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The efficient computation of periodic Green’s functions is discussed here for an arbitrarily directed array of point sources in layered 

media. These Green’s functions are necessary to formulate boundary integral equations for arrays of scatterers inside a general 

layered medium, solved with a method of moments in the spatial domain. For this reason, mixed-potential Green’s functions -having a 

mild spatial singularity-are selected. The case of horizontally oriented dipoles is rather simple and has been previously solved. On the 

other hand, the case of vertically-oriented dipoles (i.e., aligned perpendicular to the layers) is more intricate, since the extracted terms 

cannot be transformed into well-known Green’s functions. Previous works dealt with arrays of line and point sources, but did not 

address the critical task of computing the curl of the dyadic potentials, required to treat slot arrays and dielectric inclusions, whose 

available Floquet series expressions do not converge if the source and observation points lie in the same transverse plane. 

Index Terms— Periodic problems, layered media, mixed potentials, Green’s functions, Ewald method, leaky-wave antennas. 

I. INTRODUCTION

HE EFFICIENT computation of Green’s functions in

complex environments can extend the applicability of the 

method of moments (MoM) as an attractive approach to 

minimize the number of unknowns in electromagnetic 

problems. The case of vertically stratified media is a good 

example of a canonical geometry where Green’s functions can 

be easily defined in a dyadic form [1]. While results are 

available for uniform structures, only recently an effort has 

been devoted to periodic Green’s functions [2][6], required 

to study, e.g., planar stratified structures perturbed by 

arbitrarily shaped periodic loading (see Fig. 1). Computational 

issues associated with these potentials are addressed here. 

When electric current sources are oriented horizontally 

(orthogonally to the stratification direction), only transverse 

potentials need to be computed. Asymptotic extractions can be 

used to improve the convergence of these slowly-converging 

series [2]. The extracted terms require the computation of 

homogeneous-medium periodic Green’s functions for arrays 

of dipoles, whose accelerated numerical evaluation is achieved 

by standard means [7]. On the other hand, if an array of 

Fig. 1. Example of a structure requiring the computation of the vertical 

periodic potentials and the curls of dyadic periodic potentials: A substrate 

integrated waveguide structure synthesized by two rows of cylindrical 

dielectric inclusions in a host dielectric layer embedded between two metallic 

plates. Periodic slots are etched on the top metal plate. 

vertical (parallel to z) electric dipoles is considered, vertical 

potentials are required; the extracted terms no longer 

correspond to arrays of dipoles, and standard computation 

techniques no longer hold. 

In [5] and [6], a method has been recently proposed to 

transform these terms into modified periodic homogeneous-

medium Green’s functions, thus yielding a simple algorithm 

based on a modification of the Ewald method, which grants a 

remarkable convergence acceleration even in the case of 

complex modes and improper harmonics. This method is 

suitable for analyzing metallic objects using the EFIE. 

However, further potentials must be computed if the MFIE is 

used, or if periodic slots in PEC planes or periodic dielectric 

objects are included in the structure (see, e.g., Fig. 1). Specific 

methods are available to analyze similar structures if canonical 
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shapes are present [8], but only a spatial-domain MoM 

provides a flexible handling of arbitrarily shaped objects. For 

these more general cases, integral formulations require the 

computation of both electric and magnetic fields due to both 

electric and magnetic equivalent currents. This is 

accomplished through the curls of the dyadic potentials, whose 

components are derivatives of the above-mentioned potentials. 

Due to Fourier-series properties, these potentials, arising from 

derivatives of the original ones, have a much slower spectral 

decay, thus posing serious computational problems. Their 

acceleration is thus necessary, especially for the case of on-

plane observation (source and observation points on the same 

transverse plane), where the original series expressions are 

actually divergent. 

In this paper, we focus on the accelerated computation of 

periodic potentials in stratified media by means of suitable 

asymptotic extractions. In Section II we present the analytical 

formulation, while in Section III numerical results illustrating 

the accuracy and convergence of the method are discussed. 

