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SUMMARY

Centromeres, epigenetically defined by the presence
of the histone H3 variant CenH3, are essential for
ensuring proper chromosome segregation. In mam-
mals, centromeric CenH3CENP-A deposition requires
its dedicated chaperone HJURP and occurs during
telophase/early G1. We find that the cell-cycle-
dependent recruitment of HJURP to centromeres
depends on its timely phosphorylation controlled
via cyclin-dependent kinases. A nonphosphorylat-
able HJURP mutant localizes prematurely to centro-
meres in S and G2 phase. This unregulated targeting
causes a premature loading of CenH3CENP-A at
centromeres, and cell-cycle delays ensue. Once re-
cruited to centromeres, HJURP functions to promote
CenH3CENP-A deposition by a mechanism involving a
unique DNA-binding domain. With our findings, we
propose a model wherein (1) the phosphorylation
state of HJURP controls its centromeric recruitment
in a cell-cycle-dependent manner, and (2) HJURP
binding to DNA is a mechanistic determinant in
CenH3CENP-A loading.

INTRODUCTION

The centromere is a specialized chromosomal domain usually

defined by the primary constriction site on chromosomes (Flem-

ming, 1882). During mitosis, it serves as the site for kinetochore

assembly, a multiprotein complex that mediates spindle micro-

tubule attachment (Cleveland et al., 2003). This specific organi-

zation ensures correct chromosome segregation and equal

distribution of sister chromatids to both daughter cells during

cell division. With the exception of budding yeast (Cheeseman

et al., 2002), centromeres are not simply defined by an underly-

ing DNA sequence but rather by chromatin features. This has led
190 Cell Reports 8, 190–203, July 10, 2014 ª2014 The Authors
to consider centromeres as epigenetically defined chromosomal

regions (reviewed in Allshire and Karpen, 2008; Probst et al.,

2009). All eukaryotic centromeres are marked by a specific his-

tone H3 variant (Black and Bassett, 2008; Fachinetti et al.,

2013; Lacoste et al., 2014). Originally identified in mammals as

CENP-A (Earnshaw and Rothfield, 1985), it has recently been

called CenH3CENP-A, using a nomenclature currently in discus-

sion (Earnshaw et al., 2013; Earnshaw and Cleveland, 2013;

Müller and Almouzni, 2014; Talbert et al., 2012; Talbert and He-

nikoff, 2013). Although this particular variant has been identified

in many eukaryotic species, the timing of its incorporation differs

between organisms (Allshire and Karpen, 2008; Boyarchuk et al.,

2011). In S. cerevisiae, CenH3Cse4 incorporation occurs during

DNA replication in S phase (Pearson et al., 2004), and in

S. pombe, CenH3Cnp1 deposition takes place in early S phase

and continues until G2 phase (Takayama et al., 2008). However,

in mammalian cells, CenH3CENP-A is diluted in S phase and

distributed evenly to both daughter strands, and subsequently,

its deposition is restricted to late telophase/early G1 (Jansen

et al., 2007) (Figure 1A). A similar dilution in S phase is observed

in D. melanogaster, but CenH3CID assembly occurs between

metaphase and anaphase as found in cultured fly cells (Mellone

et al., 2011; Schuh et al., 2007). Much progress has been

made concerning the understanding of the complex network

of molecular players involved in the incorporation and mainte-

nance of CenH3 at centromeres in different species (reviewed

in Müller and Almouzni, 2014), but how they actually act at

different times during the cell cycle remains elusive. The verte-

brate CenH3CENP-A-specific histone chaperoneHolliday junction

recognition protein (HJURP) (Dunleavy et al., 2009; Foltz et al.,

2009), or its yeast homolog suppressor of chromosome misse-

gregation protein 3 (Scm3) (Pidoux et al., 2009; Shivaraju et al.,

2011), plays a central role for the proper incorporation of

CenH3 into centromeric chromatin. In D. melanogaster, the pro-

tein Chromosome alignment defect 1 (CAL1) is the dedicated

CenH3CID chaperone (Chen et al., 2014) but is not conserved

with HJURP or Scm3. Notably, HJURP misregulation can lead

to chromosome instability and mitotic defects (Dunleavy et al.,
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Figure 1. Centromeric Localization of HJURP Depends on CDK Activity

(A) Left: cell-cycle scheme and timing of centromeric HJURP localization/CenH3CENP-A deposition. CDK1 and CDK2 activity is indicated. Right view shows

HJURP and its domains with known and unknown functions.

(B) Top left: experimental scheme. Top-right view shows a western blot from U2OS cells expressing GFP-HJURP, transfected with siHJ or siLuc treated with or

without Roscovitine (Ros). HJURP and GFP-HJURP are detected with a HJURP antibody. Bottom view shows images of cells expressing GFP-HJURP treated

with or without Ros imaged in early G1, S, and G2. Scale bar, 5 mm. Percentages of cells with centromeric GFP signal in different cell-cycle phases are displayed

on the right. Average of three independent experiments is shown. Error bars, SD.

See also Figure S1.
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2009; Mishra et al., 2011). Its direct artificial targeting is sufficient

to form a functional de novo kinetochore in human cells (Barnhart

et al., 2011). Interestingly, overexpression of CenH3CENP-A in

cultured human cells leads to an enrichment at noncentromeric

regions (Choi et al., 2011; Gascoigne et al., 2011). In this case,

it is not HJURP but rather the H3.3 dedicated histone chaperone

DAXX that is key for this ectopic localization (Lacoste et al.,

2014). This is raising the issue of how HJURP can be specific

for the targeting of CenH3CENP-A strictly to centromeres, what

is controlling the cell-cycle timing, and whether it has a mecha-

nistic function to promote CenH3CENPA loading.

