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Discrete geometric method (DGM) is implemented for solving Maxwell’s equations on plasmonic structures. Surface plasmons
introduce non-derivable field components at the metallic/dielectric interface that can influence the accuracy of DGM. An analysis
shows that the proper setting of material parameters at the interface can increase the accuracy of numerical solutions. Numerical
examples with a structured mesh and an unstructured mesh provide further evidence for the fact that a proper interface treatment
is important to obtain accurate results with relatively less degrees of freedom for the simulation of plasmonic effects with DGM.
Coupling with its flexibility and explicit formulation, DGM can be used as an accurate and fast solver for problems involving
complex plasmonic structures.

Index Terms— Computational electromagnetics, convergence of numerical methods, discrete geometric method (DGM), surface
plasmons (SPs).

I. INTRODUCTION

P
LASMONICS are defined by the interacting processes

between the electromagnetic waves and the conducting

electrons at metallic interfaces or nanostructures, which leads

to an enhanced optical near field of a sub-wavelength dimen-

sion. In recent years, accompanied with the development of

nanofabrication techniques, a surface plasmon (SP) shows its

great potential in a large variety of applications [1], including

sub-wavelength optics, data storage, photocatalysis, solar cells,

and biosensors.

Plasmonics can be explained by the classical Maxwell’s

framework. However, the accompanied evanescent fields form

non-classical solutions of Maxwell’s equations. In the other

word, the parallel components of the electromagnetic fields

are not differentiable at the metallic interface. To improve

the accuracy of the numerical methods in modeling the

evanescent fields, there are two common strategies. The first

is to introduce analytical interface conditions in the discrete

models [2], [3]. This can bring additional complexity to the

formulation of the numerical solvers, especially for complex

geometries. The second strategy is to introduce finer meshes in

the vicinity of the interfaces. The field solver stays unchanged

in this way, but the number of degrees of freedom (DoFs)

increases. To save the computational resource in this case,

before refining the discretization mesh with a brute force, it is

also important to analyze how the discretization error arises at

the interface, accordingly choose more proper ways for field

discretization and material modeling at the interface, so that

the requisite accuracy can be achieved with a relative smaller

number of DoFs.

Discrete geometric method (DGM) is based on a differ-

ential geometry interpretation of Maxwell’s system. Within

this framework, different types of finite methods, including

a finite-difference (FD) time-domain method, finite integrate

techniques (FIT), and a finite-element method (FEM), can be

unified in a general form [4], [5]

CT h = dt d + j (1)

Ce = −dt b (2)

d = Mεe, b = Mµh, j = Mσ e (3)

where e, h, d, b, and j are the line or surface integrals of elec-

tric field E, magnetic field H, electric flux density D, magnetic

flux density B, and electric current density J, respectively,

C is the discrete version of the curl operator, and dt denotes

the time derivative. With this algebraic form, (1) and (2)

keep the metric-free nature of Faraday’s law and Ampere’s

law. The metric information is condensed in the constitutive

matrices Mε , Mµ, and Mσ in (3). The three constitutive

matrices actually give discretization to the continuous Hodge

operator that maps 1-differential forms to 2-differential forms

in E3 space. Thus, no matter how a discrete method is

derived, it is only distinct from other methods in the manner to

discretize the Hodge operator. DGM construct the constitutive

matrices by a physically natural way [5], [6]. With diagonal

constitutive matrices [6], the electromagnetic fields can be

solved explicitly in the time or frequency domain [7], and

therefore, the need to solve large-scale linear systems can

be avoided. The method can be applied on an unstructured

mesh, so that curved geometric features can be modeled more

accurately.

In this paper, we derive the discretization error of DGM

on a planar interface sustaining SPs. Based on the analy-

sis, we propose a manner for specific field discretiza-

tion and constitutive matrices construction to achieve better

accuracy on a fixed mesh. Numerical examples are given
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Fig. 1. Demonstration of the time-harmonic SPP solution at a single metallic
and dielectric interface. Red curve: distribution of the field component at the
cross section marked by the black dashed line.

for calculations on both the structured and unstructured

meshes.

II. SURFACE PLASMONS

There are two existing states of SPs: 1) SP polaritons (SPPs)

are propagating evanescent waves along the metal/dielectric

interfaces and 2) localized SP resonances (LSPRs) are

non-propagating resonances of electrons at the metallic

nanostructures.

The simplest geometry sustaining SPs is a single, flat

interface between a dielectric, non-absorbing half space

with a positive real dielectric constant εd and an adjacent

conducting half space with a dielectric function εm(ω) =

εm,r (ω) + iεm,i (ω). The requirement of metallic character

implies εm,r (ω) < 0 [1]. SPP state only exists for a transverse

magnetic mode, and in this case, the analytical solution on this

geometry can be obtained by solving the following Maxwell’s

equation of magnetic field for both half planes:

1

ε

(

∂2 H̃y

∂z2
+

∂2 H̃y

∂x2

)

+ k2
0 H̃y = 0. (4)

The solutions are explicitly express as follows [1]:
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H̃y(x, y, z) = A exp(−kd(z − z0)) exp(iβx)

Ẽx(x, y, z) = −i A
kd

ωε0εd

exp(−kd(z − z0)) exp(iβx)

Ẽx(x, y, z) = A
β

ωε0εd

exp(−kd(z − z0)) exp(iβx)

z > z0

(5)
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H̃y(x, y, z) = A exp(km(z − z0)) exp(iβx)

Ẽx(x, y, z) = i A
km

ωε0εm

exp(km(z − z0)) exp(iβx)

Ẽx(x, y, z) = A
β

ωε0εm

exp(km(z − z0)) exp(iβx)

z ≤ z0.