II. EXTRACTION OF ASYMPTOTIC TERMS

The four vertical potentials required to study general 

metallic objects in layered media (using the EFIE) are p

zP , 

p

AzxG , p

AzyG and p

AzzG . p

AzxG  and p

AzyG , are off-diagonal terms of 

the dyadic periodic potential 
p

AG , and can be suitably treated 

by differentiating the accelerated expressions obtained for p

zP . 

p

AzzG can be treated similar to p

AxxG . p

zP is expressed as a series 

of integrals if a 1-D periodic array of dipoles is considered: 

   p 1
, ; , d ,

2

yxn
jk yjk x

z z y y

n

P e P k z z e k
p
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  
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where 
zP is a 2-D spectral-domain Green’s function, primed

and unprimed coordinates refer to source and observation 

points, in the l and l layers, respectively. The period is p, z is 

the stratification axis (see Fig. 1), x = x–x, y = y–y, and kxn 

= kx0 + 2 n/p the wavenumber of the n-th space harmonic, kx0 

being the Bloch-mode wavenumber. As anticipated, both the 

series and the integrals are very slowly (algebraically) 

converging when the observation and source points lie on the 

same interface between layers. To enhance their convergence, 

the following asymptotic extraction of quasi-static terms can 

be performed: 
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The expressions for the extracted term 
zP can be found in 

[6], and will not repeated here for the sake of brevity. It is 

interesting to give the explicit expression of the closed-form 

solution for the spatial-domain term p,

zP  : it is a sum of

potentials g
p,z

 due to an array of half-line sources, computed 

by integrating the expressions for dipoles sources [6]. The 

integration can be performed analytically, resulting in 

     p, p, p,

spectral spatial, , ,z z zg g g   r r r r r r (3) 
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with 2 2

n xnk k k   and z = z–z,
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with  
2 2

tnR x np y    , and E is a suitable Ewald

splitting parameter defined in [7, p. 254, (28), (31)-(34)]. 

The two series (4) and (5) have the same fast (Gaussian) 

convergence as the original Ewald series. Furthermore, the 

series converge even in the case of improper waves, i.e., 

waves not respecting the boundary conditions at infinity, often 

necessary to describe leaky waves [9][11]. 

The acceleration of the off-diagonal potentials p

AzxG  and 

p

AzyG is then performed by extracting asymptotic terms 

proportional to Pz through a kxn or ky factor, corresponding to 

x- and y-derivatives of (4) and (5). These derivatives are easily

computed analytically by differentiating each term of the sums

individually, since the final series converges sufficiently fast

(still Gaussian).

The magnetic field due to an electric current (needed in the 

MFIE) requires the curl of 
p

AG , and this is considered next. 

(The electric and magnetic fields due to magnetic currents, 

needed for slots and dielectric objects, may found from duality 

form the fields due to an electric current.) The nonzero terms 

of 
p

AG can be expressed as 

 p p

A y Azx
xx

G  G (6) 
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 p p .A x Ayy
zy

G  G (13) 

Their acceleration can still be performed as in (2), where the 

terms 
zP  are replaced by suitable spectral terms: since we are 

dealing here with derivatives of the 
p

AG components, these 

spectral terms will be proportional to the original GA terms 

with additional kxn and ky factors representing the x- and y-

derivatives, respectively. The presence of these terms further 

slows down the convergence of the unaccelerated potentials, 

and in some cases this leads to in-plane non-converging 

expressions. The relevant asymptotic behaviors for large 
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Fig. 2. Green’s function Pz

p computed with (continuous lines) and without 

(dashed lines) acceleration:  real parts (black lines) and imaginary parts (gray 

lines). The structure is a grounded slab in air, with r1 = 10.2, h = 0.767 mm, p 

= 10 mm, at a frequency f = 10 GHz. They are computed along the segment 0 

< y < p, x = p/2, and z = z′ = 0 (air/substrate interface). The Bloch 

wavenumber is kx0 = 1.5k0 (bound mode, all the harmonics are proper [6], 

[11]). (Note: the terms are unitless.) 
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Fig. 3. Magnitude of the aggregated (n,−n) terms of the unaccelerated (gray 

lines) and the accelerated (black lines) Green’s function Pz
p vs. the summation 

index n. The structure is that of Fig. 2, but two periods are chosen: p = 10 mm 
(solid lines) and p = 4 mm (dashed lines). The Bloch wavenumber is kx0 = 

(0.8−j0.1)k0 (the n = 0 harmonic is radiating and is improper [6], [11]). 

Coordinates: z = z′ = 0 (air/substrate interface), x = y = p/2. 

 

values of kxn and ky can be derived once we recall those of the 

original spectral terms of 
p

AG  (always in the on-plane case): 
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From (14) and (15), insufficient decay occurs for the series 

defining 
p

y AzxG , p

z AxxG , p

x AzxG , p

x AzzG , and 
p

x AyyG  in (6), 

(7), (9), (11), and (13), and for the integrals in each harmonic 

defining 
p

y AzzG , 
p

y AzyG , and 
p

y AxxG  in (8), (10), and (12). 