In this respect, it is interesting to note that the cell-cycle timing

of CenH3CENPA loading is coupled to the activity of cyclin-depen-

dent kinase (CDK) 1 and 2, which phosphorylate Mis18BP (Silva

et al., 2012). The latter is a subunit of theMis18 complex (consist-

ing of Mis18BP, Mis18a, and Mis18b), thought to prepare chro-

matin to be receptive for the loading of new CenH3CENP-A (Fujita

et al., 2007). CDK1 activity increases at the end of G1, peaks

toward the end of G2/early M, and is reduced in anaphase,

and CDK2 activity increases in mid-G1 and peaks in S/G2 (re-

viewed in Arellano and Moreno, 1997) (see Figure 1A). Interest-

ingly, phosphorylation of HJURP and its ability to interact with

DNA in vitro were discovered prior to its finding as a dedicated

CenH3CENP-A chaperone (Kato et al., 2007). Although early re-

ports showed the involvement of the ATM kinase, more recent

work showed that CDK1 can ensure a direct phosphorylation

in vitro (Wang et al., 2014). Thus, which kinase can control

HJURP phosphorylation in vivo remains unclear. However,

more importantly, how such phosphorylation can contribute

to HJURP function for a specific recruitment to centromeres

specifically in telophase/early G1 has to be established. The

recruitment of HJURP to centromeres is independent from its

CenH3CENP-A-binding domain (Zasadzi�nska et al., 2013); thus,

the interaction with CenH3CENPA to facilitate targeting can be

excluded. Therefore, it is important to consider other domains

of HJURP and whether their phosphorylation states depend on

the cell cycle. The modular organization of HJURP reveals

several key features. Its N-terminal histone-binding domain

interacts with CenH3CENP-A as a predeposition complex with his-

tone H4 (Bassett et al., 2012; Hu et al., 2011; Shuaib et al., 2010).

Whereas theN-terminal region of HJURP is conservedwith yeast

Scm3, a long C-terminal part is only found in vertebrates, which

suggests functional differences between HJURP and Scm3.

Indeed, vertebrate HJURPs are considerably larger than their

Scm3 orthologs and contain three additional domains (San-

chez-Pulido et al., 2009). The HJURP C-terminal domain 1

(HCTD1) (409–471) is associated with centromeric targeting of

HJURP, and the HCTD2 (554–614) is required for dimerization,

which in turn is crucial for the loading of CenH3CENP-A by HJURP

at centromeres (Zasadzi�nska et al., 2013). Intriguingly, the func-

tion of the HJURP middomain (HMD) (271–386) is unknown

(Figure 1A).

Here, we investigate how HJURP phosphorylation or its inter-

action with DNA contributes to its function as a CenH3CENP-A

chaperone. We consider an implication in (1) HJURP localization

to centromeres and (2) its role in CenH3CENP-A deposition,

beyond a simple escort function to deliver CenH3CENP-A to

centromeres. Upon treatment with CDK inhibitors, we find that
192 Cell Reports 8, 190–203, July 10, 2014 ª2014 The Authors
HJURP can be detected at centromeres in S and G2 phase.

We map the phosphorylation state of the three critical residues

Ser412, Ser448, and Ser473, which are inside or just adjacent

to the HCTD1. A nonphosphorylatable HJURP mutant localizes

to centromeres outside of telophase/early G1 and causes a

premature loading of CenH3CENP-A in G2, whereas a phospho-

mimic shows a reduction of centromeric localization in early

G1 compared to the wild-type (WT). Furthermore, we identify a

unique DNA-binding region in the HMD of HJURP that, surpris-

ingly, proves dispensable for HJURP recruitment to centro-

meres. However, we find that this region is essential for the

loading of CenH3CENP-A at centromeres. Based on our findings,

we propose a model in which (1) HJURP is recruited specifically

in telophase/early G1 due to the dephosphorylation of its HCTD1

domain regulated by CDK activity, and (2) HJURP, through its

DNA-binding domain, plays an essential role for CenH3CENP-A

loading, in addition to its CenH3CENP-A escort function.

RESULTS

Cell-Cycle-Dependent Centromeric Localization
of HJURP Is Controlled by CDK Activity
We postulated that CDKs directly control the localization of

HJURP to centromeres in a cell-cycle-dependent manner (Fig-

ure 1A). To test this hypothesis, we investigated the effect of

the kinase inhibitor Roscovitine on HJURP localization to centro-

meres in early G1, S, and G2 phase. Roscovitine strongly inhibits

CDK1/CDK2 but also shows a broad spectrum of inhibition of

other kinases. We used EdU or Aurora B as cell-cycle markers

for S and G2, respectively, and human anticentromere antibody

(ACA) as a centromeric marker (Figure S1A). Because HJURP

can dimerize (Zasadzi�nska et al., 2013), the presence of endog-

enous HJURP may obscure phenotypic effects of exogenous

protein. Thus, we downregulated endogenous HJURP using

small interfering RNA (siRNA) against the 30 UTR (siHJ), as evi-

denced by western blotting (Figure 1B). We found that treatment

with Roscovitine did not impair localization of GFP-HJURP in

early G1. However, GFP-HJURP localized to centromeres in

S and G2 upon treatment with Roscovitine (Figure 1B). The

presence of Roscovitine did not alter the expression levels of

GFP-HJURP as shown by western blotting. As a positive control

for the efficiency of Roscovitine treatment, we monitored the

dephosphorylation of CAF-1 p60, which was previously reported

to lose its phosphorylation as a result of Roscovitine treatment

(Marheineke and Krude, 1998) (Figure S1B). We also tested

another CDK1/CDK2 inhibitor, Purvalanol A. Both inhibitors did

not alter the cell-cycle profile under the conditions used (Fig-

ure S1C). Treatment of cells with Purvalanol A also resulted

in centromeric HJURP recruitment in S and G2 (Figure S1D).

