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Abstract

The adaptation of prevertebra size to embryo size is investigated in the
framework of a reaction-diffusion model involving a Turing pattern. The re-
action scheme and Fick’s first law of diffusion are modified in order to take
into account the departure from dilute conditions induced by confinement in
smaller embryos. In agreement with the experimental observations of scaling
in somitogenesis, our model predicts the formation of smaller prevertebrae or
somites in smaller embryos. These results suggest that models based on Tur-
ing patterns cannot be automatically disregarded by invoking the question of
maintaining proportions in embryonic development. Our approach highlights
the non trivial role that the solvent can play in biology.

PACS: 87.17.Pq, 82.40.Ck, 82.20.Yn, 87.18.Vf

1 INTRODUCTION

Scaling of pattern formation with embryo size is a universal feature observed in
many organisms and the question of maintaining proportions is relevant for both
vertebrates [1, 2, 3] and invertebrates [4, 5, 6, 7]. However, the formation of pat-
terns that are proportional to the size of the embryos remains a poorly understood
property of development. Morphogen gradient is a widely accepted feature by which
a developing tissue provides its cells with positional information [8, 9]. The ability
of an embryo to adapt to size variations is often related to the scaling of morphogen
gradient with global embryo size [2, 5, 6, 7]. We recently postulated that a reaction-
diffusion model based on a Turing pattern could account for prevertebra or somite
formation and non trivial experiments have been reproduced [10, 11, 12, 13]. In
order to further investigate the validity of the model, we wish to examine if it could
account for scaling of pattern formation.

Since the observation of temporal oscillations of some morphogens in the un-
differentiated tissue or presomitic mesoderm [14], the clock and wavefront model
[15] has been the most commonly admitted model of somitogenesis [16, 17, 18, 19].
Nevertheless, this model has been lately challenged by recent experiments that show
the formation of somites without the need of gene oscillations and clocks [20]. As
an alternative to clock and wavefront type models, reaction-diffusion processes offer
a minimal framework to model the formation of somites without losing the molec-
ular scale. In this context, a Turing structure, i.e. a spatially-periodic oscillation
of morphogen concentrations is supposed to develop behind a propagating chemi-
cal wave front. This prepattern is then admitted to induce a complex cascade of
pathways, eventually leading to the differentiation of tissues and vertebra formation
[21, 22, 23, 24, 25, 26]. However, the connection between spine development and
Turing instability remains a matter of debate [27]. The main criticism against Tur-
ing pattern is that it does not a priori account for scaling of patterning and size
adaptation of the somites to the global size of an embryo. Indeed, the wavelength of
a Turing structure is fixed by dynamics, the rate constants of the reactions and the
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diffusion coefficients of the chemical species, and not by system size [28]. Different
ways to preserve proportion in Turing pattern have been achieved by introducing
size-dependent dynamical parameters or additional species whose concentration de-
pends on system size [29, 30, 31, 32].

Furthermore, physiological media are known to suffer from confinement [33, 34,
35, 36, 37, 38] and we propose to address the issue of size adaptation in the general
context of molecular crowding. We start from the intuitive statement that the effect
of confinement is stronger in smaller embryos. In these conditions, the usual assump-
tions about dilute solutions may fail and the role of water or solvent in the chemical
scheme may not be ignored [39]. Consequently, the rate constants [33, 34, 40] and
the diffusion coefficients [41] may be both modified. More precisely, we propose
to incorporate the solvent in the chemical scheme and to examine the deviation to
usual Fick’s law of diffusion in the framework of linear irreversible thermodynamics
[42, 43]. The effects of concentration-dependent diffusivity and enhancement of the
concentration of some reactant on Turing patterns have been extensively investigated
[44, 45, 46, 47, 48]. Specifically, our aim is to determine whether a strengthening of
confinement may induce a decrease of structure wavelength and consequently somite
size in smaller embryos.

The paper is organized as follows. In section 2, we present the reaction-diffusion
model and the modified partial differential equations in the presence of confinement.
The numerical integration procedure is made precise in section 3. The results are
discussed in section 4. Section 5 is devoted to conclusion. The detailed derivation of
the modified laws of diffusion in the presence of a departure from ideality is given in
the appendix A. The appendix B contains an analytical derivation of the perturbed
wavelength of the spatial structure in the limit where the effect of confinement is
stronger on reaction than diffusion.

2 MODEL: REACTION-DIFFUSION EQUATIONS

IN A CROWDED ENVIRONMENT

We recently studied the following reaction scheme, inspired from the Schnakenberg
model [49] and the Gray-Scott model [50], to account for the formation of somites
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[10, 11, 12, 13]:

A
k1

→ R1 (1)

2A + B
k2

→ 3A (2)

B
k3

⇀↽
k′
−3

R2 (3)

where the densities of species R1 and R2 are kept constant due to appropriate ex-
changes with reservoirs. Species A, expressed at the rostral end of the embryo, may
be identified with retinoic acid (RA) and genes involved in RA signaling, whereas
species B, present at the caudal end, may been related to the fibroblast growth
factor (Fgf) and genes involved in Fgf pathway [51]. Different couples of antagonist
gradients are found in the literature and may play the role of the activator A and
the inhibitor B of the Turing structure, provided that B diffuses faster than species
A [18, 52]. In the absence of a perturbation, the dynamics of the densities ρA and
ρB of species A and B is governed by the following reaction-diffusion equations:

∂ρA
∂t

= −k1ρA + k2ρ
2
AρB +D∗

A

∂2ρA
∂x2

(4)

∂ρB
∂t

= k−3 − k3ρB − k2ρ
2
AρB +D∗

B

∂2ρB
∂x2

(5)

where ki, (i = 1, 2, 3,−3), are rate constants, D∗

A and D∗

B are the diffusion coeffi-
cients of species A and B, respectively. We have set k−3 = k′

−3ρR2
for the apparent

rate constant of the reverse step of Eq. (3). Provided that species B diffuses faster
than species A and for well-chosen rate constant values, a Turing pattern develops.
We focussed on the beginning of growth and did not consider the termination pro-
cess of somite formation [10, 12, 13]. The reaction-diffusion system has been shown
to correctly mimic the alteration of the structure wavelength due to the introduction
of a local source of B in the undifferentiated tissue [12, 13, 16, 53]. However, the
ability of Turing structures to reproduce the fact that smaller embryos of a same an-
imal species show the same number of somites of smaller size, remains under debate.

To investigate this issue, we admit that the smaller size of an embryo may induce
spatial crowding and a departure from the usual assumptions about dilute solutions.
Indeed, both retinoic acid and Fgf signaling depend on maternal factors [54, 55, 56]
and it is reasonable to assume that the concentration of maternal factors is higher
in smaller embryos. Interestingly, the concentration of another growth-promoting
factor, the insulin-like growth factor-I, has been reported to be higher in smaller
embryos of pigs [57]. Hence, the smaller size of an embryo leads to a strengthening
of confinement. Then, the hypothesis according to which the solvent is in great
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excess and does not need to be taken into account in the reaction scheme may not
be valid [43]. To be explicit, we introduce the following interactions between the
reactive species and the solvent. We make the hypothesis that the supply of species
B from the reservoir R2 simultaneously drops the solvent into the surroundings.
Conversely, the elimination of A and B through exchanges with the reservoirs is
supposed to require an interaction with the solvent. In the case of a dilute solution
of species A and B, the role of the solvent is hidden in the reaction mechanism given
in Eqs. (1-3) but, when the solution is not dilute enough for the density of the
solvent to remain constant, the schemes of supply and removal processes of species
A and B is completed as follows:

A + ∗
k∗
1

→ R1 (6)

2A + B
k2

→ 3A (7)

B + ∗
k∗
3

⇀↽
k′
−3

R2 (8)

where ∗ denotes a particle of the solvent and the autocatalytic step given in Eq. (2)
is unchanged. Hence, the density of the solvent, ρ∗, is likely to vary. The balance
equation for the density ρI of species I reads:

∂ρI
∂t

+ ~∇ ·~jI =
∂ρI
∂t

|reac, I = A,B, ∗ (9)

where the right-hand side accounts for the variation of ρI in the volume due to
reactions and the flux ~jI is the mass flow of species I through a unit surface per unit
time. The exchanges with the reservoirs of R1 and R2 guarantee that the fluxes ~jR1

and ~jR2
exactly compensate the reactive terms

∂ρR1

∂t
|reac and

∂ρR2

∂t
|reac, respectively,

so that ρR1
and ρR2

remain constant. Confinement is not supposed to interfere with
the performances of the reservoirs of chemical species. We admit that the so-called
chemostats are able to impose that the densities ρR1

and ρR2
of species R1 and R2

remain homogeneous and constant. In the following, the total density is defined as:

ρ = ρA(x, t) + ρB(x, t) + ρ∗(x, t) (10)

in which the invariant densities of species R1 and R2 can be disregarded. The flux
obeys

~jI = ρI(~uI − ~u) (11)

where ~uI is the velocity of the center of mass of species I, and ~u = 1

ρ

∑

I=A,B,∗

ρI~uI ,

the velocity of the center of mass of the fluid. Using Eq. (10) for the total density
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and the definition of the velocity of the center of mass, we immediately show that
the sum of all the fluxes vanishes:

~jA +~jB +~j∗ = 0. (12)

Then, summing Eq. (9) over I = A,B, ∗ and taking Eq. (12) into account, we get

∂ρ

∂t
=

∑

I=A,B,∗

∂ρI
∂t

|reac (13)

In the absence of nuclear reactions, the right-hand side vanishes due to the conser-
vation of the total mass, so that the total density ρ is constant. A solution of species
A and B is said to be dilute if ρA(x, t)/ρ and ρB(x, t)/ρ tend to zero, which amounts
to neglect the variations of the density of the solvent ρ∗(x, t). In these conditions,
the two chemical schemes given in Eqs. (1-3) and Eqs. (6-8) are identical.

If the surroundings are crowded and the solution cannot be considered suffi-
ciently dilute, the laws of diffusion may be modified. Diffusion typically enters into
the class of phenomena that are described in the framework of linear irreversible
thermodynamics [42]. According to the second law of thermodynamics, the entropy
production is a positive quantity that can be written as the sum of products of
thermodynamic fluxes and forces. In the linear domain of irreversible thermody-
namics, these fluxes and forces are linked by linear relationships. Fick’s first law is
an example of such a linear relationship between a flux of matter and the conjugated
thermodynamic force. In the case of an ideal solution and for reasonable assump-
tions, the diffusion of a chemical species only depends on this species. In a non
dilute solution, the linear relationships between the fluxes and the conjugated forces
of all the species imply that the diffusion of a species depends on the densities and
the diffusion coefficients of the other species. The resulting Fick’s first law, valid in
a non dilute solution, is derived in the appendix A.

