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Abstract 32	

The Indian Summer Monsoon (ISM) simulated over the 1989-2009 period 33	

with a new 0.75° ocean-atmosphere coupled tropical-channel model extending from 34	

45°S to 45°N is presented. The model biases are comparable to those commonly 35	

found in coupled global climate models (CGCMs): the Findlater jet is too weak, 36	

precipitations are underestimated over India while they are overestimated over the 37	

southwestern Indian Ocean, South-East Asia and the Maritime Continent. The ISM 38	

onset is delayed by several weeks, an error which is also very common in current 39	

CGCMs. 40	

We show that land surface temperature errors are a major source of the ISM 41	

low-level circulation and rainfall biases in our model: a cold bias over the Middle-42	

East (ME) region weakens the Findlater jet while a warm bias over India strengthens 43	

the monsoon circulation over the southern Bay of Bengal. A surface radiative heat 44	

budget analysis reveals that the cold bias is due to an overestimated albedo in this 45	

desertic ME region. Two new simulations using a satellite-observed land albedo show 46	

a significant and robust improvement in terms of ISM circulation and precipitation. 47	

Furthermore, the ISM onset is shifted back by one month and becomes in phase with 48	

observations. Finally, a supplementary set of simulations at 0.25°-resolution confirms 49	

the robustness of our results and shows an additional reduction of the warm and dry 50	

bias over India. These findings highlight the strong sensitivity of the simulated ISM 51	

rainfall and its onset timing to the surface land heating pattern and amplitude, 52	

especially in the ME region. It also illustrates the key-role of land surface processes 53	

and horizontal resolution for improving the ISM representation, and more generally 54	

the monsoons, in current CGCMs. 55	

 56	

 57	
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1. Introduction 61	

 62	

The Indian Summer Monsoon (ISM; see Table 1 for acronyms) brings 63	

substantial rainfall from June to September to some of the world most populated 64	

regions, whose economy relies mainly on agriculture and water resources. But despite 65	

recent progress in our understanding of mechanisms driving ISM precipitation, 66	

Coupled General Circulation Models (CGCMs) are still not able to correctly represent 67	

its main spatial and temporal characteristics (Sperber et al. 2013) and the skill of 68	

seasonal ISM predictions by dynamical or statistical models remains currently very 69	

low, contrary to what is observed in other tropical regions (Wang et al. 2015). 70	

While some improvements have been achieved with the last generation of 71	

CGCMs, especially in terms of intraseasonal variability (Abhik et al. 2014, Sabeerali 72	

et al. 2013, Goswami et al. 2014), some basic features of the ISM, such as the onset or 73	

the rainfall spatial distribution, are still poorly captured with a persisting (wet) dry 74	

bias over (ocean) land (see Fig. 2 of Sperber et al. 2013). 75	

The limited horizontal resolution of CGCMs is frequently listed as a major 76	

caveat because current coarse atmospheric models cannot properly resolve orography 77	

(Wu et al. 2002, Chakraborty et al. 2002, Cherchi and Navarra 2007, Boos and Hurley 78	

2013), intraseasonal oscillations (Saha et al. 2013), tropical disturbances (Sabin et al. 79	

2013) or convection (Pattnaik et al. 2013, Ganai et al. 2015), which all significantly 80	

contribute to the total ISM rainfall, especially in the monsoon trough region. 81	

Regional Climate Models (RCMs) allow simulating the ISM at higher 82	

resolutions than global CGCMs, but with a strong control of the lateral boundaries 83	

imposed to the RCMs. This allows to distinguish the effects of local versus remote 84	

forcings on the ISM (Seo et al. 2009, Samala et al. 2013), to test the sensitivity of the 85	

simulated ISM to different physical parameterizations (Mukhopadhyay et al. 2010, 86	

Srinivas et al. 2013, Samson et al. 2014) or to prescribe the orography in a more 87	

realistic way (Ma et al. 2014). But despite those specificities, significant biases still 88	

exist in terms of precipitation and surface temperature (Lucas-Picher et al. 2011), 89	

which suggest that high resolution is not the unique missing ingredient in order to 90	

improve ISM rainfall in current CGCMs and RCMs. 91	
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Local and remote Sea Surface Temperature (SST) errors, amplified by ocean-92	

atmosphere coupling, can also adversely affect the coupled model performance in 93	

simulating the ISM rainfall or its onset timing, and has gained a lot of attention in 94	

recent years (Bollasina and Nigam 2009, Bollasina and Ming 2013, Levin and Turner 95	

2012, Joseph et al. 2012, Prodhomme et al. 2014, 2015; among others). Common SST 96	

biases have been clearly identified in many CGCMs and their consequences on the 97	

ISM have been addressed in these studies. However, the specific origins of these SST 98	

errors are not well understood, they may vary from one CGCM to another and they 99	

cannot account alone for the ISM rainfall errors in current CGCMs (Prodhomme et al. 100	

2014, 2015, Li et al. 2015). 101	

Less attention has been paid to large-scale long-standing biases such as land 102	

temperature errors, which can also influence the ISM simulation (Christensen et al. 103	

2007, Lucas-Picher et al. 2011, Boos and Hurley 2013). The ISM onset timing 104	

primarily depends on the meridional land-sea thermal contrast between the Indian 105	

subcontinent and the tropical Indian Ocean (IO) (Li and Yanai 1996, He et al. 2003, 106	

Xavier et al. 2007, Prodhomme et al. 2015). Consequently, models errors on Land 107	

Surface Temperature (LST) can directly influence the ISM onset characteristics 108	

(Prodhomme et al. 2015). Aside from the onset timing, the ISM structure and intensity 109	

also depends on the meridional Tropospheric Temperature (TT) gradient, which relies 110	

on both surface local and remote heat sources during boreal summer (Wu et al. 2009, 111	

Bollasina and Nigam 2011, Dai et al. 2013). Hence, LST and TT biases can also 112	

influence the ISM representation in the models. However, many studies suggest that 113	

the orographic effects, mountains and TT errors are stronger than the direct impact of 114	

the land surface heating on the ISM (He et al. 2003, Bollasina and Nigam 2011, 115	

Molnar et al. 2010, Boos 2015). Especially, Boos and Kuang (2010, 2013) showed by 116	

changing the Tibetan plateau albedo that this region is not a dominant heating source 117	

for the atmosphere during the ISM, but rather a good insulator preventing mixing 118	

between tropical warm and humid air with extra-tropical cold and dry air. 119	

LST biases and their influence on the ISM have been relatively poorly studied 120	

compared to TT biases and errors due to orography (Kumar et al. 2014). The 121	

pioneering work of Charney et al. (1977) addressed the sensitivity of summer 122	

monsoon regions to land surface heating by modifying the land albedo in their model. 123	

They proposed a mechanism linking the land albedo with the monsoon strength. This 124	
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mechanism was subsequently summarized by Meehl (1994): an increase in land 125	

albedo creates a decrease of the solar flux absorption leading to a colder land surface 126	

and thus to a decreased land-sea thermal gradient. This decrease of the land-sea 127	

contrast weakens the monsoon flow and the associated precipitation. This mechanism 128	

has been further explored and confirmed by Meehl (1994) with various atmospheric 129	

General Circulation Models (GCMs). Zhaohui and Qingcun (1997) showed some 130	

improvements in the East Asian monsoon and associated rainfall in their GCM when 131	

using an observed climatological albedo. Using an idealized configuration, Chou 132	

(2003) also showed that changing the land surface albedo can strengthen or weaken 133	

the meridional TT gradient and, consequently, the ISM migration and intensity. 134	

Furthermore, this method has been successfully used by Kelly and Mapes (2013) to 135	

control the strength of the ISM in dedicated sensitivity experiments. Finally, Flaounas 136	

et al. (2012) showed that lowering land albedo modifies the Inter-Tropical 137	

Convergence Zone (ITCZ) position during the West African monsoon. In a nutshell, 138	

the specific effect of land surface heating processes, versus orographic effects, on the 139	

monsoon is still an open problem (Kelly and Mapes 2010, Rajagopalan and Molnar 140	

2013, Wu et al. 2012, Ma et al. 2014). 141	

The present work aims at revisiting the relationship between land surface 142	

albedo, surface heating and the ISM biases in a state-of-the-art Coupled Tropical 143	

Channel Model (CTCM). Due to the significant ocean-atmosphere feedbacks involved 144	

in ISM variability and seasonal cycle (Wang et al. 2005), our work is based on a 145	

coupled model, rather than a forced atmospheric model as done in many previous 146	

studies. We demonstrate that constraining land surface heating by using an observed 147	

albedo climatology leads to significant improvements in ISM simulation in our 148	