(6)

The tilde indicates that the fields are time-harmonic com-

ponents of the original electric and magnetic fields. A is

an arbitrary constant. The complex wave number β of SPP

takes the value β = k0(εmεd/(εm + εd))1/2. km and kd are

related to the dielectric constants by an interface condition

km/kd = −εm/εd .

The distribution of field around the interface is shown

in Fig. 1. The field is enhanced at the dielectric/metallic

interface and decreases evanescently in both materials. For

LSPRs, the field distribution possesses the same property at the

surface of the metallic nanoparticles with the same interface

conditions.

Fig. 2. Demonstration of two types of field distribution at the dielec-
tric/metallic interface. Case 1: electric fields lying on the interface. Case 2: cut-
ting across the interface.

III. DISCRETE GEOMETRY METHOD AND

DISCRETIZATION ERROR ESTIMATION

DGM is derived directly from the topology of the discrete

mesh, without going through the process of discretizing a

continuous differential or integral equation as with FD, FIT,

or FEM. For DGM, the constitutive matrices are defined

directly based on the geometry of the primal and dual meshes,

where the electric field and the magnetic field are defined,

respectively. Taking Mε as an example, it is a diagonal matrix,

and each of its nonzero elements corresponds to a DoF e locat-

ing either on the edge Lm of primal or dual cells. For an

edge-surface dual pair (Lm, Am) in homogeneous regions,

the corresponding diagonal element of Mε is defined as

Mε = ε|Am|/|Lm |. When either Lm or Am cuts across

two elements, (Mε)m · m is determined according to an equiv-

alent circuit perspective [6]. Fig. 2 shows the two cases with

Lm lying on the material interface and cut by the material

interface on a 2-D structured mesh. We denote the dual pairs

as (L
(p)
m , A

(d)
m ) and (L

(d)
m , A

(p)
m ), respectively, and for the

two cases, e is defined on the primal cell in the first case

and on the dual cell for the second case.

The corresponding diagonal element of Mε is then

calculated by

(Mε)m · m =
εd

∣

∣A
(d)
1

∣

∣

|L(p)|
+

εm

∣

∣A
(d)
2

∣

∣

|L(p)|
, (Case 1) (7)

(Mε)m · m =
εdεm |A(p)|

εd

∣

∣L
(d)

2

∣

∣ + εm

∣

∣L
(d)

1

∣

∣

, (Case 2). (8)

The definitions can be easily generalized to an unstructured

mesh.

When the constitutive relation (3) is well defined for

DGM, the question is about how the discrete system approx-

imates the continuous Maxwell system arises, especially with

the non-differentiable field components caused by SPs. In the

following part, we evaluate the truncation error of the discrete

equations when approximating to the continuous ones. Let e∗,

h∗, d∗, b∗, and j∗ be the exact solutions of Maxwell’s system.

On the discrete mesh, they fulfill a linear system as follows:

CT h∗ = dt d
∗ + j∗ (9)

Ce∗ = −d t b
∗ (10)

d∗ = Mεe∗ + Rε, b∗ = Mµh∗ + Rµ, j∗ = Mσ h∗ + Rσ

(11)
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TABLE I

LOCAL TRUNCATION ERROR AT THE INTERFACE

where Rε , Rµ, and Rσ are discretization errors on constitutive

relations.

Let re = e∗ − e and rh = h∗ − h, and subtract (1)–(3) from

(9)–(11). We obtain the following system:

CT rh = iωMεre + Mσ re + iωRε + Rσ (12)

Cre = −iωMµrh + Mσ re + iωRµ. (13)

Note that the time dependence is removed by the time-

harmonic assumption. The variables take the same expressions

without ambiguity. Solving out re from (12) and substituting

it into (13) yield

rh − ω2 M−1
µ C

(

Mε +
Mσ

iω

)−1

CT r
h

= R. (14)

For the single interface SPP geometry explained in Section II,

(14) is the equation of discretization error corresponding

to (4), and the truncation error of the discrete equation to the

continuous one is defined as

R = M−1
µ Rµ − ω2 M−1

µ C

(

Mε +
Mσ

iω

)−1

(iωRε + Rσ ).

(15)

Assuming the calculation is carried on a 2-D computa-

tional domain with a single dielectric/metallic interface, and

the domain is discretized by a uniform mesh with a mesh

size (hx , hz). We can evaluate R for each DoF h straightfor-

wardly, since the constitutive matrices are diagonal. The error

terms Rε , Rσ , and Rµ are calculated by the fact that the exact

solutions [given in (5) and (6)] are smooth piecewise and fulfill

the interface conditions at the interface. The exact solutions

are expanded in Taylor series, and the low-order terms are

canceled out to get the order of the error terms.

