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Abstract 

Genes are generally expressed from their two alleles, except in some particular cases such as random 

inactivation of one of the two X chromosomes in female mammals or imprinted genes which are 

expressed only from the maternal or the paternal allele. A lesser-known phenomenon is random 

monoallelic expression (RME) of autosomal genes, where genes can be stably expressed in a 

monoallelic manner, from either one of the parental alleles. Studies on autosomal RME face several 

challenges. First, RME that is based on epigenetic mechanisms has to be distinguished from biased 

expression of one allele caused by a DNA sequence polymorphism in a regulatory element. Second, 

RME should not be confused with transient monoallelic expression often observed in single cell 

analyses, and that often corresponds to dynamic bursting of expression. Thanks to analyses on clonal 

cell populations, the existence of RME in cultured cells is now well established. Future studies of RME 

in vivo will have to overcome tissue heterogeneity and certain technical limitations. Here, we discuss 

current knowledge on autosomal RME, as well as possible mechanisms controlling these expression 

patterns and potential implications for development and disease, drawing parallels with what is known 

for X-chromosome inactivation, a paradigm of random monoallelic expression.  

 

 

Introduction 

Diploid organisms possess two alleles of each gene in their genome, one inherited from each parent. 

In most cases, the two alleles are believed to be expressed at about the same time and at similar 

levels in cells. However, transcription being a highly stochastic and bursty process, differences in 

expression between two alleles can be observed for some genes at any given point in time when cells 

are analysed individually. These differences, which results in cell-to-cell variability, are dynamic 

throughout the cell cycle and masked when looking at a cell population. Genes can also be expressed 

either strictly or preferentially from either one of the two alleles in a stable and clonally heritable 

manner during mitosis. In this case, one of the alleles is either less active or in the most extreme case, 

completely silent, resulting respectively in biased or strict monoallelic expression. In this review we will 
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mainly concentrate on mitotically stable random monoallelic expression (RME) but will touch on the 

possibly related phenomenon of dynamic and transient monoallelic expression that can result from 

transcriptional bursting [1, 2].  

Allele-specific gene expression is most often associated with DNA sequence polymorphisms between 

alleles, either at the single nucleotide level for example within regulatory sequences, or for larger 

portions of the genome caused by copy-number variations, which, in both cases, may result in gene 

dosage imbalances [3]. However, monoallelic expression can also be based on differential gene 

activity that does not depend on DNA polymorphisms, but rather on differential epigenetic marking of 

the two alleles. There are three main classes of genes in mammalian genomes that display such 

epigenetically based monoallelic expression, without being due to differences in the underlying DNA 

sequence. 

The most classic example concerns genes that are subject to random X-chromosome inactivation 

(XCI). Here, to ensure dosage compensation between XX and XY cells, one of the two X 

chromosomes is chosen for silencing during early development, and once established the inactive 

state is stably maintained throughout mitotic divisions, thanks to a combination of epigenetic marks 

including chromatin-associated proteins, histone post-translational modifications, DNA methylation of 

CpG islands as well as asynchronous replication [4]. Females are thus cellular mosaics for X-linked 

gene activity with cells expressing either the paternal or the maternal X chromosome. A few genes can 

however escape from this process of XCI, such as Jarid1c (Kdm5c) or Utx (Kdm6a), which escape in 

most cell types, and other genes that escape in a tissue or lineage-specific fashion, such as Atrx [5, 6], 

suggesting that a double dose of certain X-linked genes may be important for females in some cases 

[7]. It appears also that genes can escape XCI in a more stochastic or facultative manner in some cells 

but not others, indicating XCI is less stably maintained at some loci for as yet unknown reasons 

(Figure 1).  

The other well-known example of monoallelic regulation concerns genes subject to genomic 

imprinting, which are expressed from a single allele in a parent-of-origin manner. Around a hundred 

loci in mammalian genomes, autosomal for the most part, are subject to parent-of-origin dependent 

expression. Differential marking of parental loci is laid down in the germ line and usually involves DNA 

methylation of an imprinting control region that influences in cis several genes located in clusters, in 

contrast to a full chromosome in XCI. These expression patterns are maintained throughout mitosis 

and adult life, so that most cells express the same parental allele of a gene. Loss of imprinting can 

lead to several human disorders [8]. However, biallelic expression has been observed in specific 

tissues for some genes and could play a role in developmental plasticity [9]. 

A third class of monoallelic regulation concerns autosomal genes that are expressed in a random and 

clonal fashion, from either the paternal or maternal allele, as in XCI but unlike imprinted genes. This 

class traditionally includes members of large genes families, such as olfactory receptors, antigen 

receptors and protocadherins, which are usually expressed in a single and highly specialized cell type. 

One typical property of these families is that genes are clustered in large arrays at one or several 

locations on autosomes and their RME may act to specify cell identity and to enhance diversity within 

a cell population. Recent genome-wide studies have revealed that this group also includes some 



genes (around 2%), which identity varies between tissues and that are scattered in singletons 

throughout the genome and which can be stably expressed from either one or the other allele, 

independently of polymorphisms in the DNA sequence [10-12]. As these data come from averages of 

millions of cells from clonal populations, the observed monoallelic expression cannot be attributable to 

transcriptional bursts. These genes belong to a wide range of gene ontology categories, from cell 

adhesion molecules to transcription factors and tend to be expressed in a lineage-specific manner. 