Finally, the reaction-diffusion equations governing the evolution of the densities
of species A and B engaged in the chemical scheme given in Eqs. (6-8) are deduced
from the balance equation given in Eq. (9) and the Fick’s first law given in Eqs.
(A.13,A.14). It reads:

∂ρA
∂t

= −k1
ρA
ρ
(ρ− ρA − ρB) + k2(ρA)

2ρB (14)

+D∗

A

[(

1−
ρA
ρ

)

∆ρA −
(~∇ρA)

2

ρ

]

−D∗

B

[ρA
ρ
∆ρB +

~∇ρA · ~∇ρB
ρ

]

∂ρB
∂t

= k−3 − k3
ρB
ρ
(ρ− ρA − ρB)− k2(ρA)

2ρB (15)

−D∗

A

[ρB
ρ
∆ρA +

~∇ρA · ~∇ρB
ρ

]

+D∗

B

[(

1−
ρB
ρ

)

∆ρB −
(~∇ρB)

2

ρ

]
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where ∆ = ~∇2 denotes the Laplacian. In a 1-dimensional system, we have ∆ = ∂2

∂x2

and ∇ = ∂
∂x
. Hence, in a solution of species A and B that cannot be considered

dilute, the transport by diffusion of a given species depends on the densities, ρA, ρB,
and the diffusion coefficients, D∗

A, D
∗

B, of the two species. It is worth noting that
Eqs. (4,5) associated with the unperturbed reaction-diffusion system in dilute con-
ditions are retrieved from Eqs. (14,15) in the limit where ρA/ρ and ρB/ρ tend to zero.

3 NUMERICAL INTEGRATION PROCEDURE

In order to numerically solve the reaction-diffusion equations, a discrete space vari-
able, i = x/∆x, and a discrete time variable, s = t/∆t, are introduced, where ∆x is
the length of a spatial cell i and ∆t is the integration time step. The Euler method is
used to integrate Eqs. (4,5) for the ideal solution and Eqs. (14,15) for the non dilute
solution. The discretized perturbed equation for species A is given to illustrate the
numerical procedure:

ρA(i, s+ 1) = ρA(i, s) + ∆t

{

−k1
ρA(i, s)

ρ
(ρ− ρA(i, s)− ρB(i, s))

+k2ρA(i, s)
2ρB(i, s) (16)

+
D∗

A

ρ(∆x)2

[

(ρ− ρA(i, s))(ρA(i+ 1, s) + ρA(i− 1, s)− 2ρA(i, s))

−(ρA(i+ 1, s)− ρA(i, s))
2
]

−
D∗

B

ρ(∆x)2

[

ρA(i, s)(ρB(i+ 1, s) + ρB(i− 1, s)− 2ρB(i, s))

+(ρA(i+ 1, s)− ρA(i, s))(ρB(i+ 1, s)− ρB(i, s))
]}

where ρI(i, s) is the density of species I in spatial cell i at discrete time s. The
parameter values are chosen in the domain of stability of Turing pattern and set at
k1 = 2.5673, k2 = 0.8793, k3 = 1.9255, k−3 = 7.7019, D∗

A = 2.7, D∗

B = 27 [12]. The
rate constant values and the diffusion coefficient values impose the wavelength of the
Turing pattern at λ = 12.7, as explained in the appendix B. In order to optimize
the accuracy of the numerical results, the length ∆x of a spatial cell is adjusted
in such a way that the wavelength of the unperturbed structure corresponds to a
sufficiently large, integer number of cells. Specifically, we choose λ/∆x = 38, which
imposes ∆x = 0.33527. The number of digits does not reveal that the model suffers
from a high sensitivity to small variations of the parameters but simply results from
requiring that the wavelength exactly spans over an integer number of spatial cells.
It is to be noted that we studied the effects of fluctuations on the structure and
proved that, instead of blurring it, noise sustains the pattern [10]. The requirements
of the numerical integration procedure impose a sufficiently small integration time
step, ∆t = 0.000345, such that the numerical coefficients in front of the reactive
terms and the diffusive terms are smaller than 1 and 1

2
, respectively [58]. If the
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values of the rate constants and diffusion coefficients of well-identified morphogens
would be available for a specific vertebrate embryo, the model could be checked by
comparing the wavelength of the Turing structure with the actual value of somite
size. But such a quantitative analysis far exceeds the scope of this study, in which
the length scale and time scale are arbitrary. In the following, lengths are scaled by
the length ∆x of a spatial cell and time is scaled by the integration time step ∆t,
so that the accuracy of the discrete integration scheme may be straightforwardly
evaluated.

We denote by (ρhA, ρ
h
B), for h = 1, 2, 3, the three homogeneous steady states of the

unperturbed system and (ρ∗hA , ρ∗hB ), the three steady states of the crowded system.
The initial conditions are analogous in the two situations. Step functions are chosen
for the initial density profiles of species A and B prepared in n0 = 150 spatial cells
for both the unperturbed system and the non dilute system. The 10 first spatial
cells, supposed to mimic the vicinity of the head of the embryo, are prepared in the
steady state (ρ1A = (k2k−3+

√

(k2k−3)2 − 4(k1)2k2k3)/(2k1k2), ρ
1
B = (k−3−k1ρ

1
A)/k3).

In agreement with the preexistence of the head, zero-flux boundary conditions are
chosen at the rostral end, so that the density profiles of species A and B have an
extremum at this boundary, once the Turing pattern have developed. The (n0−10)
next spatial cells are prepared in the steady state (ρ3A = 0, ρ3B = k−3/k3 = 4) for the
unperturbed system and in the steady state

ρ∗3A = 0, (17)

ρ∗3B =
ρ

2
(1−

√

1− 4k−3/(k3ρ)) ≃ 4.143 (18)

for the crowded system.

