. 

This work could be continued by the development of functional indexes, based on the 

decomposition of ST motion into three elementary patterns, and on the direct kinematic 



23 

 

analysis, which could be used in clinics or more generally in ergonomic or sports evaluations. 

A better quantitative knowledge of shoulder girdle function is important for the rehabilitation 

and prevention of shoulder pathologies.  
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Appendices 

Appendix 1: Geometrical center 

The coordinates of the center G of a triangle ABC are calculated as follow:  

   
        

 
;    

        

 
     

        

 
 

The computation is similar for the center of a four sided polygon. 

 

Appendix 2: Global rotation angle 

According to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body 

in a three-dimensional space is equivalent to a pure rotation about a single fixed axis. Thus, a 

rotation in a three-dimensional Euclidean space can be represented by two values: a unit 

vector indicating the direction of the axis of rotation, and an angle θ describing the magnitude 

of the rotation about this axis. These values can be computed from the rotation matrixusingthe 

formulae below where A11, A22 and A33 are the diagonal elements of the rotation matrix.  

          
 

 
                 

 

Appendix 3: Direct kinematic model.  

The trunk and upper-limb configuration is represented by a rigid body model consisting of 

a chain of 4 polygons (trunk, scapula, upper and lower arm) delimited by the 3D position of 

their bony landmarks in the global laboratory reference frame. Each segment is thus defined 

by (1) a set of anatomical reference points determining its shape, (2) a reference frame, and 

(3) the origin of the reference frame. The polygons are delimited by bony landmarks 

calibrated on each participant at rest. The position of the i
th

 segment relative to (i – 1)
th

 is 

given by a sequence of three Euler angles and the coordinates of the origin of the segment 

reference frame in the reference frame of the (i – 1)
th

 segment. This model sets the origin of 
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the trunk and scapula reference frames in their respective center. The model has no clavicle 

and assumes that CS has a fixed position relative to the thorax reference frame. The other 

local coordinate system definitions and Euler angle sequences of rotations are consistent with 

the ISB standardized protocol (van der Helm, 1997). The first step is to compute the time 

courses of the Euler angles between rigid bodies (van der Helm, 1997) during the movement. 

The direct kinematic procedure consists of the computation of the 3D movement of the body 

landmarks based on their initial positions (measured at rest for each individual) and the time 

course of the rotations in all the DoF of the model. This procedure can simulate the theoretical 

3D position of any body-landmark at any time during the movement. In a previous study, 

based on trunk assisted reaching movements, we quantified the differences between the 

computed and the measured movement of the endpoint which resulted from the 

approximations of the model (Hanneton et al., 2011). In particular, we demonstrated that 

approximations in the model at shoulder level, could account for ~4cm of hand displacement.  

The individualized direct kinematic model can be fed by a modified sequence of rotations 

applied to the DoFs of the chain. In particular, the level of rotation of any DoF can be kept 

constant during the simulated movement, allowing quantifying the contribution of this 

particular DoF to the movement of the endpoint, independently of all the other, non altered, 

rotations.  
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Figure legends 

Figure 1: Experimental set-up  

A: Horizontal arrangement of the far and close targets on the table. B: Vertical 

arrangement of the high targets at the far distance. C: Wrist splint and pointer. 

Figure 2: Characterization of shoulder girdle rotations.  

A: Schema for the definition of body landmarks and axes of rotation. The thorax is 

represented by the quadrilateral limited by: processus spinosous of C7 and T8 vertebrae, 

incisura jugularis and processus xiphoideus (on the ventral side, not indicated). The scapula is 

represented by the triangle limited by: angulus acromialis (AA), angulus inferior (AI) and 

trigonum scapulae (TS), its center is indicated by the square. The humerus is represented by a 

triangle limited by the center of the gleno-humeral joint (GH) and the medial and lateral 

epicondylus (ME, LE). For clarity, the reference frame of the thorax is indicated at the bottom 

of the schema. The orientation of the scapula relative to the trunk (ST) is expressed by three 

ordered Euler angles internal-external rotation around the trunk Y axis, medial-lateral rotation 

around the Z axis of the scapula (perpendicular to the plane formed by AA-AI-TS, pointing 

backwards) and antero-posterior tilt around the X axis of the scapula (along scapular spine). 