Interestingly, several “isolated” imprinted genes have also been described [13]. It was proposed that 

imprinted loci may even have initially arisen from RME genes that entailed a selective advantage and 

thus became fixed in their regulation through the evolution of a germ line imprint [14].  

In contrast to imprinted and X-inactivated genes, all documented cases of RME genes on autosomes 

can be expressed monoallelically from either the paternal or the maternal allele but also biallelically 

from their two alleles, which may contribute to generating some level of diversity within a cell 

population (Figure 1). RME patterns can be highly stable after establishment and clonally inherited 

during mitosis, similarly to imprinting or XCI. Whether such epigenetically heritable RME in fact arises 

from an initially more dynamic (non-clonal) situation is still very much an open question. This review 

will focus on this class of autosomal genes showing RME. We will describe here the repertoire of 

genes showing these expression patterns, the potential molecular mechanisms that may underlie this 

mode of regulation, highlighting the similarities and differences with XCI. We will also address the role 

that RME may play during development and in disease, again drawing parallels with what is known for 

XCI. For the classes of imprinted or X inactivated genes, we refer the reader to excellent reviews on 

the topic [7, 15] including in this issue. 

 

1. Identity and features of genes showing random monoallelic expression 

1-1. Clonal cell population analysis 

Classical examples of autosomal RME are represented by large gene families of cell surface immune 

or sensory receptors and associated with the generation of diversity between cells. Immunoglobulin in 

B lymphocytes and T-cell receptor genes in T lymphocytes were the first cases of RME on autosomes 

to be described and shown to display what was later named ‘allelic exclusion’. Allelic exclusion of 

antigen receptors is associated with DNA rearrangement events that take place only in the B or T 

lineages on a single allele and which will inhibit any further rearrangement and expression of the 

second allele, ensuring that only a single antigen receptor will be produced [16]. The other class of 

genes described to show allelic exclusion is the olfactory receptor (OR) genes, which are found in 

large arrays on many autosomes and are expressed in olfactory neurons exclusively. Here again, the 

expression of one allele leads to the repression of the second allele and all remaining members of the 

family (more than 1000 genes in the mouse genome) through an unknown feedback mechanism, 

resulting in expression of only one receptor in each cell [17]. Following these findings, other gene 

families were reported to show RME, such as the vomeronasal receptor genes expressed in 

vomeronasal sensory neurons [18] and the protocadherin genes in Purkinje neurons [19]. In addition, 

a number of single genes were shown to display RME. These include various interleukin genes (Il2, 

Il4, Il5, Il10, Il13) in T cells [20, 21]; Ly49 receptors in natural killer cells [22]; the Tlr4 (Toll-like receptor 



4) in mouse B cells [23]; the p120 catenin in mouse pre-B cells and human lymphoblastoid cell lines 

[24]; the GFAP (glial fibrillary acidic protein) gene in mouse cortical astrocytes [25]; Krt12 in mouse 

corneal epithelial stem cells [26]; three genes clustered in the t complex locus on mouse chromosome 

17 (Jsap1, Nubp2 and Igfals) in bone marrow stromal cells [27]; and more recently, the human FOXP2 

gene in B lymphoblasts and T cells [28]. These genes tend to be expressed in highly specific lineages 

where the monoallelic expression pattern was detected. Furthermore, the majority of these 

aforementioned genes, whether members of gene families or singletons, appear to encode cell 

surface receptors for which monoallelic expression likely leads to increased cell diversity within a 

population and which may be advantageous in the context of the immune system or in neuronal 

diversity [29]. 

 

The advent of whole genome sequencing, which provided single nucleotide polymorphism (SNP) 

information and the use of new technologies, such as SNP-arrays and next-generation sequencing, 

led to the realisation that such RME genes might be more widespread than previously thought. The 

first genome-wide analysis of RME was a seminal study from the laboratory of Andrew Chess, where 

SNP-arrays were used to examine nuclear RNA rather than DNA in order to determine the extent of 

clonally-inherited RME in B lymphoblastoid cell lines across human autosomes [30]. With this analysis, 

the authors estimated that nearly 10% of about 4,000 autosomal genes analysed are subject to RME 

in at least one clonal population of cells. More recently, high-throughput RNA sequencing (RNA-seq) 

was also used to address the extent of RME in clones of mouse neural stem cells (NSCs) or neural 

progenitor cells (NPCs), derived either from the brain of hybrid animals [10] or from hybrid embryonic 

stem (ES) cell lines [11, 12]. Importantly, genes must be monoallelically expressed from one allele in 

some clones and from the other allele in some other clones to be considered as RME, in order to rule 

out the influence of DNA sequence polymorphisms. These analyses consistently revealed a lower 

albeit significant proportion of genes showing RME, in the range of 2.5-3% of all genes analysed. 

Importantly, the percentages estimated from RNA-seq analyses excluded the most lowly expressed 

genes (RPKM<1), for which monoallelic expression might simply result from preferential detection of a 

single allele due to poor transcription levels. The differences in the extent of autosomal RME found 

between the SNP-array and the RNA-seq studies could have resulted from technical differences for 

calling monoallelic expression, or the thresholds considered, or else they may reflect biological 

differences between the cell types used. 