Initially, the density of species A is higher than the density of B at the rostral
end and the contrary is observed at the caudal end. The autocatalytic reaction given
in Eq. (2) or Eq. (7) produces A and consumes B so that species A invades and
replaces species B. Hence, a travelling front emerges as a solution of the equations
and the density of species B tends to decrease at a given distance from the caudal
end. At this extremity, the boundary conditions are different from those chosen in
references [12, 13] in which unlimited, free growth was considered. The growth of
embryos of finite size is obtained as follows. We add a spatial cell at the caudal
end at a constant rate, that we choose smaller than the propagation speed of the
wave front, imposed by the dynamical parameters. Hence, the density of species
B at a given distance from the caudal end decreases. Such conditions correctly re-
produce that the presomitic mesoderm, comprised between the growing caudal end
and the faster travelling antagonist gradients of A=retinoic acid and B=Fgf, gradu-
ally shrinks as observed for many vertebrates, such as zebrafish, chickens, mice and
snakes [1].

In order to stop the simulation before the travelling wave reaches the very end
of the medium, we introduce a threshold ǫ, such that front propagation and somite
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growth are arrested when the density of species B at a given distance from the cau-
dal extremity falls below this threshold. More precisely, the dilute system continues
to grow as long as ρB((n− 100)∆x, t) > ǫ. In other words, the numerical resolution
is stopped at time t = tstop for the unperturbed system when the density of species
B in the spatial cell (n− 100) becomes smaller than the threshold ǫ for an embryo
of total size n. Similarly, somite growth in the crowded system is arrested at time
t = t∗stop when ρB crosses the same threshold ǫ in the spatial cell (n∗−100). Figure 1
illustrates the boundary conditions chosen to mimic the growth of an embryo as long
as the threshold ǫ has not been crossed. Periodic spatial oscillations of the densities
ρI of species I=A,B are formed according to Turing instability which develops be-
hind the propagating wave front. Between the travelling gradients of species A and
B and the caudal end, the unstructured region mimics the presomitic mesoderm.
The values of n and n∗ are chosen on the basis of a trial and error procedure in
such a way that the same number of wavelengths, fixed at 21, are formed in the two
cases when the numerical resolution stops, i.e. when ρB crosses ǫ in the spatial cells
n − 100 and n∗ − 100 in the dilute and confined systems, respectively. Using this
trick, we are able to assign a length L = n∆x to the ideal solution and L = n∗∆x
to the non dilute system. A more refined termination process could be envisaged
to form smaller somites at the caudal end, but this point is not the concern of the
present study.

As already pointed out, the ideal solution is retrieved in the limit where the
solvent is in great excess with respect to the solutes A and B, i.e. when (ρA(x, t) +
ρB(x, t))/ρ → 0, with ρ given in Eq. (10). In an inhomogeneous, growing system
in which a spatial structure develops, the evaluation of the departure from ideality
by a single quantity requires the choice of a location where the system remains in a
stationary state. To this goal, we choose the caudal end of the embryo, characterized
by the homogeneous steady state (ρ∗3A , ρ∗3B ) given in Eqs. (17,18). Hence, we define
the strength of confinement or departure from ideality by the ratio between the sum
of the densities of species A and B and the total density evaluated at the steady
state (ρ∗3A , ρ∗3B ):

δ =
ρ∗3A + ρ∗3B

ρ
(19)

Acording to Eqs. (17,18), it reads:

δ =
1

2
−

1

2

√

1− 4k−3/(k3ρ) (20)

which highlights that the total density ρ may be used as a convenient parameter
to control the departure from ideality, without changing the rate constants and the
diffusion coefficients, i.e. without affecting the unperturbed equations given in Eqs.
(4,5). In particular, Eq. (20) shows that the parameter δ and the departure from
ideality decrease as the total density ρ increases. The ideal solution, where the
solvent is in great excess, is associated with the limit ρ → ∞ for which δ → 0. In
the next section, we present the differences between the spatial structures obtained
in a more or less confined system.

9



� ✁ ✂✄☎✆

✝✞✟✠✡☛☞

✌✍✎✏✍✑ ✒☛✏

✓✞✍✔✒✑✑✡☛☞

✕✞✟☛✖✗✡✘✒✏

✞✟✙✖✞✍✑ ✒☛✏

✚✛

✚✛✜✢✣✣

✤

✥

Figure 1: (Color online) Snapshot of the spatial density profiles, ρA and ρB, of species
A (red dashed line) and B (black solid line) at time t∗ = 350000∆t, solution of the
equations in a crowded system (Eqs. (14,15)) before the end of system growth. The
parameters take the following values in arbitrary units: k1 = 2.5673, k2 = 0.8793,
k3 = 1.9255, k−3 = 7.7019, D∗

A = 2.7, D∗

B = 27, ∆t = 0.000345, ∆x = 0.33527,
ρ = 120. The growing caudal end has reached the spatial cell n∗ = 592. The
travelling gradients of species A and B propagate faster than the system grows and
the density of species B at a given distance from the caudal end, ρB((n

∗−100)∆x, t∗),
tends to decrease. At time t∗, the threshold ǫ = 3.94 is not yet crossed in the spatial
cell n∗ − 100 = 492 and growth is not stopped.
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4 RESULTS

We look for numerical solutions of the unperturbed equations (Eqs. (4,5)) in a dilute
solution and the modified equations (Eqs. (14,15)) for a crowded system.