CTCM, especially in terms of the ISM rainfall onset and climatology. Moreover, we 149	

illustrate that our results are valid in both coupled and forced frameworks with several 150	

dedicated experiments, highlighting the robustness of our findings. The paper is 151	

organized as follows. Section 2 provides a detailed description of the CTCM, the 152	

experimental setup and observed datasets used in our analysis. Section 3 describes the 153	

ISM mean characteristics and biases simulated with the CTCM. The sensitivity of the 154	

ISM to the land surface albedo and horizontal resolution is further analyzed in Section 155	

4 with the help of sensitivity experiments. Finally, Section 5 provides a summary of 156	

our findings. 157	
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 158	

2. Model description and experimental setup 159	

 160	

2.1. Model description 161	

The CTCM is composed of the WRF-ARW v3.3.1 atmospheric model 162	

(Skamarock and Klemp 2008) and the NEMO v3.4 ocean model (Madec 2008) 163	

coupled through the OASISv3-MCT coupler (Valcke et al. 2013).  164	

The oceanic and atmospheric components share an identical horizontal grid 165	

discretization (Arakawa-C grid), projection (Mercator) and resolution (0.75 or 0.25°). 166	

The standard horizontal resolution used here is 0.75°, but some of our sensitivity 167	

experiments (described later in Section 2.b) use a 0.25° horizontal resolution in order 168	

to asses the robustness of our results with respect to the model resolution.  The CTCM 169	

domain extends from 45°S to 45°N, covering about 70% of the earth surface. 170	

Consequently, the extratropics (poleward of 45° of latitude) can exert an influence on 171	

the CTCM through the lateral atmospheric and oceanic forcings, but the model is also 172	

able to generate its own tropical internal variability at all the timescales, as seen from 173	

the simulated El Niño events, which timing does not match the observed El Niño 174	

events during the 1989-2009 period (not shown). This original model configuration 175	

presents several advantages compared to the classical GCMs and RCMs approaches. 176	

Compared to RCMs, the tropical-channel configuration is not subject to issues related 177	

to domain size, which can influence the realism of the model solution (Leduc and 178	

Laprise 2009, Dash et al. 2015). Because of the absence of meridional boundaries, the 179	

model is also able to simulate zonally-propagating atmospheric and oceanic waves in 180	

a coherent way, as well as zonal teleconnections and remote tropical forcings. 181	

Consequently, this model avoids an important caveat observed with RCMs, which can 182	

generate spurious circulations and precipitations along their meridional boundaries in 183	

zonal flows (Hagos et al. 2013). Such tropical-channel configuration has 184	

demonstrated its usefulness to study tropical waves activity, such as the Madden-185	

Julian Oscillation (Ray et al. 2011, Ulate et al. 2015) and inertia-gravity waves (Evan 186	

et al. 2012). Compared to GCMs, the model does not include the extratropics, which 187	

limits the inclusion of additional errors and reduces the simulation computational cost. 188	
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The ocean vertical grid has 75 z-levels, with 25 levels above 100 m and a 189	

resolution ranging from 1 m at the surface to 200 m at the bottom. Partial filling of the 190	

deepest cells is allowed. The atmospheric grid has 60 eta-levels with a top of the 191	

atmosphere located at 50 hPa. The WRF default vertical resolution has been 192	

multiplied by three below 800 hPa. Thus, the first 33 levels are located below 500 hPa 193	

with a vertical resolution of 2 hPa near the surface. The vertical resolution then 194	

decreases to ~50 hPa around 800 hPa and increases again when approaching the top 195	

of the model with ~6 hPa for the top level. 196	

The WRF model can be configured with an important choice of physical 197	

schemes. In this study, the model physical setup is the same as in Samson et al. 198	

(2014), who showed that a NEMO-OASIS-WRF (NOW) regional coupled model is 199	

able to realistically simulate the tropical IO climate, including the ISM main 200	

characteristics. This physical package is listed here: the longwave Rapid Radiative 201	

Transfer Model (RRTM; Mlawer et al. 1997), the “Goddard” Short Wave (SW) 202	

radiation scheme (Chou and Suarez 1999), the “WSM6” microphysics scheme (Hong 203	

and Lim 2006), the Betts-Miller-Janjic (BMJ) convection scheme (Betts and Miller 204	

1986; Janjic 1994), Yonsei University (YSU) planetary boundary layer scheme (Hong 205	

et al. 2006), the unified NOAH Land Surface Model (LSM) with the surface layer 206	

scheme from MM5 (Chen and Dudhia 2001). Mukhopadhyay et al. (2010) and 207	

Samson et al. (2014) shown that the BMJ convection scheme produces a reasonable 208	

ISM climatology in both forced and coupled WRF configurations, respectively. 209	

Supplementary sensitivity tests have been performed with different sets of physical 210	

parameterizations, but with no clear improvement when compared to the selected set. 211	

A brief description of these sensitivity tests is given below and a more complete 212	

analysis of the sensitivity of the simulated tropical mean state to various model 213	

parameters can be found in Crétat et al. (2016). Thus, this study uses a well-tested 214	

suite of parameterization schemes for the WRF model. 215	

The oceanic component is based on NEMO (Nucleus for European Modeling 216	

of the Ocean numerical framework) version 3.4 (Madec 2008). The set of physical 217	

parameters employed here is similar to the set used for the default global 218	

configuration at 1°-resolution (Voldoire et al. 2013). The lateral diffusion scheme for 219	

tracers is an iso-neutral Laplacian with a constant coefficient of 1000 m2/s. Tracer 220	

advection is treated with a total variance dissipation scheme (Lévy et al. 2001) with 221	
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an additional term coming from the eddy-induced velocity parameterization (Gent and 222	

Mcwilliams 1990) with a space and time variable coefficient (Tréguier et al. 1997). 223	

The lateral diffusion of momentum is a horizontal Laplacian with an eddy viscosity of 224	

10 000 m2/s, which is reduced to 1000 m2/s in the 2.5°S-2.5°N equatorial band, out of 225	

the western boundaries regions. The vertical mixing is parameterized using an 226	

improved version of turbulent kinetic energy closure scheme (Blanke and Delecluse 227	

1993) with a Langmuir cell (Axell 2002) and a surface wave breaking 228	

parameterization (Mellor and Blumberg 2004). 229	

The OASIS coupler exchanges the surface fields between the models every 2 230	

hours without any spatial interpolation as the models are using the same horizontal 231	

grid (see Samson et al. 2014 for details). Such a high coupling frequency is crucial in 232	

the tropics to correctly represent the solar diurnal cycle effect on the ocean. It has	233	

been	 shown	 that	 high-frequency	 coupling	 is	 instrumental	 in	 representing	234	

realistically	 the	monsoon	dynamics	(Terray	et	al.	2012)	as	well	as	air-sea	scale	235	

interactions	from	small	scales	to	large	scales	and	up	to	ENSO	variability	(Masson	236	

et	 al.	 2012). There is no restoring of any kind in atmosphere and ocean. Initial state 237	

and boundary conditions come from the ERA-Interim reanalysis (Dee et al. 2011) for 238	

the atmospheric component and from the Drakkar 0.25°-resolution global ocean 239	

model (Barnier et al. 2007) for the oceanic component over the 1989-2009 period. 240	

 241	

2.2. Experimental Setup 242	

The reference simulation (ALB1 hereafter) described in the previous 243	

paragraph is compared with three different sets of simulations. Table 2 summarizes all 244	

the model simulations used in this study. 245	

A first set of four 10-years atmospheric simulations forced with observed SST 246	

(sensitivity set hereafter) is used to assess the sensitivity of the simulated ISM biases 247	

to the SST errors (due to the coupling with the ocean model), to the model resolution 248	

and to the atmospheric SW and convective schemes. In this sensitivity set of forced 249	

simulations, the FORC simulation is similar to the ALB1 simulation, except that the 250	

atmospheric model is forced with observed SSTs from version 2 of the 0.25° daily 251	

optimum interpolation SST analysis from the NOAA (Reynolds et al. 2007). The 252	

HIRES simulation differs from FORC by its horizontal resolution of 0.25° instead of 253	
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0.75°. The CONV simulation is the same as FORC, but with a different convection 254	

scheme (Kain-Fritsch instead of the BMJ scheme; Kain 2004). Finally, the RAD 255	

simulation is similar to FORC, but with a different short-wave radiation scheme 256	

(Dudhia scheme instead of the Goddard scheme; Dudhia 1989). These forced 257	

atmospheric simulations will be analyzed in Section 3. 258	

The second set of simulations (albedo set hereafter) is composed of two 259	

additional 20-years fully coupled CTCM simulations identical to the ALB1 260	

simulation, except for the land surface albedo used in the CTCM. In this second set of 261	

coupled simulations, two different background land surface albedo fields are 262	

employed as explained below. These simulations will be analyzed in Section 4. 263	