 

1-2. Single cell analysis 

Recent efforts using single cell approaches suggest that RME may be more widespread than initially 

thought, at least during development. In a study employing RNA-seq on single blastomeres from 

preimplantation embryos obtained from crosses between polymorphic mouse strains, apparent 

monoallelic expression from only one allele was detected for 12-24% of genes on autosomes across 

all preimplantation stages analysed, considering technical allelic loss and only genes with moderate to 

high expression levels [1]. Similar proportions were found in single-cell RNA-seq analyses from mouse 

adult hepatocytes and fibroblasts [1], while an analysis on single human primary fibroblasts revealed 



that more than 75% of autosomal genes show skewed or monoallelic expression from a single allele 

and that genes expressing their two alleles are rare and tend to show high expression levels and long 

half-life in most cells [2]. However, these findings do not reflect mitotically heritable patterns of RME, 

but rather the stochasticity of gene expression within single cells and the fact that transcription can 

occur independently on each allele in bursts, with short or long pauses in between bursts [31] (Figure 

1). The detection of only one allele at a given time, and in a single cell, appears to be a rather frequent 

scenario, particularly for poorly transcribed genes and/or those with a short half-life. This observation 

is illustrated with the case of the Nanog gene that was described to show stochastic monoallelic 

expression during mouse pre-implantation development and in ES cells, based on allele-specific 

single-cell RT-PCR and RNA FISH analysis [32]. Subsequent analyses revealed that the pattern 

observed corresponds to dynamic bursting of expression of Nanog [33, 34].The so-called dynamic 

RME identified through single cell RNA-seq analyses [35] is conceptually different from clonally 

inherited RME. The major concern with single-cell analysis is that stable RME in a heterogeneous 

population cannot be distinguished from transient monoallelic expression inherent to transcriptional 

bursting. Our review focuses in all subsequent sections on clonally inherited RME exclusively.  

 

1-3. Features of random monoallelically expressed genes 

Although in some cases, RME genes lie on the same autosome and in relatively close proximity, the 

choice of which allele is active or silent appears to occur independently for each gene [11, 30]. This is 

unlike the inactive X chromosome, which involves silencing of almost all genes in cis. Furthermore, in 

contrast to the strictly monoallelic expression of imprinted and X-linked genes, an important feature of 

autosomal RME genes is that their monoallelic status varies between different cell types, and that in 

independent clonal populations, they can be either biallelically or monoallelically expressed from the 

maternal or the paternal allele, or even not expressed at all [11, 12, 30]. In clonal NPC lines, these 

patterns of expression, whether biallelic or monoallelic, have been found to be remarkably stable, and 

inherited during extensive cell passaging [11]. Using nascent RNA FISH, a high proportion of 

monoallelically expressing cells, together with biallelic cells, could be detected in vivo, likely reflecting 

the mono/biallelic expression pattern seen in the clonal cell lines analyses, however with different 

tissue-specificities for the various genes analysed [11] (Figure 1). Further investigations are however 

required to determine whether the monoallelic pattern observed in vivo is random, stable and clonally 

inherited. A likely scenario may be that the transient monoallelic expression of some genes during 

development can sometimes become locked in and perpetuated in a particular tissue or cell lineage 

(see Section 2 below). 

The genome-wide studies revealed that many RME genes encode a variety of receptors, adhesion 

molecules, ion channels and cell signalling molecules all expressed at the cell surface and involved in 

cell to cell interactions. Gene ontology analysis also revealed a broad distribution among various 

categories [11, 12, 30]. RNA-seq studies in NPCs differentiated from mouse ES cells uncovered 

several genes encoding important transcription factors, such as for example Six1 and three members 

of the Eya gene family [11] that are required for development of multiple organs, including the inner 

ear and the kidney, where they appear to play critical roles at different stages. Furthermore, a 



computational analysis using the histone modification signature associated with autosomal RME [36] 

showed that this signature is predominant among cell-type specific genes and is underrepresented 

among genes with housekeeping activity [37], suggesting also a link with lineage specificity. A 

potential role for autosomal RME during development is described in Section 3 below. 

Importantly, recent studies have pointed to several RME genes that are associated with autosomal 

dominant disorders in humans (Table 1). For example, the Eya1 and Six1 genes have been 

associated with the branchio-oto (BO) and branchio-oto-renal (BOR) syndromes [38]; other genes are 

linked to diseases such as Alzheimer’s, schizophrenia, epilepsy, alcohol dependence and cancer [10, 

11, 30]. In another study, it has been reported that RME genes, initially identified in human NSCs [39], 

show an overrepresentation of schizophrenia risk candidates identified by genome wide association 

studies and copy-number variations associated with both schizophrenia and autism [40]. The potential 

contribution of RME to diseases including neurodegenerative disorders is discussed in Section 4 

below.  