The orientations of the upper-arm relative to the scapula (gleno-humeral joint, GH) and 

relative to the trunk (humero-thoracic joint, HT) are expressed by three ordered Euler angles: 

horizontal abduction around the Y axis of the scapula (or trunk), elevation around the Z axis 

(perpendicular to the plane formed by GH-ME-LE, pointing backwards) and axial rotation 

around the Y axis of the humerus. 

B: Example of scapulo-thoracic rotations during pointing and return movements to the nine 

targets indicated in the legend. Each line represents one movement made by a representative 

subject. Higher positive values indicate: ST internal and lateral rotations and posterior tilt.  



28 

 

C: Humero-thoracic elevation recorded during the same movements. 

Figure 3: Comparison of initial and final trunk and shoulder postures for each target.  

The graph shows the range of motion in the three Euler angles which describe the 

orientation of the Trunk and Scapulo-thoracic joint (ST) and elevation in the Gleno-humeral 

(GH) joints. The initial values are indicated by thick lines. For the sake of clarity, only the 

results for the right side are displayed. The directions (Int: internal, Mid: middle, Ext external) 

and the distances (High, Far, Close) of the targets are indicated on the abscissa. Each bar 

represents the mean (and SEM) of the 10 subjects. The trunk is vertical at 90° (greater values 

indicating extension), positive values indicate left trunk bending and left axial rotation. 

Higher positive values indicate ST internal and lateral rotations and posterior tilt, GH 

elevation. 

Figure 4: 3D displacement of the center of the scapula.  

CS is the geometrical center of the scapula relative to the thorax. The targets are indicated 

as in Figure 2. Each bar represents the mean (and SEM) of the right side in the 10 subjects.  

Figure 5: Scapulo-humeral rhythm  

Amount of global rotation in GH (triangles) and ST (circles) as a function of global HT 

rotation (black symbols represent the right side, open symbols the left side). Each symbol 

represents the data for one target reached by one hand of one subject. The regression lines are 

indicated for the right (full line) and left sides (stippled line).  

Figure 6: Direct kinematic analysis: projection of the final position of the pointer in 

space.  

A: horizontal projection (the far and high targets appear superimposed); B: frontal 

projection (the far and close targets appear superimposed). Each point represents the 3D 

position of the pointer in space, relative to the initial position: black symbols represent the 

measured position; grey symbols the output of the basic direct model; open symbols the 
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output of the reduced model without scapular rotation. Each point represents the mean (and 

SEM) of the right side of the 10 subjects. 

Figure 7: Direct kinematic analysis: global displacement of the pointer.  

The black symbols indicate the measured displacement; the grey symbols the output of the 

basic direct computation and the open symbols the output of the reduced model without 

scapula rotation. Each symbol represents the mean (and SEM) of the right side in the 10 

subjects. 
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Table 1 : Statistical analysis of the kinematic variables of the trunk and shoulder during the pointing movements. 
Results of the three factors ANOVA (Range, Side and Target): the table shows the F and p value for each DoF, ns: not significant.  
 
A: Orientation of the trunk, scapulo-thoracic (ST) and gleno-humeral (GH) joints. 

 

 

 

 

 

 

 

 

 

 

 

B: Position of the center of the scapula relative to the trunk.  

DoF Range Side Target 

Range x  Range x 
Target 

Target x 
Side side 

lateral 
 

F72,1=148.9 

ns 

F72,8=21 

ns 

F72,8=36.1 

ns <0.0001 <.0001 <.0001 

vertical 
  ns 

F72,8=6.9 

ns 

F72,8=20.7 

ns ns <.0001 <.0001 

antero-posterior 
  ns  ns  ns ns ns ns 

3D F72,1=141.6 
 

F72,8=14.6 
 

F72,8=20.5 
 

 
<0.0001 ns <.0001 ns <.0001 ns 

DoF Range Side Target 

Range x  Range x 
Target 

Target x 
Side side 

Trunk  F72,1=56.4   F72,8=6.3 
 

F72,8=18.6 
 flexion extension <.0001 ns <.0001 ns <.0001 ns 

Trunk 
lateral bending 

            