The results are given in Fig. 2 for the unperturbed system associated with δ = 0
and a small, confined system associated with δ = 0.0345 according Eq. (20) for
the parameter values given in Fig. 1. At a given time, the embryo is supposed
to be oriented with the head on the left and the caudal end on the right of the
figure: In both the unperturbed and confined systems, a stationary, periodic spatial
pattern of Turing type develops behind a propagating wave front. The periodic
spatial oscillations between green and blue colors reveal the succession of minima
and maxima of the density ρB of species B in the structured region, red region can
be identified with the unstructured caudal tissue, and yellow region is outside the
embryo. The same threshold, ǫ = 3.94, is reached earlier in the case of the confined
system and the length L of the system is smaller. In the following, we discuss
the consequences of confinement on wave front propagation speed and morphogen
gradient, growth rate (i.e. embryo size), and wavelength of the structure (i.e. somite
size).

4.1 Effect of confinement on wave front propagation speed

and morphogen gradient

The propagation speed of the chemical wave front is given by the slope of the blue
line between the green and blue periodic pattern and the red unstructured region
in Fig. 2. We find a wave front propagation speed of vp = 0.934 × 10−3∆x/∆t for
the unperturbed system and v∗p = 1.33× 10−3∆x/∆t for the confined system. One
of the effects of confinement in this model is thus to speed up somite formation pro-
cess behind the propagating front. Limited experimental evidence of the correlation
between growth speed and embryo size is reported in the literature. Experiments
on mouse embryos whose size has been reduced by a treatment with mitomycin C
reveal a complex, non monotonous variation of growth speed: treated and conse-
quently smaller embryos show an early phase of growth retardation but accelerate
their growth after 9.5 days post coitum (p.c.) and actually grow faster than normal
embryos after 10 days p.c. [59]. However, the correlation between morphogen gra-
dient size and embryo size has been repeatedly observed for both vertebrates and
invertebrates [2, 4, 5, 7].

The morphogen gradient is defined as the slope of the morphogen density pro-
file at the inflection point of the travelling wave front, located between the Turing
pattern and the steady state (ρ∗3A , ρ∗3B ). The final density profiles of the two species
A and B, supposed to play the role of morphogens, are given in Fig. 3 in the case
of an unperturbed system and a crowded one. The density profiles are used to eval-
uate the morphogen gradients. For species B, the morphogen gradient is found to
increase from gB = 0.16/∆x for the unperturbed system to g∗B = 0.18/∆x for the
confined system. Similar results are obtained for species A. Hence, the increase of
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Figure 2: (Color online) Time-space evolution of the density ρB(x, t) of B species
(see color scale), (a) solution of the unperturbed equations (Eqs. (4,5)) and (b)
solution of the equations in a crowded system (Eqs. (14,15)). The parameter values
are given in the caption of Fig. 1. The threshold, ǫ = 3.94, is reached in spatial cell
n − 100 = 868 at time tstop = 878264∆t in the unperturbed system and in spatial
cell n∗ − 100 = 795 at time t∗stop = 591836∆t in the confined system. The yellow
regions are outside the simulated system.
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Figure 3: (Color online) Final spatial density profiles, ρA and ρB, of species A (red
dashed line) and B (black solid line), solutions of the unperturbed equations (top,
Eqs. (4,5)) at time tstop = 878264∆t and solutions of the equations in a crowded
system (bottom, Eqs. (14,15)) at time t∗stop = 591836∆t. The parameter values are
given in the caption of Fig. 1.
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the front propagation speed is directly correlated with the increase of the travelling
gradients of species A and B when the solution departs from ideality. Hence, the
model predicts that an embryo, suffering from a strengthening of confinement and
of consequently smaller size, is associated with a wave front of steeper gradient, in
agreement with experiments on vertebrates [2] and invertebrates [4, 7].

4.2 Effect of confinement on system length

We first examine the growth speed of the embryo in the two limiting cases presented
in Figs. 2, 3 in the specific case where the animal is supposed to have 21 somites. In
Fig. 2, the slope of the limit between the red presomitic mesoderm and the yellow
region, outside the embryo, represents the growth speed of the embryo, denoted by
vg and v∗g for the unperturbed and confined systems, respectively. We recall that
the termination of the spine formation process is reproduced first, by imposing a
smaller growth speed of the embryo than the front propagation speed, and secondly,
by arresting somite formation as the density of species B in the spatial cell (n−100)
or (n∗ − 100) falls below the threshold ǫ. In both cases, we have vg < vp and
v∗g < v∗p. Specifically, the speed vg = 0.920× 10−3∆x/∆t, at which the unperturbed
system grows, is chosen to obtain 21 somites when the density ρB((n − 100)∆x, t)
crosses the chosen threshold value ǫ = 3.94, i.e. when growth is arrested. Then,
the growth rate of the presomitic mesoderm in the non dilute system is adjusted in
such a way that the same threshold ǫ is crossed for ρB in cell n∗ − 100 when the
same number of somites has been formed. It reads: v∗g = 1.27 × 10−3∆x/∆t. We
find that the simulation stops when the embryo reaches the length L = 968∆x in
the unperturbed case and L∗ = 895∆x in the confined system. In the two cases, 21
wavelengths supposed to correspond to the formation of 21 somites are observed,
but, in a confined environment, the larger propagation speed v∗p of the wave front
induces the faster growth of the embryo which reaches earlier the definitive number
of somites for a smaller total length.