 

2. Mechanisms underlying establishment and maintenance of monoallelic expression 

compared to XCI 

The mechanisms by which RME of autosomal genes is established and those by which it is 

maintained, both remain open questions. Indeed, even in XCI, the exact mechanism underlying 

monoallelic upregulation of the Xist gene on only one allele is far from being fully understood despite 

decades of research on the Xist regulatory network [41]. Several mechanisms, that could act in 

combination, have been proposed to ensure Xist monoallelic upregulation: these include feedback 

loops that involve cis- and/or trans-acting regulators; transient pairing and symmetry breaking; the 

involvement of a pre-existing poised state on one allele; switching between alternate chromatin 

conformation states at each allele, enabling differential opportunities to allow Xist upregulation [42]; or 

stochastic monoallelic/biallelic Xist upregulation and secondary selection against cells that make the 

wrong choice (i.e. no XCI or inactivation of both alleles) (reviewed in [43]). Related mechanisms might 

account for the regulation of RME genes on autosomes, although so far no loci have been dissected in 

as much detail as the X-inactivation centre (Xic). Nonetheless, inspired by studies on Xist, various 

reports have drawn parallels between some RME loci and regulation of the Xic. Likewise, the 

molecular mechanisms involved in maintenance of the inactive state of the X chromosome [4] could be 

explored in the context of RME loci (Figure 2). Here we detail some of the common and divergent 

properties between XCI and autosomal RME. 

 

2-1. Establishment of random monoallelic expression 

Few studies have investigated RME during the time window in which it is established. Indeed, the 

initiation time window is not known for most autosomal RME genes. It is also not known whether 

initiation of RME is due to a deterministic process, or else a stochastic process. The inherently 

stochastic nature of transcription occurring independently on the two alleles may underlie occasional 

fixed monoallelic states. If transcription levels are very low even transiently during development or 

differentiation, the lowly expressed or silent state of one allele could somehow become locked in and 



perpetuated in cis, during subsequent cell divisions. Monoallelic expression could also be established 

because the two alleles pre-exist in a sort of metastable state, owing to their genomic, chromatin or 

nuclear environment. For example, limiting amounts of a transcription factor could contribute to the 

preferential expression of just one allele in some cells, a state that could get propagated during 

mitosis. Moreover, the local chromosome configuration of a given gene can influence its transcriptional 

status, leading for example to alternate chromatin folding states that might fluctuate during the cell 

cycle and predispose one or the other allele to be expressed [42]. The immediate genomic 

environment of a gene may also be important for the initiation of RME. For example repetitive 

sequences, such as the long interspersed nuclear elements 1 (LINE-1) family of transposon, are 

present at higher density in the flanking regions of the three classes of genes showing monoallelic 

expression [44, 45]. Such repeats can attract repressive protein complexes and create an environment 

potentially prone to silencing in cis, not only of repeats but also of neighbouring genes. Inefficient 

activation of a gene in a repetitive environment could lead to monoallelic expression. Alternatively, 

initially biallelic activation of a gene could be rendered stably monoallelic, through cis-spreading of 

repeat-induced heterochromatin (Figure 2).  

At the Xic locus, interchromosomal pairing between homologous alleles occurs concomitant to 

monoallelic Xist upregulation in the mouse [46, 47]. This has not been detected for the few RME 

candidates examined so far in NPCs [12], but this would need to be investigated at a critical time when 

monoallelic expression is established. Furthermore, long range interactions with heterologous 

regulatory sequences could be important. The monoallelic expression of the human FOXP2 gene was 

predicted to depend in cis on a regulatory sequence located 3Mb upstream of the gene [28], raising 

the possibility that establishment of RME can rely on long range interactions with cis-regulatory 

element(s) (Figure 2). Whether such enhancer elements function to enable fluctuating expression 

states as proposed for the Xist/Tsix locus in XCI [42], or whether this is an inefficient enhancer that 

leads to highly stochastic patterns remains to be found. 

Another feature of the Xic and some imprinted loci is that non-coding RNAs (ncRNA) overlapping a 

locus or transcribed in its vicinity are involved in establishing monoallelic expression [4, 8]. In XCI, the 

non-coding Tsix gene transcribed antisense to Xist is thought to mediate its repression and contribute 

to its RME in early differentiating ES cells [48]. As in XCI, the presence of antisense transcription 

and/or of ncRNA acting locally in cis may trigger differential transcription between alleles in a 

stochastic manner, a state that could become fixed in some cells (Figure 2). It is not known yet if 

antisense transcription and/or nearby ncRNAs are associated with autosomal RME loci. However, a 

large intergenic ncRNA, called ASAR6 (for Asynchronous replication and autosomal RNA on 

chromosome 6) that shares a number of properties similar with Xist was recently described in humans 

[49, 50]. The ASAR6 locus itself shows RME in immortalized cell lines and has been shown to be 

required in cis to orchestrate the asynchronous replication timing and silencing of monoallelically 

expressed genes located in the vicinity, even though the RNA does not coat the entire chromosome. 

Indeed, disruption of the ASAR6 locus delays replication timing of some genes along the 

chromosome, similar to observations made with Xist [51], and leads to biallelic expression of 



previously monoallelically expressed genes [49, 50]. However, the molecular mechanisms underlying 

the monoallelic regulation of ASAR6 remain unknown, as for Xist. 

At last, negative feedback loops where the active allele leads to silencing of the other allele could also 

lead to monoallelic expression (Figure 2), similar to what has been described in allelic exclusion of 

immunoglobulin and T-cell receptor genes. Here, a functional rearrangement on one of the two alleles 

will inhibit any further rearrangement of the second allele [16]. Likewise, for the OR genes, expression 

of a single OR gene is accomplished through a negative-feedback signal mediated by the OR coding 

sequence and triggered by expression of a single and functional OR protein that will prevent activation 

of any additional alleles [17]. Whether similar mechanisms mediate the mitotically stable monoallelic 

expression of singleton RME genes in a clonal cell population, beyond highly specialized cell types 

such as lymphocytes and olfactory neurons, remain an open question. 