ns ns ns ns ns ns 

Trunk  F72,1=39.4 
 

F72,8=11.6 
 

F72,8=33.7 
 axial rotation 0.0001  ns <.0001 ns  <.0001  ns 

ST internal-
external rotation 

F72,1=360.8  F72,1=56.0  F72,8=110.2  

<.0001 ns <.0001 ns <.0001 ns 

ST medial-lateral F72,1=167.2   F72,1=58.5   F72,8=128.1   

rotation  0.001 ns <.0001 ns <.0001 ns 

ST antero-
posterior tilt 

            

ns ns ns ns ns ns 

GH  F72,1=204.7 
 

F72,1=206.3 
 

F72,8=202.2 
 elevation <.0001  ns <.0001  ns <.0001  ns 

       



 

Table 2.  Final configuration of the shoulder girdle for each target.  

Each panel represents one DoF (right and left) of the scapulo-thoracic (ST) and gleno-humeral (GH) joInts and the displacement of the centre of the scapula (CS). The stars 

indicate significant differences from the initial configuration except for the first and third GH angles since some initial values were missing (*** <0.0001; ** < 0.001).  

Targets ST (degrees) GH (degrees) CS displacement (cm) 

 
 Right 

 
Left 

 

 Right 
 

Left 
 

 Right 
 

Left 
 High-External 

in
te

rn
al

-e
xt

er
n

al
 r

o
ta

ti
o

n
 36.87 + 1.88 *** 42.20 + 2.51 *** 

h
o

ri
zo

n
ta

l a
b

d
u

ct
io

n
 

23.94 + 3.86 
 

15.59 + 2.97 
 

la
te

ra
l 

0.51 + 0.13 ns 0.65 + 0.19 ** 

High-Middle 43.35 + 1.99 *** 47.28 + 2.20 *** 31.68 + 2.56 
 

28.08 + 2.66 
 

1.27 + 0.17 *** 1.28 + 0.14 *** 

High-Internal 45.66 + 2.01 *** 49.65 + 2.60 *** 37.95 + 2.59 
 

34.95 + 3.63 
 

1.51 + 0.20 *** 1.42 + 0.19 *** 

Far-External 36.67 + 1.80 *** 41.07 + 1.98 *** 25.42 + 4.33 
 

20.78 + 2.98 
 

0.53 + 0.07 *** 0.61 + 0.12 ** 

Far-Middle 41.88 + 1.78 *** 45.99 + 2.18 *** 36.24 + 3.98 
 

32.71 + 3.27 
 

1.37 + 0.12 *** 1.28 + 0.15 *** 

Far-Internal 43.89 + 1.70 *** 46.62 + 2.25 *** 40.69 + 5.59 
 

38.57 + 5.02 
 

1.70 + 0.18 *** 1.45 + 0.22 *** 

Close-External 34.06 + 1.87 *** 38.71 + 2.23 *** 26.51 + 12.53 
 

27.99 + 5.84 
 

0.27 + 0.06 ** 0.34 + 0.12 ns 

Close-Middle 35.94 + 1.68 *** 40.58 + 1.88 *** 32.11 + 6.34 
 

26.09 + 7.00 
 

0.60 + 0.08 *** 0.58 + 0.09 ** 

Close-Internal 36.46 + 1.80 *** 40.90 + 1.86 *** 17.15 + 5.36 
 

21.19 + 7.37 
 

0.41 + 0.06 *** 0.41 + 0.11 ns 

High-External 

m
ed

ia
l-

la
te

ra
l  

ro
ta

ti
o

n
 

18.99 + 1.84 *** 23.56 + 2.84 *** 

el
ev

at
io

n
 

38.93 + 2.13 *** 35.38 + 2.57 *** 

ve
rt

ic
al

 

-0.25 + 0.20 ns -0.08 + 0.12 ns 

High-Middle 20.80 + 1.52 *** 25.09 + 2.77 *** 45.17 + 1.95 *** 42.48 + 2.40 *** 0.51 + 0.19 ns 0.34 + 0.17 ns 