The NOAH LSM version available with WRF uses a simplified and direct 264	

method to compute the SW fluxes at the surface. This LSM only considers the 265	

broadband SW wavelength, which means that no distinction is made between visible 266	

and infrared wavelength albedos. The albedo dependence to the solar zenith angle is 267	

also neglected. Moreover, no distinction can be made between the diffuse and the 268	

direct components of solar radiation, as they are not available in the WRF version 269	

used in this study. In this simplified context, albedo associated with the diffuse SW 270	

component (i.e. white-sky) is neglected and the total incoming solar flux is considered 271	

as purely direct. Consequently, the NOAH LSM uses a snow-free direct (e.g. black-272	

sky at local noon) background SW broadband albedo climatology to compute the SW 273	

fluxes at the surface during the simulation. Two methods are available in WRF to 274	

prescribe this land surface albedo monthly climatology. 275	

In the CTCM reference simulation (ALB1), albedo extreme values (annual 276	

minimum and maximum) are associated with a dominant land-use category. A 277	

weighted average is then computed between the two albedo extreme values depending 278	

on the corresponding climatological monthly green fraction. Consequently, the albedo 279	

is equal to its minimum (maximum) annual value when the green fraction is 280	

maximum (minimum). The land-use dataset used by the NOAH LSM is the 281	

MODerate resolution Imaging Spectroradiometer (MODIS) land-cover classification 282	

of the International Geosphere-Biosphere Program (IGBP; Friedl et al. 2002) and 283	

modified for the NOAH LSM (lakes detection and 3 new categories (18-19-20) have 284	

been added).  The dataset has been updated with MODIS data up to March 2011 (see 285	

WRF FAQ link) and the annual climatology of this dataset is displayed in Fig. 1a. The 286	
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vegetation fraction used by the NOAH LSM is the NESDIS/NOAA 0.144° monthly 287	

annual cycle of the vegetation greenness fraction dataset (Gutman and Ignatov 1998). 288	

This dataset is a 5-year (1985-1990) climatology of the Advanced Very High-289	

Resolution Radiometer (AVHRR) vegetation index. 290	

The second method available with WRF consists of directly prescribing a 291	

snow-free black-sky SW broadband albedo climatology. The albedo dataset provided 292	

with WRF for the NOAH LSM is the NESDIS/NOAA 0.144° monthly 5-year 293	

climatology surface albedo derived from the AVHRR satellite (henceforth AVHRR 294	

product; Csiszar and Gutman 1999). The error analysis performed in Csiszar and 295	

Gutman (1999) suggests that the AVHRR surface albedo is retrieved with 10 to 15% 296	

relative accuracy. The simulation using this prescribed albedo is referred as ALB2 297	

hereafter. 298	

In order to test the robustness of our results, a third CTCM simulation using an 299	

up-to-date snow-free black-sky SW broadband albedo climatology estimated from 300	

MODIS data (henceforth MODIS product; Schaaf et al. 2011) has also been 301	

performed (ALB3 in Table 2). This MODIS albedo dataset is described in the next 302	

paragraph and its annual climatology is presented in Fig. 1b. This simulation gave 303	

results very similar to ALB2 despite the fact that the MODIS albedo is slightly higher 304	

than the NESDIS/NOAA albedo used in ALB2 (Fig. 1d). This confirms the 305	

robustness of the results obtained with ALB2. Results from ALB3 are consequently 306	

not shown in this study for conciseness, but demonstrate that our results are 307	

independent of the observed albedo product used in the simulations. 308	

Finally, two more coupled simulations similar to ALB1 and ALB2 309	

respectively have been performed but with a horizontal resolution of 0.25° instead of 310	

0.75° in order to demonstrate the robustness of our results with respect to the 311	

resolution used in the CTCM ("High-Resolution Set" in Table 2). These two high-312	

resolution coupled simulations (ALB1HR and ALB2HR, respectively) are also 313	

analyzed in order to determine the cumulative (positive) effects of both an increased 314	

spatial resolution and a change of the albedo on the simulated ISM characteristics by 315	

the CTCM. The results from ALB1HR and ALB2HR are discussed in Section 4. 316	

 317	

2.3. Observational Datasets 318	
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Several datasets are used in this study. First, the two NOAH snow-free albedo 319	

fields (ALB1 and ALB2) are compared with the MODIS snow-free gap-filled black-320	

sky SW broadband albedo product MCD43GF-v5 (Schaaf et al. 2011). This product is 321	

generated by merging data from the Terra and Aqua platforms produced every 8 days, 322	

with 16-days acquisition and available on a 0.05° global grid. It is important to note 323	

that some regions are systematically masked by clouds during monsoon months, 324	

which makes direct albedo measurements difficult, or even impossible (Rechid et al. 325	

2009). A temporal interpolation is applied to fill these missing values. The MODIS 326	

snow-free climatology is computed over the 2003-2013 period and is presented in Fig. 327	

1b. The accuracy of this product is about 2% when compared to ground observations 328	

(Jin et al. 2003, Wang et al. 2004). The differences between NOAH LSM and MODIS 329	

snow-free albedo annual climatologies, as well as between the AVHRR and MODIS, 330	

are presented in Figs. 1c-d, respectively. We also use the MODIS MCD43C3-v5 331	

product to validate output model surface albedo, which also includes the snow cover 332	

effect. This dataset is identical to the MCD43GF-v5 product, but surface data 333	

including snow covered areas are included in the processing. 334	

Model precipitation is compared with the monthly 0.25° Tropical Rainfall 335	

Measuring Mission (TRMM) 3B43-v7 rainfall product (Huffman et al. 2010) 336	

averaged over the 1998-2014 period. This dataset combines the 3-hourly merged 337	

high-quality/infrared estimates with the monthly-accumulated Global Precipitation 338	

Climatology Centre (GPCC) rain gauge analysis. Monthly climatological fields such 339	

as surface temperature, wind and Sea-Level Pressure (SLP) are derived from the 0.75° 340	

ERA-Interim reanalysis (Dee et al. 2001) averaged over the 1989-2009 period. 341	

Finally, surface radiative heat budget is computed from the monthly 1° CERES-342	

EBAF v2.8 product (Kato et al. 2013) over the 2001-2012 period. 343	

 344	

3. ISM biases in ALB1 simulation and the sensitivity set 345	

 346	

Modeling systems must be evaluated for their basic performance in terms of 347	

their capability to correctly reproduce the main features of the climate system. More 348	

specifically, the simulation of a realistic boreal summer precipitation climatology is a 349	

primary requirement that a model should possess for monsoon studies, but it remains 350	
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a difficult task for current state of the art CGCMs (Sperber et al. 2013, Prodhomme et 351	

al. 2014, Annamalai et al. 2015). As a first step, we thus examine in this section the 352	

systematic errors that characterize the climatologies of rainfall, low-level winds, 353	

surface temperature and SLP simulated in the reference run (ALB1) of the CTCM 354	

during boreal summer (JJAS). The possible origins of these systematic errors are then 355	

investigated with the help of several dedicated experiments performed with the forced 356	

atmospheric component of the CTCM (see Section 2.b for details about these 357	

experiments). Annual cycles of simulated ISM rainfall indices are also discussed. 358	

 359	

3.1. ISM description in observations and ALB1 control simulation 360	

The climate of South Asia is dominated by the monsoon. During boreal 361	

summer, a strong inter-hemispheric SLP gradient is observed over the Indian Ocean 362	

area, with a deep low centered over Pakistan and northwestern India (Fig. 2a). The 363	

close correspondence between SLP and surface temperature over northwest India 364	

suggests that the intense solar heating over the northern hemisphere during spring and 365	

summer favors the development of this low. This explains why this deep low is often 366	

referred as a “heat” low in the literature (Flohn 1968). However, orography and 367	

diabatic heating over the Bay of Bengal (BoB) also exert a dominant control on the 368	

deepening of this low during the rainy season through remotely forced subsidence 369	

over Iran–Turkmenistan–Afghanistan and the Rodwell-Hoskins’monsoon–desert 370	

mechanism (Yanai et al. 1992, Rodwell and Hoskins 1996, Bollasina and Nigam 371	

2011). This “heat” low is connected to a tilted band of low SLP extending from the 372	

northern BoB to northwest India over the Indo-Gangetic plain, which is usually 373	

referred to as the monsoon trough. The monsoon trough is the signature of transient 374	

Low-Pressure Systems (LPSs) propagating inland from the BoB during the summer 375	

monsoon (Krishnamurthy and Ajayamohan 2011). 376	

As expected, the large inter-hemispheric SLP gradient over the Indian domain 377	

generates vigorous cross-equatorial southerly monsoonal winds over the western 378	