Taken together, this suggests that CDK activity regulates

HJURP recruitment during the specific time window of late

telophase/early G1 in a cell-cycle-dependent manner.

Phosphorylation of the HCTD1 Is Regulated
in a Cell-Cycle-Dependent Manner
Next, we investigated whether the HJURP phosphorylation

state changes at the M/G1 transition. For that, we synchronized

U2OS cells with nocodazole and collected total cell extracts (1)
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Figure 2. HJURP Phosphomutants Show Aberrant Cell-Cycle Localization to Centromeres in S and G2

(A) Experimental scheme and western blot showing a decrease of HJURP phosphorylation (circled ‘‘P’’) between M and early G1.

(B) Phosphorylation sites identified by MS. CDK consensus sites are highlighted in red.

(legend continued on next page)
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directly after nocodazole release (M phase) and (2) 1 hr after

release (early G1) and treated the extracts with l phosphatase

(Figure 2A). Nocodazole impairs microtubule polymerization

and thus arrests cells in prometaphase. Upon nocodazole

release, the cells pass through mitosis, and the population is

enriched in G1 phase 1 hr after release (Figure S2A). A band shift

in the western blot, indicative of HJURP phosphorylation, shows

an increase inmitosis as compared to early G1 (Figure 2A). Treat-

ment with l phosphatase indicates that the higher band corre-

sponds to hyperphosphorylated HJURP. This hyperphosphory-

lation in mitosis is lost upon entry into G1. Thus, a decrease in

HJURP phosphorylation likely takes place at the end of mitosis.

Next, we aimed to identify the phosphorylation sites of HJURP.

For this, we transiently transfected U2OS cells with GFP-HJURP

and pulled down the protein using the GFP-Trap system (Fig-

ure S2B). Subsequently, we isolated the corresponding band

and searched for posttranslational modifications by mass spec-

trometry (MS). We found several phosphorylation sites, and

some of these corresponded to CDK consensus sites (Dephoure

et al., 2008), as depicted in Figure 2B. Three residues, which

also correspond to CDK consensus sites (Ser412, Ser448, and

Ser473) found inside or just adjacent to the HCTD1 (Figure S2C),

attracted our attention. Indeed, this region proved to be impor-

tant for HJURP localization to centromeres (Zasadzi�nska et al.,

2013). We quantified the phosphorylation of the HCTD1 of

GFP-HJURP isolated from M phase and G1 phase of the cell

cycle by MS and found that phosphorylation decreased in G1

as compared to M phase. We also observed a decrease of phos-

phorylation of the HCTD1 in cells treated with Roscovitine (Fig-

ure S2D). Taken together, this suggests that Ser412, Ser448,

and Ser473 are key residues of HJURP that undergo a decrease

in phosphorylation at the M/G1 transition.

HJURP Phosphomutants Show Aberrant Cell-Cycle
Localization at Centromeres
We then investigated the importance of these phosphorylation

sites in the HCTD1 on centromeric HJURP localization. We

generated distinct GFP-tagged mutants and studied their

centromeric recruitment in a cell-cycle-dependent manner. In

agreement with a previous report by Zasadzi�nska et al. (2013),

the HCTD1 proved crucial for the recruitment of HJURP to cen-

tromeres (Figures S3A–S3C). Interestingly, our data also high-

light that HJURP recruitment to centromeres is independent

from its CenH3CENP-A-binding domain.

Next, we generated a nonphosphorylatable triple mutant

(Ala412,448,473) by mutating the three serine residues in the

HCTD1, which we had identified to be phosphorylated by MS,

to alanine (Ala) (Figure 2B). We then studied the centromeric

localization of this mutant throughout the cell cycle. We tran-

siently transfected the WT GFP-HJURP or Ala412,448,473 into

U2OS cells in the presence of siHJ. As expected, WT localized

to centromeres in early G1, but not in S and G2 (Figure 2C).
(C) Top left: experimental scheme. Top-right view is a western blot showing ex

cotransfected with siLuc or siHJ, detected with a HJURP antibody. Bottom vie

presence of siHJ imaged in G1, S, and G2. Scale bar, 5 mm. Percentages of cells

right. Average of three independent experiments is shown. Error bar, SD.

See also Figures S2–S4.
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Ala412,448,473 also localized to centromeres in G1 in the same

percentage of cells. Strikingly, in addition to G1, Ala412,448,473

was also recruited to centromeres in S and G2. We also gener-

ated the phosphomimic Glu412,448,473 to compare its centromeric

localization throughout the cell cycle with WT and Ala412,448,473.