These functions must be computed using extraction (2), since 

the original series (1) is no longer a valid representation. The 

second-order derivatives of (4) and (5) are then needed for the 
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Fig. 4. Green’s functions comparisons (the relevant potential is indicated in 

the figure): real parts (black lines) and imaginary parts (gray lines). The 

structure is that of Fig. 2. The potentials are computed along the segment –p/2 

< x < p/2, y = p/2, and z′ = 0. The Bloch wavenumber is kx0 = 0.5k0j0.2k0 

(the n = 0 harmonic is radiating and is proper [6], [11]). Potentials computed 

with (continuous lines) and without (dashed lines) acceleration at z = 0.1 mm 

(off plane) and with acceleration (dotted lines) at z = 0 (on plane). (Note: the 

terms plotted are unitless.) 

 

spatial part. As anticipated, they can be computed analytically 

by differentiating the series term by term; the results are not 

reported here for the sake of brevity. 

III. NUMERICAL RESULTS 

In Fig. 2, we show the comparison between the 

unaccelerated and the accelerated Green’s function p

zP  along 

the segment 0 < y < p, x = p/2, z = z′ = 0 (at the interface 

between the slab and the air, i.e., in-plane case). In both cases 

the expressions are convergent. The agreement between the 

curves verifies the correctness of the acceleration procedure 

for this term. 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 

 

 

4 

 

10
-9

10
-7

10
-5

0.001

0.1

10

1 10 100 1000

Number of terms

 

p

x Azx
G

 
(a) 

10
-9

10
-7

10
-5

0.001

0.1

10

1 10 100 1000

Number of terms

 

p

z AxxG

 
(b) 

 

Fig. 5. Magnitude of the aggregated (n,−n) terms of the unaccelerated (gray 
lines) and the accelerated (black lines) derivatives of the dyadic potential 

components (the relevant potential is indicated in the figure), vs. the 

summation index n. The structure is that of Fig. 2. The Bloch wavenumber is 

kx0 = 0.5k0j0.2k0 (the n = 0 harmonic is radiating and is proper [6], [11]). 

Coordinates: z = z′ = 0 (air/substrate interface), x = y = p/2. 
 

 

In Fig. 3, we show the decay of the terms in the series for 

two values of the spatial period p, with and without the 

extraction of 
zP . The enhanced convergence rate is clearly 

visible by analyzing the slope of the curves (from n
 –2

 to n
 –4

). 

In Fig. 4(a), (b), and (c), we show the behaviors of the terms 

in (6), (9), and (12), respectively, along the line segment 

defined by 0 < x < p, y = p/2. In particular, comparison 

between the unaccelerated and the accelerated Green’s 

functions at z′ = 0 mm and z = 0.1 mm (i.e., off-plane case) are 

shown. The off-plane case has been chosen here since both the 

expressions are convergent, thus providing partial validation 

of the acceleration procedure (note the excellent agreement 

between the continuous and dashed curves). The on-plane case 

at the air/dielectric interface is also shown, but only for the 

accelerated Green’s functions, since the unaccelerated 

expression is not convergent for the three components chosen. 

The computation of the in-plane case cannot be simply 

performed by replacing z = 0 with a small displacement along 

z for two main reasons. First, the sensitivity with respect to z is 

difficult to predict (see, e.g., the good agreement in Figs. 4(a), 

(b) and the worse agreement in Fig. 4(c)). Second, even by 

keeping a small displacement along the z axis, when 

computing 1000 samples on the line described in the caption 

of Fig. 4, the convergence of each unaccelerated sum requires 

about 50 terms for a relative error of 10
-4

, as compared to 

about 4 terms for the accelerated series, equivalent to 162.2 vs. 

19.1 seconds, on an Intel i7-3930K CPU @ 3.20 GHz. The 

acceleration obtained is extremely relevant also for small 

values of z– z′. In Fig. 5, we show the decay of the terms in the 

series for the derivative components p

x AzxG  and p

z AxxG , both 

used in (9), with and without extractions, for the structure in 

Fig. 4 at the air/dielectric interface (i.e., z = z′ = 0). It is 

observed that the asymptotic behavior of the unaccelerated 

terms is a constant, thus making the convergence of (9) 

impossible. Analysis of the slope of the relevant curves reveals 

a convergence rate of n
 –2

 for the accelerated expressions. 

IV.  CONCLUSION 

We have proposed asymptotic extractions for periodic 

potentials due to vertical currents in layered media. 

Furthermore, the computation of the curls of the dyadic 

potentials, required in the analysis of slot arrays and dielectric 

inclusions, has been addressed in detail. Numerical results 

have demonstrated the accuracy of the acceleration schemes 

and the enhanced convergence of the spectral series. 
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