 

2-2. Maintenance of random monoallelic expression 

Another critical feature concerns the mechanisms underlying the faithful maintenance of the differential 

allelic expression across cell divisions (cf. Figure 2). RME of autosomal genes has been shown to be 

very stably maintained, once established, at least in NPCs where this could be tested upon long-term 

passaging and differentiation (for example into astrocytes) [11]. This suggests that similarly to XCI and 

genomic imprinting, epigenetic mechanisms may be at play to maintain these expression patterns. 

DNA methylation at CpG islands, as well as histone modifications such as H3K27me3 and H3K9me2 

are found on the inactive alleles of X-inactivated genes [4, 52]. RME loci have also been shown to 

display specific epigenetic modifications. Analysis of the DNA methylation levels of the promoter 

regions of a few RME gene candidates by bisulfite-based analysis revealed that even if some RME 

genes exhibit methylation levels that are compatible with their RME profile (~50% methylation when 

monoallelic and no methylation when biallelic), others do not [11, 12]. Chromatin immunoprecipitation 

followed by sequencing and SNP analysis on murine clonal NPCs revealed that active RME alleles are 

frequently associated with the H3K4me2/3 mark, while the inactive allele is frequently associated with 

heterochromatic H3K9me3 marks at promoter regions [12]. This is consistent with previous studies 

correlating such marks with active and silent states. In another study, the presence of both H3K27me3 

and H3K36me3 marks was found across the bodies of many RME genes, suggesting that this may be 

a chromatin signature of autosomal RME in lymphoblasts, of both human and murine origin [36, 37]. 

The authors also proposed that this dual active/inactive chromatin mark signature could be used as a 

predictive tool to infer autosomal RME in mouse cells of lymphoid, mesenchymal, and 

neuroectodermal lineage [37]. Furthermore, this signature appears to remain unchanged between 

progenitor cells and their differentiated derivatives among different cell types, suggesting a potential 

role in maintenance of these expression patterns [37].  

Asynchronous replication timing, whereby one allele replicates earlier than the other during S phase, is 

also considered as an epigenetic characteristic and is a property shared by all classes of 

monoallelically expressed genes [53-55] (Figure 2). The entire inactive X chromosome shifts to late 

replication timing compared to the active X [54], indicating that the asynchrony is coordinated in cis 

along the entire chromosome. Late replication timing of the inactive X is believed to contribute to the 



maintenance of the silenced state [56]. However, in the case of autosomal RME loci, the 

asynchronous replication is not always coordinated at the chromosome level, unlike previously thought 

[55] and moreover, many RME loci do not overlap with asynchronously replicating regions of the 

mouse genome [11, 30], indicating that this feature is not a bona-fide property of autosomal RME. It 

was also suggested that asynchronous replication could even precede monoallelic expression and as 

such may be involved in the initial choice of which allele to express or silence [57, 58]. In any case, 

allele-specific genome wide analyses of replication timing before and after RME establishment are 

needed to draw more definitive conclusions. 

Another possible mechanism for maintaining differential expression of two alleles of a given RME gene 

could be through differential nuclear location, either within nuclear compartments or transcriptional 

environments within the nucleus (Figure 2). Again, this is something that was previously proposed to 

occur in XCI, where the inactive X chromosome is often found near the nucleolus or at the nuclear 

periphery [59], two subnuclear structures that are more associated with silent sequences. Nuclear 

organisation also plays a role in OR and immunoglobulin gene regulation [60, 61]. In the case of 

autosomal RME, the analysis of a few candidates in NPCs by RNA/DNA FISH did not report any 

preferential positioning of the inactive allele with the nuclear periphery or near heterochromatic foci 

[12]. An interesting example concerns the GFAP gene, which shows RME in murine cortical 

astrocytes, and where the active and inactive alleles occupy distinct radial position within the nucleus, 

with the active alleles being preferentially more internal in the nucleus than the inactive ones [25]. This 

may serve as a mechanism to stabilize and maintain the transcriptional states. However, functional 

studies are needed to assess whether this change in nuclear position is a cause or a consequence of 

the differentially silenced/active states, just as for all the above potential mechanisms.  

 

3. Potential roles of random monoallelic expression 

In this section, we will attempt to draw parallels between what is known about the role of XCI with 

autosomal RME. 

3-1. X-chromosome inactivation 

In mammalian female embryos, the inability to silence one X-chromosome is rapidly lethal [62]. During 

early mouse development, the two X chromosomes are transiently found in an active state. The 

presence of two active Xs has been shown to stabilise the naïve pluripotent state and to inhibit the 

onset of differentiation using ES cells [63]. This differentiation block is released once XX ES cells have 

undergone XCI, illustrating the tight relationship between dosage compensation and development and 

in this case a vital requirement for monoallelic expression of X-linked genes. 