We then perform a systematic analysis of the variation of system length L with
the departure from ideality evaluated by the parameter δ defined in Eqs. (19,20).
Specifically, the equations associated with a crowded system (Eqs. (14,15)) are
numerically solved for the same parameter values except the total density ρ. Equa-
tion (20) is used to compute the departure from ideality δ. The total number of
cells n∗ which fixes the length L = n∗∆x of the system associated with different
values of δ is determined by trial and error until 21 somites are formed when the
threshold ǫ is reached in cell n∗ − 100. The results are given in Fig. 4. Although
the approach is deterministic, the results look noisy because of the procedure used
to stop the numerical solution. With a finer spatial discretization, i.e. more cells
per wavelength, a better accuracy on the system length L would be obtained. As
expected, the behavior of the dilute solution obtained by solving the unperturbed
equations (Eqs. (4,5)) is recovered when solving the equations for a crowded system
for a sufficiently small value of δ. At the precision of the numerical solutions, the
unperturbed results are retrieved for δ = 0.0004. When the departure from ideality
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Figure 4: (Color online) Dimensionless system length L/∆x versus departure from

ideality δ =
ρ∗3
A

+ρ∗3
B

ρ
. The open squares are obtained by solving Eqs. (14,15) for a

crowded system for the parameter values given in the caption of Fig. 1 and a variable
total density ρ. The line is a linear fit of the data in the domain δ ∈ [0, 0.035]. The
red solid square gives the results of Eqs. (4,5) for the unperturbed system.
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is large, for δ > 0.035, the decrease of system length is nonlinear. For such strong
perturbations, the hypotheses leading to Eqs. (A.2,A.9) are not supposed to be
valid. Interestingly, a linear relationship between system length L and the strength
of confinement is obtained in the interval δ ∈ [0, 0.035], which defines the domain of
validity of the approach. An embryo of normal size L is supposed to be associated
with a departure δ from ideality inside the interval [0, 0.035]. In order to optimize
the difference between the system sizes observed in Figs. 2, 3, we have chosen to
show the results obtained for the boundaries of the domain of validity, i.e. the limit
δ → 0 of a dilute solution, which leads to the largest embryo, and the nonideal case
δ = 0.035, which leads to a small embryo.

4.3 Effect of confinement on the wavelength of the pattern

In the structured region shown in Figs. 2, 3, the maxima of ρB are supposed to
initiate the formation of boundaries between somites so that somite size may be
evaluated by the wavelength of the spatial structure. As shown by the final density
profiles in Fig. 3, we find that the wavelength λ∗ ≃ 35.1∆x in the crowded system is
smaller than the unperturbed value λ = 38∆x. Hence, confinement in the smaller,
non dilute system leads to the formation of somites of smaller size than in the unper-
turbed system. The connection between the departure from ideality δ and system
size L has been proven in Fig. 4. Figure 5 shows the correlation between system size
L and the wavelength λ∗ of the structure. The linear relationship between L and
λ∗ clearly reproduces the scaling behavior observed between embryo size and somite
size. The main result of the paper is that the departure from ideality in a smaller
system induces the decrease of the wavelength of a Turing structure. Confinement
can be reasonably considered as a phenomenon participating in the adaptation of
somite size to system size in the framework of a Turing pattern.

An analytical evaluation of the wavelength in the confined system is performed
in the appendix B. In particular, we show that the perturbation of diffusion due
to confinement has a smaller impact on the spatial structure properties than the
perturbation of the chemical reactions. This result is in line with experimental
measurements of diffusion coefficients in different dipteran species. Contrary to the
morphogen gradient, effective diffusion is found to be essentially the same for em-
bryos of very different sizes [5].

Consequently, we derive the dispersion relations for the confined system with un-
perturbed diffusion. The selected wavelength of the structure is associated with the
mode for which the dispersion relation is maximum. The results are given in Fig. 6.
The selected mode qcmax in the confined system with unperturbed diffusion is larger
than the selected mode qmax in the unperturbed system. The selected wavelength,
λc = 2π/qcmax ≃ 35.3∆x, in the system with perturbed reactions is smaller than the
unperturbed wavelength λ = 2π/qmax ≃ 38∆x. The value of λc compares well with
the numerical value λ∗ ≃ 35.1∆x observed in Fig. 3 when solving Eqs. (14,15), in
which both reactions and diffusion are perturbed by confinement.
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Figure 5: (Color online) Dimensionless wavelength λ∗/∆x of the pattern versus
dimensionless system length L/∆x. The open squares are obtained by solving Eqs.
(14,15) for a crowded system for the parameter values given in the caption of Fig.
1 and a variable total density ρ associated with a departure from ideality in the
interval δ ∈ [0, 0.035]. The red solid square is obtained by solving Eqs. (4,5) for the
dilute system. The line is a linear fit of the data.
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Figure 6: (Color online) Dispersion relations. Real part of the eigenvalues of the
linear operator of Eqs. (4,5) associated with the unperturbed system (black solid
line) around the steady state (ρ1A.ρ

1
B) versus square of the mode q2. The parameter

values are given in the caption of Fig. 1. The selected wavelength is deduced from the
maximum of the curve: λ = 2π/qmax. Analogous results for the perturbed chemical
scheme given in Eqs. (6-8) and unperturbed diffusion (red dashed line) around
(ρc1A , ρ

c1
B ). The selected wavelength, λc = 2π/qcmax, is smaller than λ and compares

well with the numerical value λ∗ observed in Fig. 3 when solving numerically Eqs.
(14,15).

