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It was recently shown that other functionals contribute to the effective action for the Liouville field 
when considering massive matter coupled to two-dimensional gravity in the conformal gauge. The 
most important of these new contributions corresponds to the Mabuchi functional. We propose a 
minisuperspace action that reproduces the main features of the Mabuchi action in order to describe 
the dynamics of the zero-mode. We show that the associated Hamiltonian coincides with the (quantum 
mechanical) Liouville Hamiltonian. As a consequence the Liouville theory and our model of the Mabuchi 
theory both share the same spectrum, eigenfunctions and – in this approximation – correlation functions.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

As a first step towards understanding four-dimensional quan-
tum gravity, one may consider studying two-dimensional gravity as 
a toy model since many computations can be carried out exactly. 
Since the partition function contains an integral over all metrics, 
this is equivalent to the study of statistical models on random ge-
ometries. As such it displays rich connections with other fields of 
physics (statistical models, string theory) and mathematics (proba-
bility theory, random matrices and differential geometry).

In two dimensions, diffeomorphisms can be gauge-fixed by 
adopting the conformal gauge

g = e2φ g0 (1)

where g0 is a fixed metric and φ is called the Liouville mode (any 
quantity given in the metric g0 has an index 0). The description of 
the problem is simplified since the gravity dynamics is captured by 
a single scalar field. The latter is described by an effective action 
Sgrav[g0, φ] that arises from quantum effects and which provides 
dynamics to the metric which otherwise is non-dynamical at the 
classical level. The cosmological constant already present in the 
classical action contributes as

Sμ[g0, φ] = μ

∫
d2σ

√
g0 e2φ. (2)
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In the simple case when the matter theory is described by a 
conformal field theory (CFT), the effective action can be obtained 
by integrating the conformal anomaly and it is proportional to the 
Liouville action

SL[g0, φ] = 1

4π

∫
d2σ

√
g0

(
gμν

0 ∂μφ∂νφ + R0φ
)
. (3)

Since its introduction by Polyakov [1], the Liouville theory has been 
widely studied: important steps in its definition have been the 
computations of the critical exponents, the computations of the 
spectrum and the definition of physical operators, and finally es-
tablishing that it defines a consistent CFT. The reader is referred to 
the reviews [2–4] for more details.

It was shown recently in [5,6] that other functionals contribute 
to the effective action when the matter is massive

Sgrav = c

6
SL + β2 SM + · · · (4)

Each of the functionals comes together with its coupling constant 
that can be computed from the parameters in the classical action 
and from the Liouville central charge c = 26 − cm where cm is the 
matter central charge. In this letter we ignore the terms denoted 
by the dots and focus on the Mabuchi action SM [g0, φ]. For exam-
ple it arises as the leading term in a small mass expansion in the 
case where the matter is a massive scalar field with a coupling to 
the curvature [6]. This action has been largely studied in differen-
tial geometry, starting with the seminal work [7], but it did not 
appear in physics until recently [5,6].

Despite the fact that non-conformal matter is more relevant for 
describing the four-dimensional world, this topic has been mostly 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ignored in the 2d gravity literature (see [8–10] for some excep-
tions). For this reason it is primordial to study in more details 2d
gravity with massive matter and to reproduce the analysis that 
has been done for the Liouville theory. In particular the 1-loop 
correction to the KPZ relation [11] due to the Mabuchi functional 
has been computed in [12]. Moreover, a recent series of work put 
forward that the very same functionals that constitute Sgrav also 
appear in the context of the fractional quantum Hall effect, as 
the leading terms in the development of the generating functional 
in the number of flux quanta [13–15]. Hence understanding the 
physical properties of these functionals would shed light on this 
phenomena.

In this letter we propose a (1 + 0)-dimensional action that re-
produces the main features of the Mabuchi action in order to 
describe the quantum mechanics of the Liouville zero-mode for 
the Mabuchi theory. We find that the Hamiltonian of this model 
is equal to the (minisuperspace) Liouville Hamiltonian. As a con-
sequence both theories share the same spectrum and – in this 
approximation – the 2-point and 3-point functions are identical. 
Additional considerations on the Mabuchi theory (including the 
derivation of our model) and the coupling of massive matter to 
2d gravity will be presented elsewhere [16].

2. Mabuchi action

Defining the area

A =
∫

d2σ
√

g, A0 =
∫

d2σ
√

g0, (5)

the Mabuchi function is more conveniently expressed when the 
Liouville field is parametrized by the Kähler potential K and the 
area [5,6]

e2φ = A

A0

(
1 + A0

2πχ
	0 K

)
(6)

where 	0 = gμν
0 ∇0μ∇0ν is the Laplace–Beltrami operator associ-

ated to the metric g0 and χ is the Euler characteristic of the 
surface.1 The Liouville field φ is uniquely determined by the pair 
(A, K ) and positivity of the exponential implies the inequality

	0 K > −2πχ

A0
. (7)

In terms of functional integration, one needs to work with the 
partition function at fixed area: metric variations are restricted to 
the ones that preserve the area and the cosmological constant (2)
does not contribute. The full partition function can be recovered 
from the Laplace transform which amounts to introducing the cos-
mological constant (2) and effectively replace the area A by the 
cosmological constant μ.