In eutherian mammals, XCI is generally random in somatic tissues, while in marsupials, imprinted 

inactivation of the paternal X chromosome is found in all tissues [4]. The phylogeny of mammals and 

their respective silencing mechanisms regarding X-chromosome suggest that imprinted XCI appeared 

first and then evolved to random XCI in some species [41]. Randomness could confer an evolutionary 

advantage over imprinting for several reasons. First, a deleterious mutation would not affect every cell 

of the organism, and cells expressing the normal copy could be selected or compensate for the 



detrimental effects, at least in part. Second, it can be advantageous to have two different versions of a 

given gene. For example, the X-linked gene G6PD encodes for the Glucose-6-phosphate 

dehydrogenase, which notably protects red blood cells from oxidative damage. On the one hand, the 

G6PD A- variant can lead to haemolytic anaemia but on the other hand this allele has been associated 

with resistance to malaria. Overall, in heterozygous females, the expression of both A+ and A- alleles 

provides resistance to malaria without the haemolytic anaemia disease [64, 65].  

Another interesting example is the colour vision in platyrrhine monkeys. A single locus on the X-

chromosome can encode two different versions of a photopigment gene, with different wavelength 

sensitivities. Consequently, heterozygous females have a trichromatic vision whereas males and 

homozygous females can only detect two colours [66]. Finally and more generally, as suggested by 

Wu and colleagues [67], XCI mosaicism could expand the dynamic range of potential stimulus-

response of a neuronal assembly. Thus, random XCI could play a critical role in brain function, a likely 

scenario given the large number of X-linked genes that are expressed in the brain. 

 

3-2. Autosomal random monoallelic expression  

As mentioned earlier, the immune and OR gene families display RME and this property may have 

been selected for, in order to enhance the specificity of the response, either to antigens or to sensory 

stimuli. Interestingly, the specific expression of ORs is known to play a role in axon guidance of 

primary sensory neurons during brain development and establishment of the topographic sensory map 

[68]. 

The variable exons of the protocadherin-alpha gene cluster were also identified as showing RME in 

the brain, at least in Purkinje cells [19]. Thanks to this process, these neurons express various 

versions of this homophilic cell-adhesion protein in the cerebellum. Protocadherins are implicated in 

self-recognition processes [69], so the individual diversity induced by RME of protocadherin-alpha 

could allow neurons to avoid making self-contacts, which could be essential for proper development 

and function of brain networks. 

Besides these gene families, many individual genes have the potential to be expressed in a random 

monoallelic manner as discussed above, but unlike immune and sensory receptors, they may also 

display biallelic expression or no expression within a cell population. These genes belong to a wide 

range of functional categories, with an overrepresentation of genes encoding cell-surface receptors, as 

well as genes involved in organ development such as transcription factors [19]. The potential in vivo 

relevance of the RME pattern of these genes remains to be uncovered. However, relying on our 

knowledge of X-linked monoallelic expression and on the function of some well-known genes at stake, 

we can speculate on the role autosomal RME may play. 

The main role of XCI is thought to ensure adequate gene dosage of X-linked genes relative to 

autosomes and also between the sexes. Autosomal RME genes appear to show overall higher 

expression levels when they are expressed biallelically, than when they are expressed from a single 

allele [11]. Moreover, genes can also show biased expression towards one or the other allele, in 

different proportions, suggesting that RME of autosomal genes has the potential to fine-tune gene 

dosage. 



Some RME genes encode key developmental factors and their precise protein levels, through 

regulation of RME, might be required to ensure lineage-commitment and/or cell fate specification. In 

addition to this, RME profiles are often highly stage- and tissue-specific and there seems to be a 

general increase in monoallelic expression during differentiation [12]. An interesting example is the 

Eya1 (EYA transcriptional coactivator and phosphatase 1) gene, which was shown to be monoallelic in 

NPCs [11]. Although Eya1 may not play a critical role in NPCs, the reported allelic expression pattern 

in NPCs is a proof-of-principle that Eya1 can be monoallelically expressed. Eya1 plays a critical role in 

inner ear development [70], as its expression is necessary to induce hair cell fate in the cochlea and 

required for the proper expression pattern of other transcription factors in subsequent neurogenesis. 

Loss of Eya1 leads to an arrest of otic development [71]. Interestingly, this gene is extremely dosage-

sensitive [72, 73], as both heterozygous missense mutations and duplication cause hearing loss in 

human [74, 75]. EYA1 mutations are known to cause autosomal dominant BOR and BO syndromes 

with incomplete penetrance. Thus, if genes such as EYA1 are expressed in a random monoallelic 

fashion, this could have critical implications during development for cell fate specification and in the 

context of heterozygous mutations, thus contributing to autosomal dominant disorders. Given that the 

RME state of these genes is mitotically heritable in clonal NPCs, this implies that a transient RME 

state during development may sometimes become epigenetically stable. 

Intriguingly, we believe that RME could have a substantial impact on brain function in particular. The 

potential roles of genes encoding cell-adhesion molecules, such as protocadherin-alpha in generating 

neuronal diversity and allowing self-recognition of individual neurons, were already mentioned. In 

addition, other genes with important functions in the brain have been found to be RME. These include 

transcription factors such as FOXP2 [28], ion channels (including numerous potassium channels), as 

well as activity-regulated genes such as Arc (Activity-regulated cytoskeleton-associated protein) [11]. 

Hence, RME may be critical not only in influencing brain development but also for neuronal excitability 

and plasticity.  

Random XCI results in cellular mosaicism for expression of the paternal and maternal X-chromosome 

in females. Similarly, autosomal RME could lead to somatic mosaicism in both XX and XY individuals. 