Hence, a reaction-diffusion model, which takes into account a departure from
dilute conditions, is able to reproduce that a smaller embryo faster presents a cor-
rect number of somites of smaller size. The larger propagation speed of the wave
front observed as confinement increases is associated with a steeper concentration
gradient [2]. The results can be straightforwardly extended to the segmentation
of invertebrates. In agreement with experiments on Drosophila, our model based
on Turing pattern correlates the scaling of patterning with the modification of the
steepness of the signaling gradient [4, 7].
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5 CONCLUSION

In this paper, we consider a reaction-diffusion model of somitogenesis based on the
mechanism of Turing instability and are dealing with the main concern of this kind
of model, which is its ability to account for pattern size adaptation to total embryo
size. We assume that in a smaller embryo, molecular crowding is reinforced, so that
non specific interactions of the reactive species with the solvent cannot be ignored
in the reaction scheme and in the transport by diffusion.

We derive a modified Fick’s first law in the framework of linear irreversible ther-
modynamics and write perturbed reaction-diffusion equations, valid in a non dilute
system. We find that confinement leads to a steeper travelling gradient of mor-
phogen, a larger propagation speed of the chemical wave front and consequently
to the faster formation of the total number of somites, but of smaller size. Hence,
we have developed a model based on Turing pattern which incorporates the effects
of crowding and predicts the formation of smaller somites in smaller embryos, in
agreement with the experimental observations.

Our results prove that Turing modeling of somitogenesis cannot be discarded by
invoking the question of scaling in embryonic development. Moreover, the reaction-
diffusion model we propose has the advantage to be based on elementary microscopic
processes and to display some universal features, in so far as it may be used to model
spine formation as well as segmentation of invertebrates. Our approach sheds a new
light on the role that the solvent can play in biological phenomena, in which it is
often disregarded.

A APPENDIX A

This appendix is devoted to the derivation of the modified laws of diffusion in a non
dilute solution. The linear irreversible thermodynamics framework can be used to
establish Fick’s laws in a ternary mixture of A, B and ∗ [42]. The entropy production
per unit mass due to isothermal diffusion is usually given in the framework of the
center of mass of the solution:

σ =
1

T

∑

I=A,B,∗

~jI · (−~∇TµI) (A.1)

where ~∇T denotes the spatial gradient at constant temperature T and µI , the chem-
ical potential of species I. The flux ~jI of species I is said to be conjugated to the
opposite of the gradient of the chemical potential of I. Fick’s first law is a straight-
forward consequence of linear relationships between the fluxes of species A and B
and the conjugated forces (−~∇TµA) and (−~∇TµB).

Specifically, the effect of confinement is supposed to be sufficiently small to ensure
that the chemical potential µI of species I per unit mass is the same as in an ideal
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solution:

µI = µ0
I +

RT

MI

ln ρI (A.2)

where µ0
I is the standard chemical potential of species I per unit mass, R, the gas

constant, and MI , the molar mass of species I.
The framework of the solvent * is more convenient to establish Fick’s laws in

a crowded environment. The flux of species I in the framework of the solvent is
defined by ~j∗I = ρI(~uI − ~u∗) where ~u∗ is the velocity of the solvent. By definition,
the flux of the solvent vanishes in the framework of the solvent:

~j∗
∗
= 0. (A.3)

In the case of isothermal diffusion in a non viscous fluid, mechanical equilibrium at
constant ρ leads to ~∇p = 0 and Gibbs-Duhem equation to ~∇p =

∑

I=A,B,∗

ρI ~∇TµI ,

where p is pressure [42]. Hence, we have:

∑

I=A,B,∗

ρI(−~∇TµI) = 0. (A.4)

The expression of entropy production given in Eq. (A.1) can be rewritten as:

σ =
1

T

∑

I=A,B,∗

ρI(~uI − ~u∗ + ~u∗ − ~u)(−~∇TµI) (A.5)

=
∑

I=A,B

~j∗I (−~∇TµI) (A.6)

where use has been made of Eqs. (A.3,A.4). Phenomenological coefficients ΩIJ are
introduced to write linear relationships between thermodynamic fluxes ~j∗I and forces

(− ~∇TµJ):
~j∗I =

∑

J=A,B

ΩIJ(−~∇TµJ) (A.7)

leading to Fick’s first law
~j∗I =

∑

J=A,B

D∗

IJ(−
~∇ρJ) (A.8)

where the relationship between the diffusion coefficients D∗

IJ and the phenomeno-
logical coefficients ΩIJ can be easily deduced from Eq. (A.2). In a dilute solution,
the diffusion coefficients D∗