IO/east African highlands (Fig. 2d). Due to the Coriolis effect, this monsoon low-379	

level flow gradually becomes westerly over the Arabian Sea (AS), resulting in a 380	

strong moisture flux toward the Asian landmass and bringing abundant rainfall over 381	

South Asia during boreal summer. 382	
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Precipitation increases sharply from April to June, which corresponds to the 383	

monsoon onset and the sudden “jump” of the ITCZ from its oceanic to continental 384	

position during boreal summer (Fig. 3; see Wang 2006). The orography provides 385	

anchor points where monsoon rainfall maxima are located, especially along the 386	

Western Ghats, the Burmese coast and the Philippines (Fig. 2d). Abundant rainfall is 387	

also observed over the Gangetic plain and the foothills of Himalaya associated with 388	

the LPSs propagating from the BoB into northwest India during the summer monsoon 389	

(Krishnamurthy and Ajayamohan 2011). During this season, SST maximum is 390	

observed in the eastern equatorial IO, while the western AS is characterized by colder 391	

SSTs as a result of coastal upwelling and strong evaporation in response to the strong 392	

southwesterly alongshore winds (Figs. 2a and d) (de Boyer Montégut et al. 2007). 393	

This low-level jet (the so-called Findlater jet) and the associated cold SSTs prevent 394	

atmospheric deep convection to occur in the western part of the basin (Gadgil et al. 395	

1984). 396	

The spatial pattern of the JJAS precipitation bias in ALB1 (Fig. 2f) exhibits 397	

many similarities with the systematic errors commonly observed in CMIP5 models 398	

(see Sperber et al. 2013; Sooraj et al. 2015). In particular, a dry bias is present over 399	

the Indian subcontinent with two maxima along the Ghats and over the foothills of the 400	

Himalaya. A relationship exists between precipitation biases and 850 hPa wind biases 401	

in regions where orographic forcing is important. A rainfall dry (wet) bias is usually 402	

associated with an underestimation (overestimation) of the low-level wind in these 403	

regions. Deficient rainfall is also simulated over the monsoon core region (65°-100°E 404	

/ 5°-30°N) suggesting that the whole ISM is too weak in ALB1. The simulated ISM 405	

rainfall annual cycle over the continent is very poor, to say the best, with a monthly 406	

maximum hardly reaching 6 mm/day in August (Fig. 3a). Moreover, ISM onset is 407	

delayed by almost 2 months in ALB1 (Figs. 3a-b). Consequently, the dry bias 408	

observed over India during boreal summer (Figs. 2e-f) is due to underestimated 409	

precipitation intensity, but also to a significant underestimation of the duration of the 410	

rainy season. Consistently, the Findlater jet is significantly underestimated, too much 411	

zonal, and its northward extension is limited to 15°N in the CTCM instead of 20-25°N 412	

in ERA-Interim (Figs. 2d-f). 413	

Excessive rainfall is present over the south-eastern AS, reflecting again this 414	

limited northward propagation of the ITCZ during boreal summer in ALB1 (Fig. 2f). 415	
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This wet bias is usually associated with warmer-than-observed local SST as a 416	

consequence of a too weak monsoon flow, reduced latent heat loss and under-417	

representation of the upwelling along the Somali and Omani coasts in our CTCM and 418	

in CMIP5 models (Fig. 2c; Prodhomme et al. 2014, Li et al. 2015). East Asia and 419	

South China Sea also exhibit excessive rainfall associated with overestimated 420	

westerly low-level winds over eastern equatorial IO and South China Sea in the 421	

CTCM (Fig. 2f). 422	

SST biases are moderate with a warm bias slightly exceeding 2°C in the 423	

western tropical IO (Fig. 2c), as discussed above. The largest surface temperature 424	

biases are found over land with a maximum warm bias slightly exceeding 10°C over 425	

most of central and northern India. A warm bias of ~3°C is also observed over South-426	

East Asia and over the Maritime Continent despite the excessive rainfall simulated in 427	

these regions. On the contrary, cold surface temperature biases are found (i) over the 428	

western part of the Tibetan plateau, suggesting an indirect effect of overestimated 429	

snow and precipitation over this elevated area during boreal winter (not shown) and 430	

(ii) in the desertic region extending from Pakistan to Afghanistan, Iran and over the 431	

Arabic Peninsula. This region will be referred as the “Middle-East” (ME) region 432	

hereafter for simplicity. 433	

Simulated SLP also exhibits significant biases with lower-than-observed SLP 434	

over most of the domain, except in the ME region where a positive SLP bias of 435	

several hPa is found. The low-pressure bias is maximum over the core monsoon 436	

region and along the Himalayan foothills. This SLP bias is also commonly observed 437	

in CMIP5 models as shown by Sooraj et al. (2015; see their Fig. 3d). As a 438	

consequence, the SLP minimum located over the ME region in ERA-Interim is shifted 439	

eastward over the monsoon trough region in ALB1 (Figs. 2a-b). The large dry bias 440	

over the monsoon trough region in ALB1 suggests that LPSs and clouds are less than 441	

observed or even absent in this region during boreal summer and, hence, that the low-442	

pressure bias is not related to excessive LPSs, but rather to the strong warm surface 443	

temperature bias. In turn, this excessive land-surface heating may result from reduced 444	

rainfall and clouds associated with the absence of these LPSs over this region. Indeed, 445	

the ITCZ is locked over the ocean in ALB1, southward of its observed position (Figs. 446	

2e-f). Alternatively, the warm bias may also be related to deficient land processes in 447	

the CTCM, as we will see in the next section. 448	
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 449	

3.2. ISM biases in sensitivity experiments 450	

Various mechanisms have been proposed to explain the dry bias and the 451	

delayed monsoon onset over the Indian landmass simulated by current CGCMs (see 452	

Introduction). To explore these various potential sources of errors in our modeling 453	

framework, the “sensitivity” set of simulations is analyzed in this section (see Section 454	

2 and Table 2 for further details). All configurations, excepted FORC and HIRES, 455	

underestimate the total amount of rainfall during the monsoon season. In most cases, 456	

this is related to dry conditions over land (Fig. 3a), but also to an ISM onset delayed 457	

by almost 2 months over land (except HIRES) as in ALB1. Figure 4 further illustrates 458	

model sensitivity to changes in the ocean-atmosphere coupling, the physics and the 459	

resolution used: 460	

• Ocean-atmosphere coupling and SST (FORC) 461	

A first source of model errors is the coupling with an ocean model and the 462	

resulting SST errors. Compared to ALB1, the onset delay is attenuated and the total 463	

precipitation is increased in FORC (Figs. 3 and 4a, first line). Nonetheless, the 464	

monsoon peak time and withdrawal time remain delayed, especially when considering 465	

land areas (Fig. 3b). There is also a strong spatial compensation of rainfall error 466	

patterns between north India and the BoB in FORC, as in ALB1, and the warm (cold) 467	

bias is still present in northern and east India (Pakistan), but is attenuated over 468	

southern India (Fig. 4a). 469	

• Resolution (HIRES) 470	

Higher horizontal resolution induces a better simulation of orographic 471	

precipitation. The improved Himalayan orography also prevents mixing between cold 472	

and dry air from mid-latitudes with warm and moist air from the tropics, allowing a 473	

stronger TT gradient and hence a more intense and realistic ISM (Boos et al. 2010; 474	

2013). HIRES significantly improves the precipitation seasonal cycle with a 475	

maximum reached in July as in observations (Fig. 3). However, the dry bias persists 476	

over India, especially along the Western Ghats and in the northern and eastern BoB, 477	

although it is well attenuated compared to FORC (Fig. 4b). The same holds for the 478	

warm temperature bias, which is still present, but attenuated over northern India in 479	

HIRES. Nevertheless, it is noteworthy that the spatial patterns of rainfall, low-level 480	
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wind and temperature errors remain basically the same as in the FORC experiment 481	

(Figs. 4a-b). 482	

• Physics (RAD and CONV) 483	

CONV and RAD experiments suffer from the same deficiencies, with a dry 484	

bias - even more pronounced - over India and a more southward and oceanic position 485	

of the ITCZ (Figs. 4c and d). Pronounced wet biases are also found over the Maritime 486	