Furthermore, autosomal RME appears to be highly cell-type and tissue-specific for different genes, 

and it may occur to variable extents unlike XCI, which occurs in all cells. Thus, RME could produce a 

remarkable cellular diversity, virtually infinite if we consider all the possible expression states and 

tissue distributions (Figure 3), with potential advantages for the organism. 

 

4. Association of random monoallelic expression with human diseases 

In this section, we will discuss the implications of RME of some X-linked and autosomal genes in 

human genetic disorders. 

4-1. X-linked disorders 

The X-chromosome carries over 1000 protein-coding genes and numerous disorders associated with 

X-linked genes have been studied intensively, due to the fact that any phenotype associated with an 

alteration or mutation of a gene on the X is immediately manifested in XY males. Some of the best 



known X-linked diseases include the fragile X syndrome (FMR1 gene), Duchenne muscular dystrophy 

(DMD), Rett syndrome (MECP2) and red-green vision deficiency (OPN1LW and OPN1MW). In 

general males are more severely affected because of their hemizygous state. For example, F8 or F9 

gene mutations cause haemophilia in males, while heterozygous females can often be completely 

asymptomatic [76]. This is thought to be due to secondary selection during haematopoiesis that 

eliminates those cells where the inactive X carries the wild type allele. On the other hand, even if a 

female is heterozygous for a mutation and has one functional copy of a gene, there can be a strong 

disease phenotype from the cells where the wild type allele is inactivated, such as in cranio-fronto-

nasal syndrome (EBFN1 mutation) [77].  

MECP2 that encodes the “methyl-CpG binding protein 2”, particularly abundant in the brain [78], is 

another example - as males with a mutant MECP2 gene die at an early age, while females survive but 

develop Rett syndrome, a severe progressive neurological disorder [79], affecting communicative and 

motor abilities with profound cognitive impairment [80]. MECP2 is one of the X-linked genes where 

dosage (i.e. bialleic as opposed to monoallelic expression) has been shown to be critical in a disease-

context. Indeed, MECP2 duplications also cause severe mental retardation in males [81], and mild to 

severe mental retardation in females [82]. As either loss or gain of function of the gene leads to 

neurological diseases, this highlights that the appropriate regulation of MECP2 dosage is essential for 

proper neural development and function. 

 

The situation for individuals with extra X chromosomes is also of interest when considering X-linked 

dosage. Such individuals are usually viable because every diploid cell retains only one active X, with 

all the others being inactivated. These chromosomal conditions are not rare, with about 1:600 males 

having Klinefelter’s syndrome (XXY; one extra X) and about 1:1000 females having triple X syndrome 

(XXX). An extra X chromosome is associated with a taller stature, an increased risk of learning 

disabilities and sterility in males, which probably results from increased expression levels of genes that 

escape XCI.  

The absence of one X chromosome leads to no obvious phenotypes in female mice. However in 

humans, XO individuals have Turner syndrome. Ninety-nine percent of X monosomies are thought to 

abort spontaneously [83], suggesting that two copies of some X-linked genes that escape XCI are 

essential, including those in the pseudoautosomal regions (PAR1, PAR2 and PAR3 [84]). Since both 

males and females have two functional and equivalent copies of all PAR genes, there is no 

requirement for dosage compensation of these genes, however biallelic expression of some genes 

might be absolutely required in both sexes. For example, haploinsufficiency of the SHOX gene in the 

PAR1 region leads to a disorder called Leri-Weill dyschondrosteosis [85]. Moreover, a double dose 

could be also required for constitutive or facultative escapees located outside the PAR regions, such 

as the brain-specific NLGN4 gene, which is associated with autism [86].  

Thus, the dosage regulation requirements for genes on the X are highly complex – with a need to 

achieve monoallelic expression of most genes by XCI, as well as a requirement for biallelic expression 

of some genes, that can vary during development and between tissues, somewhat like autosomal 

RME. 



 

4-2. Autosomal random monoallelic expression and human disorders 

Few studies have explored RME of autosomal genes in vivo to date [1, 11, 30, 87]. Most studies have 

focused on clonal cell lines in vitro due to technical limitations [35]. Thus, the extent and role of RME in 

vivo is still an open question. However, a significant number of RME genes are now known to be 

linked to various diseases, suggesting that autosomal RME has a strong disease potential. 

Correct dosage of many of the autosomal RME genes identified may in fact be essential. Two 

examples of genes for which protein dosage is critical in vivo and that have been reported to show 

RME in vitro [11, 12, 30], are APP (amyloid beta precursor protein) and SNCA (alpha-synuclein), 

implicated respectively in Alzheimer’s [88] and Parkinson’s diseases [89]. Whether these genes show 

monoallelic expression in vivo in the relevant brain regions is completely unexplored, but this could 

have important implications. In both cases, excess protein levels are known to be detrimental, leading 

to formation of amyloid plaques in the case of APP in Alzheimer’s disease, and Lewy bodies in the 

case of SNCA and Parkinson’s disease, as shown using transgenic mouse models. Therefore, if such 

genes are frequently monoallelic in the brain, epigenetic alterations, for example during aging [90], 

might lead to a dysregulation of RME mechanisms, and an increase of gene dosage which could 

potentially trigger the disease. RME mechanisms could be used as therapeutic targets to decrease the 

expression of such loci in a pathological context. 