We cotransfected the constructs transiently in U2OS cells

together with siHJ or siRNA against luciferase (siLuc) as a con-

trol. We verified by western blotting that both mutants and the

WT construct expressed at similar levels, and siHJ downregu-

lated endogenous HJURP but did not affect expression levels

of the GFP-HJURP constructs (Figure S4A). We counted the

cells with centromeric GFP signal of the WT and the mutants in

the different cell-cycle phases (Figure S4A). Fewer cells recruited

Glu412,448,473 in early G1 compared to WT and Ala412,448,473,

an effect that was enhanced upon treatment with siHJ. In

S and G2, we observed more cells with centromere-positive

Ala412,448,473 signal than for Glu412,448,473. Finally, treatment

with siHJ drastically increased the recruitment of Ala412,448,473

to centromeres in S and G2.

In order to dissect if these three residues act synergistically or

if a single one is crucial for the observed aberrant cell-cycle

localization of HJURP, wemutated these residues consecutively

to Ala to generate the three single mutants Ala412, Ala448, and

Ala473. We found that all three single mutants localized to centro-

meres in G2, but this effect was more pronounced for the triple

mutant Ala412,448,473 (Figure S4B). This suggests that cumulative

dephosphorylation of all three residues facilitates HJURP locali-

zation to centromeres. Taken together with our observations

with Roscovitine, we draw the following conclusions. First,

dephosphorylation of the HCTD1, namely at Ser412, Ser448,

and Ser473, leads to HJURP recruitment to centromeres in

telophase/early G1. Second, phosphorylation favors HJURP

dissociation from centromeres.

HJURP Interacts with DNA through a Single Conserved
Domain Independently of CDK Activity
Given the previous characterization of HJURP as a DNA-inter-

acting protein in vitro (Kato et al., 2007) and identification of

an N-terminal DNA-binding region of Scm3 of S. cerevisiae

(Xiao et al., 2011), we hypothesized that HJURP interaction

with DNA could play a role in centromeric localization and/or

the centromeric-loading mechanism of CenH3CENP-A. First, we

used a DNA-binding prediction software called DB-Bind (Hwang

et al., 2007; Kuznetsov et al., 2006) to find putative DNA-binding

regions of HJURP and Scm3 in various species (Figure 3A).

With this method, in agreement with previous experimental

data (Xiao et al., 2011), we verified the DNA-binding domain in

the N-terminal region of Scm3 in S. cerevisiae. Interestingly,

the Scm3 sequences of the different species showed no pre-

dicted conservation of the N-terminal DNA-binding region of

S. cerevisiae. Surprisingly, in all the vertebrate species we inves-

tigated, this method predicted a DNA-binding region within the
pression levels of endogenous HJURP, GFP-HJURP, and GFP-Ala412,448,473

w shows images of cells expressing GFP-HJURP or GFP-Ala412,448,473 in the

with centromeric GFP signal in different cell-cycle phases are displayed on the
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HMD of HJURP (Figures 3A, S5A, and S5B), and not in the

CenH3CENP-A-binding domain or the centromeric-targeting

domain HCTD1. The presence of several basic amino acids in

this region could in principle promote an interaction with the

negatively charged backbone of DNA (Figure 3A).

Next, we used a DNA-binding assay, with DNA coupled to

streptavidin magnetic beads (Mello et al., 2004; Ray-Gallet

et al., 2011) and cell extracts. Using U2OS salt-extractable ex-

tracts (Martini et al., 1998), we looked at the retrieved proteins

on the DNA beads including the HJURP complex, i.e., HJURP,

Npm1, RbAp48, and CenH3CENP-A (Dunleavy et al., 2009; Shuaib

et al., 2010). We did not detect any signal with our control beads

(Figure 3B). The presence of the histone H3.3 chaperone com-

plex HIRA served as a positive control, whereas the histone

H3.1 histone chaperone complex CAF-1 served as a negative

control, consistent with our previous work (Ray-Gallet et al.,

2011). Because the interaction in the extract can be indirect, it

was important to test if HJURP interacts directly with DNA using

recombinant protein. We thus produced glutathione S-trans-

ferase (GST)-HJURP and several mutants (Figures 3C and

S5C) and tested these purified recombinant proteins for DNA

interaction in the binding assay.We found that full-length HJURP

interacts with DNA and that deleting the predicted DNA-binding

region (285–321) abrogated its ability to bind DNA. Notably,

the CenH3CENP-A-binding domain and the HCTD1, important

for centromeric localization of HJURP, proved dispensable for

DNA binding (Figure 3C). Because the sequence of the HMD is

not conserved with other DNA-binding proteins (Sanchez-Pulido

et al., 2009), this may constitute a new type of DNA-binding

domain.

We then investigated if CDK activity influences the binding of

HJURP to DNA. We thus used extracts from cells treated with

or without Roscovitine in the DNA-binding assay. We found

that there was no difference in DNA binding (Figure 3D). Thus,

CDK activity does not control the binding activity of HJURP to

DNA as assayed in our experiments. These data suggest

that HJURP is able to directly interact with DNA through a

conserved DNA-binding domain in the HMD, independently of

CDK activity.
De Novo Deposition of CenH3CENP-A in Early
G1 Requires DNA Binding of HJURP
We next explored the role of the DNA-binding domain in the

centromeric CenH3CENP-A-loading mechanism. For this, we

used a U2OS cell line stably expressing SNAP-CenH3CENP-A

(described in Dunleavy et al., 2011) (Figure S6A). The SNAP-tag

technology allows fluorescent labeling of newly synthesized

proteins to distinguish them from the total protein pool. This
Figure 3. HJURP Has a DNA-Binding Domain in the HMD

(A) Prediction of DNA-binding sites of HJURP and Scm3 in various species. Bo

selected vertebrate species. Basic amino acids are in red.