Continent, the eastern equatorial IO and China in CONV, and along a line extending 487	

from the equatorial IO to the South China Sea in RAD. The warm bias over India is 488	

also present in these two simulations, even if it is well attenuated in RAD. On the 489	

other hand, the use of the Dudhia (1989) radiation scheme leads to an enhancement of 490	

the ME cold bias and to an erroneous zonal surface temperature gradient between this 491	

region and South Asia, suggesting that these surface temperature variations do affect 492	

the latitudinal position of the ITCZ during boreal summer (Fig. 4d).  493	

In a nutshell, the ISM and associated precipitation patterns are very sensitive 494	

to the model configuration settings. Our SST-forced and high-resolution simulations 495	

show significant improvements in terms of precipitation amount and seasonal cycle, 496	

even if dry and warm biases persist over North India. On the contrary, our convective 497	

and radiative sensitivity tests show a clear deterioration of the simulated ISM with a 498	

further increased dry bias over India and an even more southward and oceanic 499	

position of the ITCZ compared to the other simulations (e.g. ALB1, FORC and 500	

HIRES). Finally, the improvements or degradations in the simulated rainfall concern 501	

mainly the amplitude of the rainfall biases over land and ocean, not the spatial pattern 502	

of these systematic errors: in all these sensitivity experiments, as in ALB1, we 503	

observe excess rain over the ocean compared to observations, especially in the 504	

southern part of the BoB (FORC, HIRES and RAD) and the southeastern AS (FORC 505	

and RAD), and dry conditions over the land, especially along the Western Ghats and 506	

over the monsoon core region. 507	

 508	

3.3. Surface temperature and SLP biases origins 509	

All sensitivity simulations systematically present a high-pressure bias over the 510	

ME region and a low-pressure bias over India and southeast Asia (Fig. 4, right 511	

column). More intriguingly, all the configurations, including HIRES, exhibit similar 512	
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spatial pattern of skin temperature errors during the monsoon season with warmer-513	

than-observed surface temperature over the core monsoon region and the foothills of 514	

the Himalaya, and cooler-than-observed surface temperature over the ME region. This 515	

seems to induce significant errors in the SLP field due to erroneous surface heating 516	

forcing over the land. It is noteworthy, that these surface temperature errors are also 517	

present in HIRES, despite reduction of the rainfall dry bias over the monsoon trough 518	

region in this simulation. This suggests that at least part of these temperature errors 519	

are not due to reduced cloudiness and evaporation over the Indo-Gangetic plain, but to 520	

other reasons related to land processes. 521	

Figure 5 shows the observed surface temperature and SLP climatologies 522	

during the spring season (March-April-May) preceding the ISM onset and the 523	

corresponding ALB1 biases. In observations (Fig. 5a), the surface temperature and 524	

SLP patterns are strikingly different from the JJAS period, especially in the ME 525	

region where the surface heating remains small compared to what is observed during 526	

the monsoon season. On the contrary, India and South Asia are much warmer during 527	

spring than during JJAS since the incident solar radiation is not balanced by clouds 528	

and precipitation cooling as during the monsoon. Consequently, the land temperature 529	

warming is very homogenous during spring. This is also true for the tropical IO, as no 530	

significant SST gradient is present during this season. The model captures quite well 531	

this homogenous spatial pattern in terms of surface temperature (pattern correlation = 532	

0.95) and SLP (Fig. 5b). But surface temperature biases, previously described during 533	

JJAS, are already present during the pre-monsoon hot and dry season with a strong 534	

warm (cold) bias over India and South-East Asia (Tibetan plateau) and a relatively 535	

smaller cold bias in the ME. This suggests that surface temperature biases observed 536	

during the monsoon already exist before the monsoon onset and are thus not solely 537	

related to the dry bias and improper ITCZ position simulated during JJAS in ALB1. 538	

This is further explored in the next sections with more detailed diagnostics and the 539	

“albedo” set of coupled experiments. 540	

 541	

4. Effect of changing the land surface albedo on the ISM biases 542	

 543	
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As discussed in the previous section, the warm bias over India cannot be 544	

entirely related to the dry bias during ISM and this dry bias is not due to SST errors 545	

since it persists in the forced-atmospheric experiments. The same stands for the cold 546	

bias over the ME region, which already exists before the monsoon season (Fig. 5c). 547	

Consequently, it appears that the model biases are at least partly related to the land 548	

surface properties. In this section, we focus on the effect of changing the land surface 549	

albedo on the ISM biases by comparing ALB1 and ALB2 coupled simulations. 550	

 551	

4.1. ALB1-ALB2 albedo comparison  552	

As seen in Figure 1c, ALB1 snow-free albedo annual climatology is affected 553	

by significant biases when compared to MODIS. ALB1 albedo is globally higher than 554	

MODIS, even if some significant underestimations are seen in the North African 555	

desert and some other local areas. The positive errors can reach ~20% in some regions 556	

such as the Andes mountains, the Tibetan plateau and the Iran–Turkmenistan–557	

Afghanistan region. These errors are mainly due to the fact that the number of land-558	

use categories is too limited to correctly represent the diversity of land surfaces at a 559	

regional scale. For example, the same albedo value (0.38) is used in all the desertic 560	

regions, while their albedo can vary significantly according to their surface 561	

composition (e.g. black rocks vs white sand). Consequently, this simplified approach 562	

can lead to important differences when compared to in situ or satellite-based observed 563	

albedo, especially in arid regions (Fig. 1c). On the contrary, ALB2 snow-free albedo 564	

climatology, derived from AVHRR albedo product, is relatively close to the MODIS 565	

snow-free product with an overall underestimation of about 5%, except in some 566	

regions such as India and South-East Asia where the albedo is slightly overestimated 567	

(Fig. 1d). 568	

Figures 6a-b show the JJAS total albedo (e.g. including snow effect) 569	

differences between ALB2 and ALB1 simulations and ALB2 biases compared to the 570	

corresponding MODIS product (also including snow effects). ALB2 albedo is almost 571	

everywhere lower than ALB1 with maximum differences located in the ME region, 572	

on the western Tibetan plateau and along the Himalaya mountains. The differences in 573	

high-elevated areas are mainly due to differences in the snow cover, with less snow in 574	

ALB2 compared to ALB1 (not shown). But despite a smaller snow cover, ALB2 575	
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albedo is still overestimated in these mountainous regions when compared to MODIS 576	

because snow albedo is much higher than bare soil albedo (Fig. 6b). Various reasons 577	

can explain this bias: too much snow during boreal winter, unrealistic snow melting 578	

(e.g. too slow) due to improper LSM physics or snow albedo parameterization, which 579	

prevent the spring snow melt. Except in these snowy and elevated regions, ALB2 580	

biases do not exceed 5% in the considered domain. Maximum albedo differences 581	

reaching locally ~30% between ALB1 and ALB2 are located in the ME region (Fig. 582	

6a). This area is also affected by a cold bias in the various forced simulations 583	

analyzed in Section 3. To investigate the relationship between this cold bias and the 584	

land surface albedo and to quantify the sensitivity of the LST to albedo, a surface 585	

radiation budget analysis is performed over a box covering the ME region (40°-70°E / 586	

15°-37°N). 587	

 588	

4.2. Albedo radiative effect over the Middle-East region 589	

The various terms of the land surface radiative heat budget in the simulations 590	

are compared and validated against the CERES-EBAF dataset in Figure 7. In both 591	

simulations, the land surface receives too much downward SW flux (~40 W.m-2) 592	

when compared to CERES-EBAF observations (Fig. 7a). This bias is related to the 593	

"Goddard" SW scheme, which tends to overestimate the SW downward flux at the 594	

surface (Crétat et al. 2016). However, the fraction of SW downward flux reflected by 595	

the surface varies according to the background albedo used in the simulations (Fig. 596	

7b). Consequently, the lower albedo in ALB2 simulation efficiently decreases the 597	

upward SW flux (by about 40 W.m-2) and the land surface receives a higher net SW 598	

flux (30 to 35 W.m-2) compared to ALB1 and CERES-EBAF. This additional SW 599	

flux induces a higher LST in ALB2 (Fig. 6c). In turn, this higher LST induces an 600	

increased upward longwave (LW) flux emitted by the surface (~20 W.m-2), which 601	

results in a higher net LW heat loss (~10 W.m-2) in ALB2 than in ALB1 (Fig. 7b). 602	

Finally, the net radiative flux is underestimated in ALB1 by ~10 W.m-2 while it is 603	

overestimated by ~15 W.m-2 in ALB2 compared to CERES-EBAF. It corresponds to a 604	

difference between ALB1 and ALB2 of ~25 W.m-2. These differences are 605	

significantly greater than the CERES land surface LW and SW root-mean-square 606	

errors given by Kato et al. (2013), which both amount to about 8 W.m-2, respectively. 607	
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 608	

4.3. Albedo effect on the ISM 609	

As we said, this modification of the surface radiative budget in ALB2 610	

compared to ALB1 induces a strong warming over the ME region ranging from 2 to 611	

5°C (Fig. 6c). A robust (r2=0.6) and negative (-0.2°C when albedo increases by 1%) 612	

relation is found when we compare the Middle-East JJAS mean climatological surface 613	

temperature difference between ALB2 and ALB1 with the albedo difference between 614	