IJ are known to be nearly independent of the densities
ρI and to have negligible non diagonal elements, D∗

IJ ∼ 0 for I 6= J . Exactly as we
used the expression of the chemical potential of an ideal solution, we assume that
the level of confinement is sufficiently low to ensure D∗

IJ = D∗

IδIJ , where δIJ is the
Kronecker symbol. The Fick’s first law becomes:

~j∗I = D∗

I (−
~∇ρI), I = A,B (A.9)
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The fluxes ~j∗I , (I = A,B), in the framework of the solvent are related to the
fluxes ~jI , (I = A,B, ∗) in the framework of the center of mass by:

~j∗I = ρI(~uI − ~u) + ρI(~u− ~u∗)

= ~jI −
ρI
ρ∗
~j∗ (A.10)

The reverse relations are given by:

~jA =
(

1−
ρA
ρ

)

~j∗A −
ρA
ρ
~j∗B (A.11)

~jB = −
ρB
ρ
~j∗A +

(

1−
ρB
ρ

)

~j∗B (A.12)

where Eqs. (10,12) have been used to eliminate ρ∗ and ~j∗. Hence, in the framework
of the center of mass, the Fick’s first law given in Eq. (A.8) leads to:

~jA = −
(

1−
ρA
ρ

)

D∗

A
~∇ρA +

ρA
ρ
D∗

B
~∇ρB (A.13)

~jB =
ρB
ρ
D∗

A
~∇ρA −

(

1−
ρB
ρ

)

D∗

B
~∇ρB (A.14)

These equations are used to derive the divergence of the fluxes, ~∇·~jI , in the balance
equations (Eq. (9)) which govern the dynamics of the densities ρI for I = A,B in a
non dilute solution.

B APPENDIX B

In order to evaluate the wavelength of the spatial structure in a confined environ-
ment, we first begin with the comparison of different quantities numerically obtained
when considering that confinement only modifies either diffusion or reaction.

Hence, we start with Eqs. (14,15) and replace the reaction terms by the one of
the unperturbed system given in Eqs. (4,5). For the system in which only diffusion
is supposed to be modified by confinement, we obtain the following values of the
stationary states: (ρd1A = 1.843) ≃ (ρ1A = 1.848), (ρd1B = 1.542) ≃ (ρ1B = 1.537),
and (ρd3B = 4.000) ≃ (ρ3B = 4). The growth rate of the presomitic mesoderm is
vdg = 9.70 × 10−4∆x/∆t, and the propagation speed of the chemical wave front
is vdp = 9.81 × 10−4∆x/∆t, where the exponent d stands for perturbed diffusion.
These different values are rather close to the unperturbed results, but nevertheless
prove that the perturbation of diffusion has the tendency to increase wave front
propagation speed.

When we numerically solve Eqs. (14,15) with unperturbed diffusion we ob-
tain: ρr1A = 2.060, ρr1B = 1.376, and ρr3B = 4.143. vrg = 1.20 × 10−3∆x/∆t,
vrp = 1.265 × 10−3∆x/∆t, where the exponent r stands for perturbed reaction.
These results agree with the values ρ∗1A = 2.050, ρ∗1B = 1.380, and ρ∗3B = 4.143.
obtained when numerically integrating Eqs. (14,15) associated with the system in
which confinement is supposed to modify both diffusion and reaction. We conclude
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that the perturbation of diffusion by confinement has the same qualitative impact
on the spatial structure formation as the perturbation of reaction, but with a smaller
amplitude.

Consequently, we may neglect the perturbation of diffusion to evaluate the wave-
length of the structure. Hence, we consider Eq. (14,15) with unperturbed diffusion.
The Fourier transforms, Aq(t) =

∫

∞

−∞
ρA(x, t)e

−iqxdx andBq(t) =
∫

∞

−∞
ρB(x, t)e

−iqxdx,
of the densities are introduced to analyze the linear stability of the homogeneous
steady state ρr1A , ρr1B with respect to inhomogeneous perturbations of wave number
q [60]. The linear stability operator, Mc, is given by:

Mc =

(

M11 = k1(1− ρr1B /ρ)−D∗

Aq
2 M12 = k1ρ

r1
A /ρ+ k2(ρ

r1
A )2

M21 = k3ρ
r1
B /ρ− 2k1(1− ρr1A /ρ− ρr1B /ρ) M22 = −k−3/ρ

r1
B + k3ρ

r1
B /ρ−D∗

Bq
2

)

(B.1)

The eigenvalues µ± of Mc are:

µ± =
(

M11 +M22 ±
√

(M11 +M22)2 − 4(M11M22 −M12M22)
)

/2 (B.2)

An analogous procedure is followed to find the eigenvalues of the matrix M associ-
ated with the unperturbed system (Eqs. (4,5)) [13]. The two dispersion relations
for the unperturbed and confined systems are compared in Fig. 6.

In addition to the increase of the mode qcmax in the confined system with respect
to the unperturbed value, qmax, the maximum value of the real part of the eigenvalue
Re(µ+) is found smaller. This last result shows that confinement has the tendency
to destabilize Turing pattern for the benefit of the homogeneous steady state, which
is corroborated by the decrease in the oscillation amplitude of the spatial structure
(∆ρ∗A = 2.734) < (∆ρA = 3.144) and (∆ρ∗B = 0.960) < (∆ρB = 1.224) observed in
Fig. 3.
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