(B) Experimental scheme and western blot of the DNA-binding assay. Input corre

(C) GST constructs of HJURP and truncation mutants and western blot of the DN

GST antibody. Input corresponds to 33% recombinant protein used for the expe

(D) Experimental scheme and western blot of the DNA-binding assay using sa

corresponds to 33% of extract used for the experiment.

See also Figure S5.
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method allows to study the de novo deposition of CenH3CENP-A

at centromeres (Jansen et al., 2007). After quenching old

SNAP-CenH3CENP-A protein with O6-benzylguanine (Q), the

chase (C) period allows new protein synthesis, and a pulse (P)

of tetramethylrhodamine (TMR) ensures the labeling of de

novo-deposited SNAP-CenH3CENP-A (QCP assay). Concomi-

tantly, we synchronized cells with nocodazole and released

them into early G1, as shown in Figure 4A. Downregulation of

endogenous HJURP caused a reduction of the signal of de

novo-incorporated CenH3CENP-A to 38% upon treatment with

siHJ compared to the control treated with siLuc (Figure 4A).

To study the effects of HJURP mutants on the loading of

CenH3CENP-A, we transiently transfected the GFP-HJURP (WT),

a phosphomutant (Ala412,448,473), a DNA-binding mutant (D285–

321), and a mutant unable to bind CenH3CENP-A (D14–41),

together with siHJ into SNAP-CenH3CENP-A U2OS cells (see

scheme on Figure 4A). By western blot, we verified that ex-

pression of all constructs was at comparable levels and down-

regulation of endogenous HJURP effective by siHJ (Figure 4A).

Addition of WT could rescue the signal to 88%. As expected,

D14–41 could not rescue the signal because it cannot interact

with CenH3CENP-A to escort it to centromeres. Interestingly,

Ala412,448,473 could fully rescue loading of CenH3CENP-A, whereas

D285–321 could not. From these experiments, we draw two

main conclusions. First, dephosphorylation of the HCTD1

does not impair the ability of HJURP to deposit CenH3CENP-A.

Second, the DNA-binding region is necessary for HJURP

to load CenH3CENP-A onto centromeres in early G1. These

data support the view in which HJURP, in addition to its

CenH3CENP-A-escorting function, displays another important

role in the loading mechanism of CenH3CENP-A within centro-

meric chromatin.
Ala412,448,473 and D285–321 Have Different Effects
on Cell Cycle and Toxicity
It was then important to evaluate if the phosphomutant

Ala412,448,473 and the DNA-binding mutant D285–321 have an

effect on the cell cycle and on cell proliferation. We expressed

GFP-HJURP and the mutants in U2OS cells and analyzed the

cell-cycle profile by fluorescence-activated cell sorting (FACS)

72 hr posttransfection. We verified by western blotting that

expression of all constructs was comparable (Figure 4B). We

found that Ala412,448,473, but not D285–321, causes a cell-cycle

delay. Ala412,448,473 expression leads to an increase (18.6%–

25.9%) of cells in G2 and an increase in S (35.4%–40.1%) as

compared to the WT (Figures 4B and S5D). In contrast, the

cell-cycle profile of cells expressing D285–321 was comparable

to cells expressing the WT. Endogenous HJURP is still present
ttom view shows a sequence alignment of predicted DNA-binding regions in

sponds to 33% of extract used for the experiment.

A-binding assay using recombinant GST-HJURP and mutants detected by a

riment.

lt-extractable extracts from U2OS cells treated with and without Ros. Input
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and can thus deposit CenH3CENP-A in telophase/early G1, both in

the presence of D285–321 and Ala412,448,474. We countedmitotic

cells 72 hr posttransfection using H3S10P as a marker, and

whereas cells expressing WT or D285–321 showed a similar

mitotic index, it was decreased in cells transfected with

Ala412,448,473 (Figure 4C). Trypan blue exclusion 72 hr posttrans-

fection (Figure S6B) showed no difference in viability between

WT and Ala412,448,473-treated cells but a decrease in viability

caused by D285–321. Using a colony formation assay, we as-

sessed long-term proliferation by counting colonies 12 days

posttransfection. We observed a decrease in colony number

for Ala412,448,473 and D285–321, which was more pronounced

for the latter (Figure S6C). Taken together, different mechanistic

aspects of HJURP likely impair long-term proliferation as judged

in this assay. Whereas the DNA-binding mutant is immediately

toxic to the cell because it cannot load CenH3CENP-A, the non-

phosphorylatable mutant causes cell-cycle delays, potentially

mediated by its aberrant localization throughout the cell cycle.

Ala412,448,473 Loads CenH3CENP-A at Centromeres in G2
We aimed to address whether the nonphosphorylatable mutant

Ala412,448,473 could load CenH3CENP-A in S and/or G2. First,

we assessed if HJURP is involved in the aberrant loading of

CenH3CENP-A in S and G2 upon Roscovitine treatment (Silva

et al., 2012). We synchronized SNAP-CenH3CENP-A U2OS cells

using a single thymidine block and released them after 3 hr

(enriched in mid-S) or 8 hr (enriched in G2) (Figure S6D). We

transfected cells either with siHJ or siLuc and treated them

with Roscovitine. We saw a reduction of relative TMR fluores-

cence at centromeres in cells treated with siHJ as compared

to cells treated with siLuc, both in S and G2 (Figure 5A). Cells

were selected based on Aurora B or EDU staining typical for

these cell-cycle phases. We observed a similar effect upon

treatment with Purvalanol A (Figure S6E) and controlled the

downregulation of endogenous HJURP by western blotting

(Figure 5A). Taken together, we conclude that HJURP is the

dedicated CenH3CENP-A chaperone involved in the aberrant

loading of CenH3CENP-A at centromeres in S and G2 upon

treatment with CDK inhibitors.