ALB2 and ALB1. As a consequence, the cold bias observed in ALB1 turns into a 615	

warm bias in ALB2 (Fig. 6d). A warming of the Tibetan plateau locally reaching 616	

10°C is also simulated in ALB2 compared to ALB1 (Fig. 6c). It can be explained by 617	

the lower snow-free albedo in ALB2 compared to ALB1, as for the ME region. 618	

Consequently, the cold bias is also reduced in this area (compare Figs. 2c and 6d). 619	

On the contrary, a surface cooling is observed in ALB2 over the eastern part 620	

of the domain (Fig. 6c). The colder area extends from southern India through northern 621	

China. Consequently, the significant warm bias present over southern India and 622	

South-East Asia in ALB1 is slightly reduced when compared to the ERA-Interim LST 623	

(Fig. 6d). However, this surface cooling is not directly related to the local albedo 624	

because it is slightly lower in ALB2 than in ALB1, which would contribute to warm 625	

the surface in these regions. On the other hand, no significant LST change is observed 626	

over the foothills of Himalaya. Finally, the SST is not significantly affected by the 627	

albedo change, except in the upwelling region along the Omani coast, which is about 628	

~1.5°C cooler in ALB2 than in ALB1 (Fig. 6c). 629	

The land surface warming difference between ALB2 and ALB1 is associated 630	

with important SLP changes. Globally, SLP is lower in ALB2 compared to ALB1 631	

(Fig. 6c). The decrease is relatively weak over ocean (~1-2 hPa), but it is superior to 4 632	

hPa throughout the ME region (with a maximum of 6 hPa at 30°N, 55°E). Over this 633	

area, the similarity between SLP and surface temperature differences (Fig. 6c) 634	

suggests a direct relation between surface warming and SLP decrease through air 635	

density adjustment following the ideal gas law for dry air. This is confirmed by a 636	

significant (r2=0.6) and negative (-0.5 hPa/°C) linear regression between the ME JJAS 637	

mean climatological SLP (ALB2-ALB1) difference and the surface temperature 638	

(ALB2-ALB1) difference (not shown). Over the rest of the domain, such 639	
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correspondence is less obvious. Over the ME region, SLP bias compared to ERA-640	

Interim turns from positive with ALB1 to negative with ALB2 (Fig. 6d), in agreement 641	

with the corresponding surface temperature biases and our radiative budget analysis. 642	

Overall, the inter-hemispheric SLP gradient and SLP land-sea contrast, which drive 643	

the monsoon, are both enhanced in ALB2 compared to ALB1. 644	

In agreement with this improved SLP pattern over the ME region, 645	

precipitation over the Indian subcontinent is significantly increased between ALB2 646	

and ALB1 with maxima located along the Western Ghats and the Himalayan foothills 647	

(Fig. 6e). The dry bias is also well attenuated over India southward of 25°N (Fig. 6f). 648	

On the contrary, precipitation is decreased in the equatorial Indian Ocean, over South-649	

East Asia and, especially, over South China Sea, even though a wet bias persists in 650	

this region. This is the signature of a more northward and continental position of the 651	

ITCZ in ALB2 than in ALB1. As a consequence, rainfall pattern and intensity are 652	

globally improved in ALB2 (even if significant biases persist). The spatial matching 653	

between the increased precipitation over land (Fig. 6e) and the land surface cooling 654	

(Fig. 6c) suggests that the warm bias reduction is a consequence of the enhanced 655	

rainfall in those regions. 656	

The low-level wind pattern is also clearly improved in ALB2 compared to 657	

ALB1 with both a strengthening and a more poleward extension of the Findlater jet 658	

and a zonal wind decrease in the eastern part of the BoB and South China Sea. More 659	

moisture is advected from the BoB into Bangladesh and the plains of northern India in 660	

ALB2, and the rainfall is enhanced over these areas in ALB2 compared to ALB1 (Fig. 661	

6e). These patterns of differences are again in agreement with a more northward 662	

propagation of the monsoon in ALB2 compared to ALB1. 663	

 664	

4.4. LST-SLP-wind relationship 665	

In order to understand the differences between ALB2 and ALB1, we can 666	

assume that the 850hPa wind is approximatively in geostrophic equilibrium with the 667	

SLP outside the equatorial or elevated regions and above the boundary layer where 668	

frictional effects are important. This relationship between low-level wind and SLP is 669	

well illustrated in Figures 2a and d, in which the Findlater jet closely follows SLP 670	

contours and its speed is maximum where the SLP gradient formed between the 671	
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western equatorial IO and the ME region is also maximum. A similar relationship can 672	

be observed in the BoB with the SLP gradient formed between northern India (e.g. the 673	

monsoon trough) and the eastern equatorial IO, and the low-level wind pattern over 674	

the eastern IO (north of the equator). 675	

An important implication is that SLP biases can be a major source of errors for 676	

the simulated 850hPa wind pattern over the IO, which brings the moisture over India 677	

during monsoon. This is clearly the case in ALB1 simulation: a positive SLP bias 678	

over the ME region weakens the SLP gradient over the AS and the Findlater jet, while 679	

a negative SLP bias over the monsoon trough region enhances the SLP gradient over 680	

the southern BoB and, hence, the 850hPa zonal wind in this same region, carrying 681	

away the moisture from the BoB further eastward (Figs 2c-f). 682	

In addition, SLP biases in our model are directly related to surface temperature 683	

biases over land, which, in turn, are related to albedo errors as demonstrated above. 684	

Following the ideal gas law, an air temperature increase (decrease) is associated with 685	

an air density decrease (increase), which reduces (rises) the SLP. Consequently, LST 686	

biases drive errors in the pattern of SLP gradient between land and ocean, which have 687	

a direct consequence on the simulated low-level circulation over the ocean. This link 688	

between LST, SLP and 850hPa wind explains most of the differences in the monsoon 689	

flow pattern over the ocean between ALB2 and ALB1 (Fig. 8). Over the AS, where 690	

the SLP gradient is stronger in ALB2 than in ALB1, stronger and shifted (northward) 691	

850hPa wind are also found. Conversely, over the eastern IO and the South China 692	

Sea, the weaker SLP gradient in ALB2 compared to ALB1 induces a weaker and less 693	

zonal monsoon flow over these regions. The positive SLP gradient and 850hPa wind 694	

differences observed over the northern AS, northern BoB and China Sea are the 695	

signature of a greater northward extension of the monsoon flow in ALB2 than in 696	

ALB1. As it turns more northward, the monsoon flow reaches the Himalaya foothills 697	

where it brings more orographic precipitation (Fig. 6e). On the contrary, precipitation 698	

is decreased over South-East Asia and South China Sea where the wind is reduced. 699	

 700	

4.5. Albedo effect on the ISM seasonal evolution 701	

The temporal ISM evolution is also modified by the albedo change from 702	

ALB1 to ALB2. Figure 9 shows the annual cycle of SLP gradient between the ME 703	
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region and a western equatorial IO box (60°-80°E / 5°S-5°N), the 850hPa wind speed 704	

annual cycle over the AS (40°-75°E / 0-26°N) and precipitation over the monsoon 705	

core region (65°-100°E / 5°-30°N). 706	

The SLP gradient is positive during winter (from November to February), then 707	

turns negative during summer corresponding to the monsoon onset and the seasonal 708	

reversal of the Findlater jet (Fig. 9a). Interestingly, there is almost no difference 709	

between ALB1 and ALB2 during boreal winter. Subsequently, the SLP gradient 710	

grows faster in ALB2 than in ALB1 consistent with the seasonal increase of solar 711	

radiation over the northern part of the domain from March to June. Consequently, a 1-712	

month time lag progressively builds up between the simulated SLP gradient in the two 713	

simulations. The difference reaches its maximum in July during the monsoon peak. 714	

The SLP gradient in ALB2 is also in much better agreement with the corresponding 715	

estimates from ERA-interim. 716	

Furthermore, the seasonal variability of SLP gradient is mainly driven by the 717	

low SLP over land because the SLP over the equatorial IO remains relatively steady 718	

along the year (not shown; see also Li and Yanai 1996). So the ALB2-ALB1 SLP 719	

gradient differences originate mainly from the SLP differences over the ME region, 720	

and ultimately, from the LST differences. 721	

This time lag between ALB1 and ALB2 directly impacts the wind reversal 722	

timing over the AS and the strengthening of the Findlater jet during the monsoon (Fig. 723	

9b). The monsoon flow begins about one month earlier in the ALB2 simulation 724	

compared to ALB1 and its time evolution is in better agreement with ERA-Interim 725	

reanalysis. The peak wind speed is also stronger in ALB2 than in ALB1, by about 3 726	

m.s-1. The maximum wind intensity reached during July in ALB2 is even greater than 727	

in ERA-Interim due to a positive wind bias between the equator and 10°N (Fig. 6f). 728	