Another important consideration for autosomal RME genes is that, given the potentially mosaic 

expression patterns, if a gene were to be mutated on one allele, some cells could then express only 

the mutant allele. This is similar to the situation for X-linked heterozygous mutations in females where 

some cells are functionally nullisomic. However, if there is a secondary selection against these cells 

such as for the X-linked mutations on F8-F9 genes, then monoallelic cells could always express the 

functional allele, thus alleviating the phenotype in a heterozygous context. If not, mutations on 

autosomal RME genes associated with diseases could show phenotypes in a heterozygous context. 

This is indeed the case (see Table 1). For example, both Eya1 and Six1 show stable RME in mouse 

NPCs and monoallelic expression of Eya1 has been observed in vivo during cochlear development in 

the mouse [11]. Heterozygous mutations in the EYA1 and SIX1 genes are the main causes of BOR 

syndrome, an autosomal dominant disorder characterized by craniofacial abnormalities, hearing loss 

and kidney deficiency, which accounts for approximately 2% of childhood deafness [38]. It is intriguing 

that several Eya factors as well as Six1, work together, in the same complexes and also display RME, 

even though they are not located on the same chromosome. The SIX1 protein interacts with EYA1 to 

form a bipartite transcription factor essential for mammalian development. Loss of function of this 

complex causes BOR syndrome, whereas re-expression of SIX1 or EYA promotes metastasis. The 

EYA1-SIX1 complex is involved in inner ear organogenesis and also plays a critical role in the 

development of the metanephric mesenchyme during kidney development [38]. While Eya1 

homozygous mutant mice lack ears and kidneys, heterozygous mutant mice exhibit a conductive 

hearing loss and renal abnormalities reminiscent of the BOR syndrome [91]. These observations 

suggest that RME of EYA1 and SIX1 could play a role in BOR syndrome aetiology, a promising 

avenue for further investigations. More generally, transient monoallelic expression of the Eya and Six 



genes may be a means of enabling the fine tuning of the dosage and stoichiometry of EYA1-SIX1 

transcription factors complexes, which may in turn be critical to allow precise doses of signals that 

enable appropriate morphogenesis.  

 

Finally, we had discussed above that X-linked genes are particularly expressed in the brain and linked 

to neurological disorders. As for RME genes, APP and SNCA were mentioned, but many other genes 

appear to be related to brain function [11]. Therefore, besides neurodegenerative diseases, RME has 

also the potential to be implicated in neurological diseases such as autism, schizophrenia [40, 92] or 

developmental speech and language disorders [28]. 

 

Conclusion 

The existence of autosomal genes displaying RME that is mitotically stable has been well-established 

in clonal cell populations in vitro. Stable RME is found for genes with a wide range of functions, 

including a number known to play critical roles during development and in cell identity. On the one 

hand, RME could be advantageous, as it has the potential to generate a remarkable level of cell 

diversity by exposing different alleles and it also represents a mechanism for fine-tuning gene dosage 

if necessary, particularly during development. On the other hand, RME also comes with 

disadvantages, as expression of a single allele can predispose the organism to loss of function in the 

context of heterozygous mutations or epimutations, thereby contributing to disease. The extent of 

RME in vivo and its biological function(s) are still somewhat debated, as there may be a substantial 

degree of variability between individuals, as well as between cells and tissue type within an individual. 

Future studies will have to overcome tissue heterogeneity and current technical limitations. In 

particular, the clonal stability of RME in vivo is a critical question to address and will have to be 

disentangled from transient monoallelic expression which results from transcriptional bursting. In fact, 

stable RME may be an occasional but not systematic outcome of transient monoallelic expression. 

Given the major implications that stable RME might have in disease, defining the mechanisms 

underlying the establishment and maintenance of RME patterns represents an important challenge.  

Fortunately, the last half-century of research on random XCI should provide a sound basis of concepts 

and tools with which to tackle random monoallelic expression of autosomal loci.  
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Table 1 - Potential implications of random monoallelic expression (RME) for pathologies.  

The table shows examples of autosomal genes identified as random monoallelically expressed in 

clonal cell populations in independent studies (columns 1 & 2) and associated with human autosomal 

dominant disorders (columns 3 & 4).  

 

Figure legends  

Figure 1- Schematic representation of different types of random monoallelic expression that arise 

during development. Random X-chromosome inactivation (XCI) and autosomal random monoallelic 

expression (RME) are stable and clonally inherited, as opposed to dynamic allelic expression. 

Figure 2- Schematic representations of the potential mechanisms underlying establishment and/or 

maintenance of autosomal random monoallelic expression (RME) patterns.  

Figure 3- Schematic view of the potential role of random monoallelic expression (RME) in the 

generation of cellular diversity.  

 

RME 

gene 
Reference Autosomal dominant disease Reference 

Dfna5 [12] 

Deafness 

[93] 

Eya1 [11] [94] 

Eya4 [11] [95] 

MYO6 [30] [96] 

Six1 [11] [97] 

Bag3 [11, 12] 

Myopathies 

[98] 

Hspb8 [11] [99] 

TTN [39] [100] 

OTX2 [39] Dystrophy of the retinal pigment epithelium [101] 

Gli2 [102] Hypopituitarism [103] 

Gja1 [10] Oculodentodigital dysplasia [104] 

APP [30] 
Neurodegenerative diseases 

[105] 

SNCA [11, 30] [106] 

FOXP2 [28] Speech and language disorder [107] 
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