Next, we explored if the HJURP triple mutant Ala412,448,473

can deposit CenH3CENP-A in S and/or G2. We transfected

Ala412,448,473 and synchronized cells using a thymidine block

and released them after 3, 6, or 8 hr to enrich cells in mid-S,

late S, or G2, respectively (Figure S6D). We counted TMR-posi-

tive cells in mid-S, late S, and G2, selected by Aurora B or EDU
Figure 4. De Novo CenH3CENP-A Deposition Requires HJURP DNA Bind

(A) Top: experimental scheme and western blot showing the expression of the GF

HJURP antibody. Bottom view shows images of SNAP-CenH3CENP-A U2OS cells

mutants: D14–41, Ala412,448,473, and D285–321, cotransfected with siHJ. TMR

Centromeric localization is evidenced by colocalization with CENP-B. Scale bar

of centromeric TMR-CenH3CENP-A signal. The dashed lines represent the redu

GFP-HJURP. Average of three independent experiments is shown. Error bars, S

(B) Experimental scheme and distribution in cell-cycle phases of cells transfect

Distribution of cell-cycle phases of cells treatedwith the different HJURP construc

blot shows comparable expression levels of all constructs.

(C) Experimental scheme and mitotic index of cells transfected with the GFP con

were revealed with a H3S10P antibody. Average of three independent experimen

See also Figure S6.
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staining typical for these cell-cycle phases. Strikingly, we found

TMR-positive cells in 26% of Ala412,448,473-positive cells in G2

but hardly any in mid-S or late S (Figure 5B). We also compared

the number of TMR-CenH3CENP-A-positive cells in mid-S, late S,

and G2 between cells transfected with WT and Ala412,448,473 and

only found a loading of CenH3CENP-A in G2 with the Ala412,448,473

mutant, but not with the WT (Figures S6D–S6G). Taken together,

this suggests that Ala412,448,473 can load CenH3CENP-A in a

subset of cells in G2, but not in S. This premature loading of

CenH3CENP-A by Ala412,448,473 could lead to the changes in

the cell-cycle profile we had observed. This supports a view

in which the timely loading of CenH3CENP-A specifically in telo-

phase/G1 is important for the correct functioning of the centro-

mere in mammalian cells.

DISCUSSION

The CenH3CENP-A chaperone HJURP plays a major role in

centromere maintenance through its escort function for

CenH3CENP-A. It is a highly divergent protein with four distinct

domains: the Scm3 domain, the HMD, the HCTD1, and the

HCTD2 (Sanchez-Pulido et al., 2009). We found that the phos-

phorylation state of the HCTD1 is coupled to CDK activity and

thus determines the recruitment of HJURP to centromeres spe-

cifically in telophase/early G1 (Figures 1 and 2). We also discov-

ered that the HMD harbors a DNA-binding domain (Figure 3),

which plays a role in the loading of CenH3CENP-A at centromeres

(Figure 4). Premature recruitment of a nonphosphorylatable

HJURPmutant to centromeres leads to CenH3CENP-A deposition

in G2 (Figure 5). Thus, we assign additional functionalities to two

domains of HJURP: the HMD and the HCTD1.

Our model is presented in Figure 6. Whereas the phosphoryla-

tion state of the HCTD1 determines the cell-cycle-dependent

recruitment of HJURP to centromeres, the DNA-binding region

of the HMD is necessary for CenH3CENP-A loading by HJURP,

assigning another function to HJURP in addition to its escorting

role of CenH3CENP-A. Our findings lead us to propose a three-

step mechanism of the chaperone function of HJURP for

CenH3CENP-A, as depicted in Figure 6B. In step 1, HJURP is

phosphorylated at the HCTD1 during most of the cell cycle and

dephosphorylated at late stages of mitosis, concomitant with

CDK1/CDK2 downregulation. This dephosphorylation causes a

recruitment of HJURP to centromeres in telophase. In step 2,

HJURP has a role in the loading process of CenH3CENP-A at cen-

tromeres, where it functions mechanistically through a direct
ing

P constructs and downregulation of endogenous HJURP, both detected with a

treated with siHJ or siLuc from rescue experiments with GFP-HJURP or the

-CenH3 corresponds to newly incorporated CenH3CENP-A at centromeres.

, 5 mm. The bar chart represents the quantification of the fluorescent intensity

ction in TMR signal upon siHJ treatment and the rescue measured with WT

D.

ed with WT GFP-HJURP or Ala412,448,473 or D285–321 72 hr posttransfection.

ts is indicted. Average of three independent experiments is shown. Thewestern

structs: WT, Ala412,448,473, or D285–321 at 72 hr posttransfection. Mitotic cells

ts with one blind count is shown. Error bars, SD. ***p < 0.001 (Student’s t test.).
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(A) Functions of HJURP domains. DNA binding is

indicated in green, and phosphorylation is in red.

(B) Model of the three-step mechanism of the

CenH3CENP-A chaperone function of HJURP at

centromeres. In Step 1, HJURP is dephosphory-

lated in the HCTD1, which leads to its recruitment

to centromeres in telophase/early G1, concomi-

tant with reduced CDK1/CDK2 activity. In Step 2,

HJURP loads CenH3CENP-A at centromeres be-

tween telophase/early G1. It is actively involved

in this process through its DNA-binding domain.