The earlier and stronger monsoon onset in the AS directly influences precipitation 729	

over India and the BoB (Figs. 9c-d). Precipitation increases more rapidly in ALB2 730	

and its seasonal cycle is consistent with TRMM observations over land: whereas the 731	

rainfall maximum is delayed by about two months in ALB1, its timing and magnitude 732	

is much better captured in ALB2 simulation. Finally, the continental dry bias is also 733	

well attenuated in ALB2, throughout the monsoon season (Fig. 9d). 734	

 735	
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4.6. Discussion on the relative influence of resolution and albedo on the ISM 736	

In the previous sections, we have shown that land surface properties and 737	

resolution appear as two major sources of improvement in our model. However, 738	

several questions arise from these results. Is the reduction of monsoon biases 739	

observed at higher resolution in the forced HIRES simulation robust in a coupled 740	

ocean-atmosphere simulation? Is the albedo influence on the ISM the same at 0.75° 741	

and 0.25° resolutions? And, finally, are the high-resolution and albedo positive effects 742	

on the ISM simulation additive? To address these questions, we carried out two 0.25°-743	

resolution 20-years coupled simulations using, respectively, ALB1 and ALB2 albedo 744	

(ALB1HR and ALB2HR, respectively; see Section 2 and Table 2 for details). 745	

The benefit of increasing the horizontal resolution can be assessed by 746	

comparing ALB1 and ALB1HR simulations (Figs 10a-b). ALB1HR surface 747	

temperature is globally colder than ALB1, except in the western Tibetan plateau 748	

where a strong warming is observed (5 to 10°C). This warming is again related to the 749	

snow cover, which has a reduced spatial extension in ALB1HR compared to ALB1 750	

(not shown). This change in the snow cover is directly related to the better 751	

representation of the orography at 0.25° resolution, which allows to represent 752	

separately the Himalayan mountain range and the Tibetan plateau. At 0.75° 753	

resolution, such distinction is not possible, which induces important errors in the snow 754	

cover and, consequently, in the surface temperature. A wide region extending from 755	

central India to north of the BoB and the Himalayan foothills is colder in ALB1HR 756	

than in ALB1. This surface cooling ranging from 2 to 6°C is directly related to the 757	

increased precipitation in the same regions (Fig. 10b). A significant rainfall increase is 758	

also observed at 0.25° resolution in regions of strong orographic forcing. On the 759	

contrary, precipitation is decreased over South China Sea and over the Maritime 760	

Continent region. Interestingly, no significant change is observed in the large-scale 761	

monsoon circulation (Fig. 10b), which suggests that the rainfall differences between 762	

ALB1HR and ALB1 are mainly related to local changes and not to large-scale 763	

environment modifications. A similar statement can be made by comparing the FORC 764	

and HIRES simulations described in Section 3.2. 765	

The sensitivity of the simulated ISM to the land surface albedo is very similar 766	

at 0.75° resolution (ALB2-ALB1) and 0.25° resolution (ALB2HR-ALB1HR) as 767	

shown in Figs. 6c-e and 10c-d, respectively. A large land surface warming and SLP 768	
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decrease, directly related to the albedo change, are observed over the ME region and 769	

the western part of the Tibetan plateau at both resolutions. The warming is roughly 770	

the same at both resolutions, except in some localized places of the Tibetan plateau, 771	

where the warming is greater at 0.75° resolution. On the other hand, the surface 772	

cooling observed at 0.75° resolution over southern India, Bangladesh and China is 773	

well attenuated at 0.25° resolution, where it only reaches 1°C locally. Concerning the 774	

precipitation over land, the change due to albedo shows a similar impact at both 775	

resolutions, even if the rainfall increase is more concentrated along the western Ghats 776	

and the Himalaya foothills at 0.25° resolution (Fig. 10d). Contrarily to the resolution 777	

increase, albedo change induces a large-scale strengthening of the simulated ISM 778	

flow, which brings more humidity, and hence more precipitation, over land. This 779	

mechanism appears to be robust at the two different resolutions we considered (e.g. 780	

0.75 and 0.25°).  781	

Finally, Figures 10e-f show that the benefits from high-resolution and 782	

modified land surface albedo are clearly cumulative in terms of surface temperature 783	

and precipitation biases. The net and significant result is a warming of the ME region 784	

and the western Tibetan plateau and a cooling over continental India and Bangladesh. 785	

Precipitation is significantly increased along the Ghats, the Himalayan foothills, the 786	

Myanmar mountains and -though to a lesser extent- over continental India. The low-787	

level circulation strengthening and northward migration of the ITCZ are almost 788	

entirely related to the albedo change as increasing the horizontal resolution does not 789	

significantly modify the 850hPa wind pattern (Fig. 10b). The combination of 790	

modified albedo with high resolution significantly reduce ISM biases (see Fig. 10g-h), 791	

but a significant (limited) warm (dry) bias persists over India. A wet bias also persists 792	

over South-East Asia and the South China Sea, which is related to a too strong low-793	

level wind circulation over the same region and the BoB. Those biases are directly 794	

related to the warm temperature and low SLP biases over India. 795	

 796	

5. Conclusion and Perspectives 797	

 798	

5.1. Summary 799	



	 26	

The present study revisits the mechanism originally presented by Charney et 800	

al. (1977) linking land surface albedo, surface heating and the ISM characteristics in a 801	

state-of-the-art general circulation model extending between 45°S and 45°N. More 802	

precisely, we demonstrate that constraining land surface heating by using observed 803	

albedo climatology leads to significant improvements in ISM simulation with our 804	

model, especially in terms of the ISM rainfall onset and climatology. Moreover, we 805	

illustrate that our results are valid in both coupled and forced frameworks, at two 806	

spatial resolutions (0.75 and 0.25°) and with two albedo datasets (AVHRR and 807	

MODIS), hereby highlighting the robustness of our findings. 808	

These results emphasize the important role of the non-elevated land surface 809	

heating pattern on the ISM: the Middle-East area appears as a key region, which 810	

exerts a strong control on the meridional migration on the ITCZ through its warming 811	

pattern and amplitude. This is consistent with results from Boos and Kuang (2013), 812	

suggesting that the monsoon responds significantly to surface heat fluxes associated 813	

with temperature maxima. The mechanism proposed in our study to explain the ISM 814	

biases is different from the Tibetan plateau theory described by Li and Yanai (1996), 815	

in which the sensible heat flux from this high-elevated surface directly contributes to 816	

the reversal of the meridional temperature gradient. Here, the land surface heating 817	

locally lowers the surface pressure, which modifies the large-scale pressure gradient 818	

between the ME region and the western equatorial IO. The low-level circulation 819	

adjusts to these changes in the SLP gradient and directly affects the humidity 820	

transport necessary for improving continental precipitation in our simulations. 821	

Concretely, the JJAS Indian land dry bias, which is about 46% (-3.6 mm/day) in 822	

ALB1 compared to TRMM (7.9 mm/day), is reduced to 18% (-1.4 mm/day) in ALB2. 823	

The ISM duration in ALB2 is also extended by 1 month in agreement with TRMM 824	

observations. This suggests that surface heating may play an important role in 825	

modulating the ISM biases, even though the deep low over the ME region cannot be 826	

purely considered as a “heat” low, as demonstrated by Bollasina and Nigam (2011).  827	

Another important implication of this result is that any significant LST bias 828	

over the northern plains of India can generate errors in the representation of the 829	

monsoon trough, through the mechanism discussed above. This is clearly the case 830	

with the warm temperature and low SLP biases over India, which strengthen the 831	

pressure gradient between India and the eastern equatorial IO. The associated zonal 832	
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wind intensification brings too much rainfall to South-East Asia and South China Sea, 833	

instead of feeding the monsoon trough region. 834	

Horizontal resolution also appears as a key parameter to improve the ISM 835	

representation in both forced and coupled configurations of our model. Precisely, the 836	

JJAS Indian land dry bias is reduced by 31% (+1.3 mm/day) between ALB1 (4.3 837	

mm/day) and ALB1HR (5.6 mm/day) and by 11% (+0.7 mm/day) between ALB2 (6.5 838	

mm/day) and ALB2HR (7.2 mm/day). Increasing the horizontal resolution also 839	

improves the rainfall pattern correlation over the Indian region from 0.5 to 0.7 with 840	

both ALB1 and ALB2 albedos. The absence of modification in the low-level 841	

circulation between ALB1 and ALB1HR also suggests that a 0.75° resolution is fine 842	

enough to resolve the main orographic features necessary to prevent the ventilation 843	

mechanism with cold and dry air from high latitudes described by Chakraborty et al. 844	