Given any DoF h locating at least one cell away from the

interface, the local truncation error R can be easily evaluated

as O(h2
x + h2

z ). When the interface involves, we calculate

the two subtraction terms of R in (15) for both cases shown

in Fig. 2. The results are presented in Table I. For both cases,

the error with respect to hz is dominant, since the interface is

perpendicular to the z-axis. In case 1, the truncation error is

a constant at the interface. Therefore, the discrete formulation

is not consistent to the continuous differential equation in

the L∞ sense. While in case 2, the consistency is fulfilled,

and the convergence rate is of O(hz). In a weaker L2 sense,

a convergence with an order of O(h
1/2
z ) can also be reached

for case 1, since the local errors in the whole computational

domain is averaged when evaluating the L2 norm.

IV. NUMERICAL EXAMPLES

A. Geometry With a Single Planar Interface

For a further validation of the results from the theoretical

analysis, we use DGM to solve an SPP problem at a planar

Fig. 3. Changes of L∞ and L2 errors as the mesh is refined in the two cases
of field distribution. p is the corresponding convergent rate.

Fig. 4. Geometry of the periodic Ag nanogratings.

Fig. 5. Transmission spectra calculated with different mesh sizes for both
cases. (a) Case 1 and (b) case 2 of field distribution.

Ag/air interface. Both cases in Fig. 2 with electric components

on the primal (case 1) and dual edges (case 2) are considered.

The length in the x-direction of the computational domain is

set as two periods of the traveling SPP. The height is 100 nm

with an interface at z0 = 50 nm with Ag below and air above.

Imposing the Dirichlet boundary condition at the boundary of

the computational domain, we calculate the numerical solution

for different levels of discretization. The L∞ and L2 errors

of the numerical solution to the exact solution are shown in

Fig. 3. The values are normalized according to their maximum.

The convergent rate is defined as p = log2 (‖rh
N/2‖/‖rh

N ‖),

where N is the number of grid points. The results agree well

with the theoretical analysis in Section III.
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Fig. 6. Magnetic field strength at a nano-Ag cylinder (unit: A/nm).

Fig. 7. Absorption cross sections. (a) Results for a coarser mesh with
932 elements. (b) Results for a finer mesh with 2180 elements.

B. Periodic Nanogratings

We then consider a periodic silver (Ag) nanograting struc-

ture with geometry shown in Fig. 4. This kind of structures is

of interest as transparent electrodes in optoelectronic devices

because of their extraordinary transmittance, which is closely

related to their LSPR properties [7], [8]. The computational

domain is discretized with the uniform rectangular meshes.

We set periodic boundary conditions for the sides and the

perfect-matched layers (PMLs) [9] for the top and bottom

of the domain. The calculation is also carried on for both

cases with electric components lying on and cutting across the

interface. The transmission of the structure is then calculated

from the calculated electromagnetic fields. A reference curve

from [8], which is calculated from the FEM is shown in

Fig. 5(a) and (b) for a comparison. Results show that for coarse

meshes with a mesh size of 5 and 2.5 nm, larger deviation can

be observed in case 1 than in case 2. As the mesh is refined,

the resulted spectra in both cases converge. This agrees with

the theoretical analysis applied on the single metallic/dielectric

interface. The results state again that with electric field defined

on a dual mesh (case 2), we can achieve more accurate results

with a coarser mesh.

C. Single Nanocylinder

For curved geometries, DGM is well suitable for the simu-

lation on an unstructured mesh. The dual mesh is constructed

by connecting the circumcenters of the primal mesh [6].

We consider geometry with an infinite long Ag cylinder. The

diameter of the Ag cylinder is 30 nm. The cylinder is placed in

the center of a 120 nm × 120 nm domain. PMLs are set at all

boundaries to truncate the computational domain. Fig. 6 shows

the strength of the computed magnetic field for an incident

wave with 340 nm wavelength on an unstructured mesh.

The calculation is carried out with interface settings for both

cases shown in Fig. 2 on a coarser mesh with 932 elements and

a finer mesh with 2180 elements. We calculate the absorption

cross section of the cylinder as a quantity of interest. Results

are shown in Fig. 7. The analytical values from the Mie

calculation are given as a reference [10]. For both meshes,

local setting in case 2 results in a better fit to the reference

curve as expected.

V. CONCLUSION

In this paper, we apply DGM on the simulation of plasmonic

effects at metallic/dielectric interfaces. The theoretical and

numerical analyses suggest that with electric fields cut across

the metallic/dielectric interface, more accurate solutions can

be obtained with a relatively coarser mesh when solving with

the DGM formulations. Combing with its other advantageous

properties, including geometric flexibility and explicit formu-

lation, DGM can be further used as an accurate and fast

numerical solver for an electromagnetic simulation on complex

plasmonic structures.
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