High-Internal 22.70 + 1.59 *** 26.57 + 2.69 *** 43.29 + 1.83 *** 40.59 + 1.98 *** 0.25 + 0.22 ns 0.20 + 0.22 ns 

Far-External 14.14 + 1.68 *** 16.79 + 2.47 *** 29.22 + 2.12 *** 27.94 + 2.72 *** 0.16 + 0.10 ns 0.16 + 0.10 ns 

Far-Middle 16.40 + 1.81 *** 19.51 + 2.38 *** 35.49 + 2.23 *** 32.86 + 2.48 *** 0.80 + 0.12 *** 0.84 + 0.17 ** 

Far-Internal 15.60 + 1.85 *** 19.76 + 2.47 *** 32.32 + 1.99 *** 29.38 + 2.47 *** 0.73 + 0.15 ** 1.03 + 0.17 ** 

Close-External 12.17 + 1.67 *** 15.12 + 2.41 ** 14.12 + 1.84 *** 12.16 + 2.57 ns -0.14 + 0.08 ns -0.05 + 0.08 ns 

Close-Middle 12.78 + 1.91 *** 16.27 + 2.33 *** 18.88 + 2.31 *** 16.80 + 2.56 ** 0.13 + 0.12 ns 0.39 + 0.11 * 

Close-Internal 13.20 + 1.48 *** 15.98 + 2.41 *** 20.93 + 2.07 *** 20.14 + 3.15 ** 0.06 + 0.08 ns 0.08 + 0.11 ns 

High-External 

an
te

ro
-p

o
st

er
io

r.
 t

ilt
  

-6.19 + 2.20 ns -8.29 + 1.31 ** 

ax
ia

l r
o

ta
ti

o
n

 

-70.23 + 4.60 
 

-74.40 + 6.14 
 

an
te

ro
-p

o
st

er
io

r 

0.15 + 0.14 ns 0.38 + 0.23 ns 

High-Middle -6.38 + 2.34 ns -7.82 + 1.54 ** -72.71 + 4.42 
 

-79.77 + 5.03 
 

0.18 + 0.21 ns 0.16 + 0.21 ns 

High-Internal -8.34 + 2.57 ns -8.67 + 1.64 ** -71.06 + 5.10 
 

-80.01 + 6.76 
 

0.50 + 0.31 ns 0.37 + 0.25 ns 

Far-External -6.57 + 2.37 ns -8.40 + 1.05 *** -65.20 + 5.11 
 

-72.04 + 4.87 
 

-0.06 + 0.06 ns -0.03 + 0.08 ns 

Far-Middle -6.72 + 2.33 ns -7.07 + 1.47 ** -69.64 + 5.06 
 

-76.98 + 5.21 
 

-0.13 + 0.24 ns -0.07 + 0.13 ns 

Far-Internal -6.45 + 2.16 ns -6.06 + 1.87 ns -64.60 + 6.01 
 

-73.90 + 7.02 
 

-0.11 + 0.25 ns 0.03 + 0.24 ns 

Close-External -8.25 + 2.55 ns -10.03 + 0.92 *** -57.37 + 11.36 
 

-69.57 + 7.72 
 

0.10 + 0.06 ns 0.25 + 0.08 ns 

Close-Middle -6.70 + 2.15 ns -7.73 + 1.21 ** -56.64 + 6.55 
 

-62.61 + 8.84 
 

-0.04 + 0.05 ns 0.16 + 0.13 ns 

Close-Internal -5.92 + 2.37 ns -7.68 + 1.14 *** -43.95 + 7.06 
 

-56.68 + 9.05 
 

-0.14 + 0.10 ns 0.00 + 0.15 ns 



 

Table 3: Principal component analysis, correlation between DoF and PCs. 

Bold characters indicate significant correlations.  

 Factor 1 Factor 2 Factor 3 

ST Internal-external rotation 0.717 0.336 0.36 

ST medio-lateral rotation 0.153 0.883 <0.01 

ST antero-posterior tilt -0.104 0.366 -0.828 

lateral displacement 0.812 0.22 -0.06 

vertical displacement <0.01 0.42 0.804 

antero-posterior displacement 0.735 -0.402 <0.01 

 

 



Figure 1: Experimental set-up  

A: Horizontal arrangement of the far and close targets on the table. B: Vertical arrangement of the high 

targets at the far distance. C: Wrist splint and pointer. 