(2002, 2006) and by Boos and Kuang (2010). On the contrary, the absence of large-845	

scale atmospheric response to the strong warming observed in the western Tibetan 846	

plateau supports the idea that the Tibetan plateau is not a dominant source of heating 847	

for the ISM. Nonetheless, supplementary experiments following Boos and Kuang 848	

(2010, 2013) and Ma et al. (2014) methodology would be necessary to precisely 849	

assess the respective roles of the Himalayan mountains and Tibetan plateau heating 850	

effects in our model. 851	

 852	

5.2. Perspectives 853	

Understanding the development of the Indian warm LST bias over the Indo-854	

Gangetic plains during boreal spring and its maintenance during the monsoon season 855	

is of critical importance for future ISM studies. Furthermore, an important number of 856	

CGCMs suffer from the same caveats as recently illustrated by the CMIP5 ensemble 857	

mean (Sooraj et al. 2015). Consequently, these models could also benefit from 858	

substantial improvements in terms of monsoon representation if the Indian warm LST 859	

bias was successfully understood and corrected.  860	

Various promising directions can be followed to improve LST and rainfall 861	

over continental India in current state-of-the-art climate models. Concerning 862	

specifically the WRF-NOAH LSM model, a necessary step would be the 863	

implementation of a complete land surface albedo parameterization, such as in 864	
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NCEP/GFS (Hou et al. 2002), NCAR/CAM (Bonan et al. 2002) and ECHAM6 865	

(Brovkin et al. 2013) models. This would allow a more realistic computation of the 866	

surface SW fluxes, and consequently an additional LST bias reduction. Other domains 867	

of improvement concern the representation of soil characteristics and irrigation in the 868	

land surface models (Saeed et al. 2009; Kumar et al. 2014), convection 869	

parameterization (Ganai et al. 2015) or further horizontal grid refinement (Sabin et al. 870	

2013) to correctly capture all the important processes, which contribute to ISM 871	

rainfall. Furthermore, the impact of SST biases on ISM in remote regions and not only 872	

in the IO must be also properly evaluated in a coupled framework (Prodhomme et al. 873	

2015). Concerning RCMs, our study emphasizes the importance of including the ME 874	

region in the model domain when simulating the ISM in order to correctly represent 875	

the large-scale land-sea pressure gradient which drives the low-level monsoon flow. 876	

Finally, due to the large diversity of the albedo estimation in current CGCMs 877	

and RCMs (Wang et al. 2007), similar experiments with other models are clearly 878	

needed to demonstrate that the results presented here are robust and may lead to 879	

improvements in our capability to predict the monsoon at different time scales or to 880	

assess the future of the monsoon in a global warming context. Such improvements of 881	

monsoon simulations are of utmost importance for the society and the livelihood of 882	

the population in South Asia (Annamalai et al. 2015; Sabeerali et al. 2015; Wang et 883	

al. 2015). 884	

  885	
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Table Captions 1203	

Table 1: List of the acronyms used. 1204	

Table 2: Summary of tropical-channel simulations. Differences between the 1205	

simulations configurations are given in the “Setup” column. 1206	

  1207	



	 39	

Figure Captions 1208	

Figure 1. (a) MODIS-IGBP dominant land-use categories. (b) Annual snow-free 1209	

black-sky broadband SW land albedo from MODIS product (%). Note that in all 1210	

figures, ocean albedo is not displayed for clarity. (c) Time-average difference between 1211	

ALB1 albedo and MODIS snow-free product (%). (d) Same as (c) for ALB2 (%). 1212	

Figure 2. (a) Summer monsoon (JJAS) mean climatological ERA-Interim surface 1213	

temperature (°C, shaded) and SLP (hPa, contours; contours greater than 1020 hPa are 1214	

not drawn for clarity). (b) Same as (a) for ALB1. (c) ALB1 surface temperature (°C, 1215	

shaded) and SLP (hPa, contours) biases compared to ERA-Interim (contours bias 1216	

greater than ± 8 hPa are not drawn for clarity). (d) TRMM precipitation (mm/day, 1217	

shaded) and ERA-Interim 850hPa wind (m/s, vectors). (e) Same as (d) for ALB1. (f) 1218	

Biases of ALB1 precipitation and wind computed as the difference between (b) and 1219	

(a). 1220	

Figure 3. (a) Rainfall monthly seasonal climatology (mm/day) averaged over land 1221	

only in the 65°-100°E / 5°-30°N box (see inset map for box limits) for TRMM 1222	

observations (black) and for the various numerical simulations (colors); see Table 2 1223	

for the description of the experiments. (b) Same as (a), averaged over land and ocean. 1224	

The dashed lines show the annual long-term mean of the various climatologies. 1225	

Figure 4. (left column) JJAS rainfall (mm/d, shaded) and 850hPa wind (m/s, vectors) 1226	

biases of the various sensitivity experiments, compared to TRMM and ERA-Interim 1227	

datasets, respectively: (a) FRC, (b) HIRES, (c) CONV and (d) RAD; see Table 2 for 1228	

the description of these experiments. (right column) JJAS surface temperature (°C, 1229	

shaded) and SLP (hPa, contours) biases compared to ERA-Interim dataset :(a) FRC, 1230	

(b) HIRES, (c) CONV and (d) RAD. 1231	

Figure 5. (a) Pre-monsoon (MAM) mean climatological ERA-Interim surface 1232	

temperature (°C, shaded) and SLP (hPa, contours). (b) Biases of ALB1 surface 1233	

temperature and SLP compared to ERA-Interim. 1234	

Figure 6. (a) JJAS mean climatological albedo difference between ALB2 and ALB1 1235	

(unit %). (b) ALB2 albedo bias compared to MODIS (unit %). (c) Surface 1236	

temperature (°C, shaded) and SLP (hPa, contours) differences between ALB2 and 1237	

ALB1. (d) ALB2 surface temperature (°C, shaded) and SLP (hPa, contours) biases 1238	

compared to ERA-Interim. (e) Precipitation (mm/day, shaded) and 850hPa wind (m/s, 1239	
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vectors) differences between ALB2 and ALB1. (f) ALB2 precipitation (mm/day, 1240	

shaded) and 850hPa wind (m/s, vectors) biases compared to ERA-Interim. 1241	

Figure 7. (a) JJAS mean climatological surface radiative heat fluxes averaged over 1242	

the “Middle East” region (see inset map for box limits, only the land points in the box 1243	

are considered). Black, blue and red bars show CERES-EBAF, ALB1 and ALB2 1244	

estimates, respectively. The bars from left to right are for downward shortwave 1245	

(SW_DN), upward shortwave (SW_UP), net shortwave (SW_NET), upward 1246	

longwave (LW_UP), downward longwave (LW_DN), net longwave (LW_NET) and 1247	

total radiative heat fluxes (SW+LW_NET) at land surface (in W/m2). (b) same as (a), 1248	

for ALB1 and ALB2 errors compared to CERES-EBAF dataset. 1249	

Figure 8. JJAS mean climatological differences of SLP gradient (Pa/km, shaded) and 1250	

850 hPa wind (m/s, vectors) differences between ALB2 and ALB1 experiments. Land 1251	

surfaces are masked for clarity. 1252	

Figure 9. (a) SLP (hPa) monthly climatological seasonal cycle difference between the 1253	

Middle-East ("ME") and the Western Equatorial IO ("WIO") regions in ERA-Interim 1254	

(black), ALB1 (blue) and ALB2 (red). The boxes limits are featured on the inset map. 1255	

(b) 850hPa wind (m/s) 5-days climatological seasonal cycle averaged over the 1256	

Arabian Sea ("AS", see inset map for box limits). (c) Rainfall (mm/day) 5-days 1257	

climatological seasonal cycle averaged over an extended Indian domain (65°-100°E / 1258	

5°-30°N, see inset map for box limits). (d) Same as (c), for the land area of the box 1259	

only. 1260	

Figure 10. (a) JJAS mean climatological differences of surface temperature (°C, 1261	

shaded) and SLP (hPa, contours) between ALB1 and ALB1HR experiments. (b) JJAS 1262	

mean climatological differences of precipitation (mm/day, shaded) and 850hPa wind 1263	

(m/s, vectors) differences between ALB1 and ALB1HR. (c) Same as (a), but between 1264	

ALB2HR and ALB1HR. (d) Same as (b), but between ALB2HR and ALB1HR. (e) 1265	

Same as (a), but between ALB2HR and ALB1. (f) Same as (b), but between ALB2HR 1266	

and ALB1. (g) JJAS mean climatological biases of surface temperature (°C, shaded) 1267	

and SLP (hPa, contours) of ALB2HR compared to ERA-Interim. (h) JJAS mean 1268	

climatological biases of precipitation (mm/day, shaded) and 850hPa wind (m/s, 1269	

vectors) ALB2HR biases compared to TRMM and ERA-Interim, respectively. 1270	