In Step 3, HJURP is phosphorylated in the HCTD1,

leading to a dissociation from centromeres,

concomitant with increased CDK1/CDK2 activity.
interaction with DNA between telophase and early G1. This leads

to an increase of CenH3CENP-A at centromeres. In step 3,

increased CDK activity leads to HJURP phosphorylation, which

causes a dissociation of HJURP from centromeres where

CenH3CENP-A has been deposited.

Interestingly, the premature recruitment of Ala412,448,473 to

centromeres results in CenH3CENP-A loading in a subset of cells

in G2, but not in S, whereas treatment with CDK inhibitors causes

deposition in G2 and S. Thus, it is possible that during Cen-

H3CENP-A loading, HJURP may act in concert with (an)other

CDK-responding factor(s) recruited in G2/M such as Mis18BP

or Mis18b (Silva et al., 2012; Wang et al., 2014). Although we

highlight here a temporal control for the loading CenH3CENP-A,

this control shows plasticity in different species and possibly

during development. This is exemplified in flies with the timing

of CenH3CID deposition, which is altered in meiosis, when

loading occurs during premeiotic G2, prophase I, and the sper-

matid stage in males and over a period of days during prophase

I in females (Dunleavy et al., 2012; Raychaudhuri et al., 2012). In

C. elegans, which have holocentromeres, an extreme situation

has been reported. Unlike in vertebrates and flies, CenH3HCP-3

is lost in meiosis (Gassmann et al., 2012; Monen et al., 2005),

and both oocyte meiotic divisions proceeded normally and

recruited kinetochore proteins in the absence of CenH3HCP-3.

Surprisingly, a specific CenH3HCP-3-loading factor has not yet

been identified in this species because C. elegans have neither

HJURP nor CAL1. Thus, the loading mechanism of CenH3 in

a developmental context in other model organisms certainly

illustrates an important plasticity. Dissecting this further might

shed more light on the mechanisms of CenH3 recruitment and

loading by its dedicated chaperone, such as CAL1 or HJURP.
(B) Top: experimental scheme and western blot showing the expression of Ala412,448,473 and endogenous H

cell-cycle phases. Bottom view shows images of SNAP-CenH3CENP-A U2OS cells transfected with the Ala412

was observed in G2, and not in mid or late S. Scale bar, 5 mm. The bar chart represents percentages of Ala412,4

late S, and G2. Average of three independent experiments is shown. Error bars, SD.

See also Figure S6.

200 Cell Reports 8, 190–203, July 10, 2014 ª2014 The Authors
A recent report proposed that Mis18b

interacts with HJURP to recruit it to the

centromere (Wang et al., 2014). Another

recent study reported an interaction be-
tween HJURP and And-1, a protein required for CenH3CENP-A

incorporation at centromeres (Jaramillo-Lambert et al., 2013).

In addition, CENP-C (Dambacher et al., 2012; Moree et al.,

2011), CENP-N (Carroll et al., 2009), CENP-H/I (Okada et al.,

2006), and Mis18 (Dambacher et al., 2012; Wang et al., 2014)

are all required for CenH3CENP-A deposition at centromeres in

telophase/early G1. The presence of various other factors in

the HJURP complex, including RbAp46/48 and Npm1, likely

participates in these dynamics (Dunleavy et al., 2009). Future

studies should address if and how these factors are involved in

the mechanism of centromeric HJURP recruitment and/or the

HJURP-mediated loading mechanism.

The different effects of the nonphosphorylatable mutant

Ala412,448,473 and the DNA-binding mutant D285–321 on the

cell cycle and on cell proliferation highlight the difference of the

functionality of the HMD and the HCTD1 in HJURP localization

to centromeres and CenH3CENP-A loading, respectively. Taken

together, our finding of a conserved DNA-binding region in

the HMD of HJURP and its requirement for the loading of

CenH3CENP-A at centromeres provide insight into an active role

for HJURP in the CenH3CENP-A-loading mechanism. Given the

preference of HJURP to interact with noncanonical DNA struc-

tures, in particular Holliday Junctions (Kato et al., 2007), this

contribution to the loading mechanism might be mediated

through structural changes of centromeric DNA. Interestingly,

the HMD, including the newly identified DNA-binding domain,

does not show a particular sequence conservation with other

known DNA-binding proteins (Sanchez-Pulido et al., 2009).

Therefore, future studies involving structural analyses of the

HMD and how it interacts with DNA will be required to look into

this issue in more detail. Currently, histone chaperones are
JURP with siRNA treatment in the corresponding
,448,473 mutant. Loading of TMR-star CenH3CENP-A

48,473-transfected TMR-star-positive cells in mid-S,



regarded as escort factors for their designated histone variants

(reviewed in De Koning et al., 2007). We find that the functionality

of HJURP as an active mechanistic participant in CenH3CENP-A

loading through its DNA-binding domain is distinct from a

simple targeting role. A previous report showed that HIRA can

interact with naked DNA, but this property is not common to all

chaperones (Ray-Gallet et al., 2011). This raises the question

as to whether other histone chaperones may also have similar

additional roles in the histone-loading process. Thus, dissecting

their loading mechanisms will be an interesting avenue for future

research.