 

 

 
 

  



Figure 2: Characterization of shoulder girdle rotations.  

A: Schema for the definition of body landmarks and axes of rotation. The thorax is represented by the 

quadrilateral limited by: processus spinosous of C7 and T8 vertebrae, incisura jugularis and processus 

xiphoideus (on the ventral side, not indicated). The scapula is represented by the triangle limited by: angulus 

acromialis (AA), angulus inferior (AI) and trigonum scapulae (TS), its center is indicated by the square. The 

humerus is represented by a triangle limited by the center of the gleno-humeral joint (GH) and the medial 

and lateral epicondylus (ME, LE). For clarity, the reference frame of the thorax is indicated at the bottom of 

the schema. The orientation of the scapula relative to the trunk (ST) is expressed by three ordered Euler 

angles internal-external rotation around the trunk Y axis, medial-lateral rotation around the Z axis of the 

scapula (perpendicular to the plane formed by AA-AI-TS, pointing backwards) and antero-posterior tilt 

around the X axis of the scapula (along scapular spine). The orientations of the upper-arm relative to the 

scapula (gleno-humeral joint, GH) and relative to the trunk (humero-thoracic joint, HT) are expressed by 

three ordered Euler angles: horizontal abduction around the Y axis of the scapula (or trunk), elevation 

around the Z axis (perpendicular to the plane formed by GH-ME-LE, pointing backwards) and axial rotation 

around the Y axis of the humerus. 

B: Example of scapulo-thoracic rotations during pointing and return movements to the nine targets 

indicated in the legend. Each line represents one movement made by a representative subject. Higher 

positive values indicate: ST internal and lateral rotations and posterior tilt.  

C: Humero-thoracic elevation recorded during the same movements. 

 

 

 

 

 

  



Figure 3: Comparison of initial and final trunk and shoulder postures for each target.  

The graph shows the range of motion in the three Euler angles which describe the orientation of the 

Trunk and Scapulo-thoracic joint (ST) and elevation in the Gleno-humeral (GH) joints. The initial values are 

indicated by thick lines. For the sake of clarity, only the results for the right side are displayed. The 

directions (Int: internal, Mid: middle, Ext external) and the distances (High, Far, Close) of the targets are 

indicated on the abscissa. Each bar represents the mean (and SEM) of the 10 subjects. The trunk is vertical 

at 90° (greater values indicating extension), positive values indicate left trunk bending and left axial rotation. 

Higher positive values indicate ST internal and lateral rotations and posterior tilt, GH elevation. 

 

 
 

  



Figure 4: 3D displacement of the center of the scapula.  

 

CS is the geometrical center of the scapula relative to the thorax. The targets are indicated as in Figure 2. 

Each bar represents the mean (and SEM) of the right side in the 10 subjects.  

 

 

 
  



Figure 5: Scapulo-humeral rhythm  

Amount of global rotation in GH (triangles) and ST (circles) as a function of global HT rotation (black 

symbols represent the right side, open symbols the left side). Each symbol represents the data for one target 

reached by one hand of one subject. The regression lines are indicated for the right (full line) and left sides 

(stippled line).  

 

 

 

  



 

Figure 6: Direct kinematic analysis: projection of the final position of the pointer in space.  

A: horizontal projection (the far and high targets appear superimposed); B: frontal projection (the far and 

close targets appear superimposed). Each point represents the 3D position of the pointer in space, relative to 

the initial position: black symbols represent the measured position; grey symbols the output of the basic 

direct model; open symbols the output of the reduced model without scapular rotation. Each point represents 

the mean (and SEM) of the right side of the 10 subjects. 

 

 
 

  



Figure 7: Direct kinematic analysis: global displacement of the pointer.  

The black symbols indicate the measured displacement; the grey symbols the output of the basic direct 

computation and the open symbols the output of the reduced model without scapula rotation. Each symbol 

represents the mean (and SEM) of the right side in the 10 subjects. 

 

 

 