EXPERIMENTAL PROCEDURES

Cell Synchronization and Drugs

For synchronization in M and early G1, we incubated cells for 16 hr with noco-

dazole (Sigma-Aldrich) at 100 ng/ml. We subsequently washed the cells 23

with PBS and collected them (M phase/FACS) or plated them on collagen/

fibronectin-coated coverslips (Sigma-Aldrich) or in culture dishes. We incu-

bated them for 1 hr (early G1 for FACS) or 2 hr (early G1 for microscopy).

For synchronization in G2 or S, we used a single thymidine block: we added

thymidine (Sigma-Aldrich) to the cells (4 mM) and incubated them for 18 hr.

Cells were washed 23 with PBS and 13 with medium and incubated in the

presence of deoxycytidine (Sigma-Aldrich; 0.5 mM). We incubated cells with

Roscovitine at 100 mM (Sigma-Aldrich) and Purvalanol A at 24 mM (Sigma-

Aldrich) for 2 hr prior to fixation as indicated.

Transfection and siRNA

We transfected siRNAs and plasmids with jetPrime (Polyplus) according to the

manufacturer’s protocol. In a typical experiment, 24%–36% of cells were

transfected with GFP-HJURP or the mutants. The siRNA sequences were

ordered from MWG Eurofins and were as follows: siHJ, 50-GAG-AUA-ACC-

UCG-AGU-UCU-UTT-30; and siLuc (control), 50-CGU-ACG-CGG-AAU-ACU-

UCG-A-30.

Fluorescent Labeling for Microscopy

Weperformed pre-extraction of cells prior to fixation for 5min with 0.5% Triton

X-100 in CSK buffer as described by Martini et al. (1998) and fixed cells in 2%

paraformaldehyde for 20 min. We blocked cells with BSA (5% in PBS, 0.1%

Tween 20) before incubation with 1ry and 2ry antibodies and DAPI staining.

For in vivo labeling of SNAP-tagged CenH3CENP-A, we used the SNAP-labeling

protocol as described by Jansen et al. (2007) and Ray-Gallet et al. (2011). We

added 10 mM of SNAP-Cell Block (New England Biolabs) to cell medium at

37�C for 30 min to quench SNAP-tag activity (Q) and 2 mM SNAP-Cell TMR-

Star (New England Biolabs) for 20 min for pulse labeling (P). We washed the

cells 23 with PBS, reincubated them in medium for 10 min, and washed the

cells 23 with PBS. For the chase (C), we incubated the cells for the indicated

length of time. After in vivo labeling, the cells were processed for immuno-

staining. Synchronization with nocodazole or thymidine was incorporated

into this protocol. For EdU labeling, we used the Click-iT EdU Alexa kit

(Life Technologies) according to the manufacturer’s instructions. To enhance

GFP signals, we used the GFP-Trap booster (ChromoTek) at a dilution of

1:200, which was used prior to click chemistry in case of EdU labeling.

Pull-Down Studies

We produced GST-HJURP recombinant protein as described by Dunleavy

et al. (2009) and obtained bead-linked plasmid DNA (PUC19) as described

(Mello et al., 2004; Ray-Gallet et al., 2011). Mock beads or DNA beads were

blocked with BSA (1 mg/ml) and incubated 1 hr at 30�C with 100 mg U2OS

salt-extractable extracts or 100 ng recombinant proteins in buffer containing

10 mM HEPES (pH 7.8), 2 mM MgCl2, 1 mM CaCl2, 0.5 mM EGTA, 100 mM

NaCl, 0.1% NP40, and 8% glycerol in a final volume of 50 ml. Then, the beads

were washed 33 in the presence of 300 mM NaCl and 0.5% NP40. We

analyzed bound proteins by western blot. We pulled down GFP-HJURP using

GFP-Trap (ChromoTek) according to the manufacturer’s protocol.
Antibodies

We used the following primary antibodies for western blotting: rabbit anti-

HJURP (Sigma-Aldrich; #HPA008436, 1:500); rabbit anti-GFP (#A-P-R#06,

in-house platform of Institut Curie, 1:1,000); anti-a-tubulin (Sigma-Aldrich;

#T9026, 1:2,000); anti-Cabin1 (Abcam; #ab76600, 1:1,000); anti-HIRA (Active

Motif; #WC119.2H11, 1:200); anti-Npm1 (Abcam; #ab15440, 1:1,000); anti-

CenH3Cenp-A (Cell Signaling Technology; #2186, 1:500); anti-RbAp48 (Abcam;

ab1765, 1:1,000); anti-Caf-1 p150 (Abcam; #7655, 1:1,000); anti-CAF-1 p60

(Abcam; #ab8133, 1:1,000); and anti-GST (Abcam; ab9085, 1:500). The

H3S10P antibody was a gift from N. Nozaki (Japan). We used the following

secondary antibodies for immunofluorescence: anti-CREST = ACA (Fitzgerald

Industries/Interchim; #90C-CS1058, 1:1,000); anti-Aurora B (BD Transduction

Laboratories; #611082, 1:2,000); and anti-CENP-B (Abcam; #ab25734, 1:500).

For immunofluorescence, we used Alexa 488-, Alexa 594-, Alexa 647-, or Cy5-

coupled antibodies (Molecular Probes).

MS Analyses

Samples were analyzed using a LTQ Orbitrap XL mass spectrometer (Thermo

Scientific) coupled to a nano-liquid chromatography system (UltiMate 3000;

Dionex). Details of the separation, MS parameters, and label-free quantifica-

tion are described in Supplemental Experimental Procedures.
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