In this parametrization, the Mabuchi action reads (in Lorentzian 
signature) [6]

SM = − 1

4π

∫
d2σ

√
g0

[
−gμν

0 ∂μK∂ν K +
(

4πχ

A0
− R0

)
K

+ 4πχ

A
φ e2φ

]
. (8)

Since this functional is bounded from below and convex its (Eu-
clidean) functional integral is well-defined.

1 Note that our conventions are different from those in [5,6]: in this letter the 
action has been multiplied by πχ , the Kähler potential has been divided by πχ and 
the Laplacian differs by a minus sign. In their parametrization (6) is well-defined 
even for χ = 0.
Solutions to the equation of motion correspond to constant cur-
vature metric

R = 4πχ

A
. (9)

The latter is identical to the equation of motion of the Liouville 
action (3). At variable area this equation becomes (upon adding 
the cosmological constant term (2))

R = −8πμ (10)

which suggests the replacement

χ

A
= −2μ, (11)

for switching between fixed and variable area. This relation also 
follows by integrating (10) over the manifold and from the Legen-
dre transformation of the cosmological constant [16].

3. Minisuperspace analysis

The minisuperspace approximation truncates the Liouville field 
to its time-dependent zero-mode on flat Lorentzian space. It is 
well-suited for determining the spectrum and the associated oper-
ators. Indeed the Hilbert space can be constructed from the knowl-
edge of what happens at one spatial point: adding space dynamics 
just provides multiparticle states (i.e. the Fock space) that are built 
from this Hilbert space that sits at every point. For example the 
energy levels of a free scalar field are determined by the point 
particle approximation, which is just the quantum harmonic oscil-
lator.

Let’s consider time-dependent fields on flat spacetime

φ = φ(t), K = K (t), g0 = η. (12)

The spatial dimension is compactified into a circle. We propose the 
following minisuperspace action for the Mabuchi theory at variable 
area (in Lorentzian signature)

SM = −1

2

∫
dt

[
K̇ 2 − K̈ ln

(
K̈

4πμ

)
+ K̈

]
(13)

along with the following relation between φ and K

e2φ = K̈

4πμ
. (14)

Since the Mabuchi action at variable area is not known, it is 
not clear how to perform rigorously the Wick rotation in order 
to obtain the Lorentzian action at variable area, from which the 
Hamiltonian formalism is sensible. In analogy with the minisuper-
space of the Liouville action, the action (13) reproduces for the 
zero-mode K (t) the main features of the full Mabuchi action (8): 
it contains a kinetic term for the Kähler potential and the potential 
term is proportional to φ e2φ . Moreover the linear term in K is not 
present since it vanishes for R0 = cst and the area is replaced by 
the cosmological constant μ through the Laplace transform of the 
path integral. For these reasons, even if the action (13) does not 
correspond exactly to the minisuperspace of (8), it is expected that 
it captures the main features of the dynamics of the zero-mode 
and that it can be used to determine the spectrum. Nevertheless 
the action (13) can be derived in different ways under (different) 
mild assumptions2: a detailed explanation of these various possi-

2 The simplest one consists in taking the limit R0 → 0 and A0 → ∞ such that 
χ = cst (and keeping A = cst). The Laplace transform of the resulting Hamiltonian 
is equivalent to the replacement (11) and yields (20). Other methods include us-
ing the Ostrogradski formalism or the fact that the kinetic and potential terms of 
the Mabuchi action are respectively given by the Legendre transformation of the 
Liouville kinetic term and of the cosmological constant action [17].
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bilities is outside the scope of this letter and we refer the reader 
to the companion paper [16].

As a consistency check it is straightforward to verify that the 
variation of (13) agrees with the minisuperspace approximation 
of (10)

φ̈ = −4πμe2φ. (15)

The second-order derivatives in the action (13) cannot be re-
moved by integration by parts. Fortunately the action does not 
depend on K , and the field redefinition

J ≡ K̇ (16)

brings (13) to an action which is first-order in time

SM = −1

2

∫
dt

[
J 2 − J̇ ln

(
J̇

4πμ

)
+ J̇

]
. (17)

The canonical momenta P associated to J

P = δSM

δ J̇
= 1

2
ln

(
J̇

4πμ

)
(18)

is seen to correspond to the Liouville mode φ by comparing the 
previous equation with (14) written in terms of J . It is well-known 
that a canonical transformation can be performed in order to ex-
change the position and momentum

P = φ, J = −�, (19)

where � is the conjugate momentum of the Liouville field. In 
terms of these variable the Mabuchi Hamiltonian reads

H M = �2

2
+ 2πμe2φ. (20)

It is straightforward to check that it is equivalent to the Hamilto-
nian of Liouville theory (3) in the minisuperspace approximation.

4. Quantization

Since Mabuchi and Liouville theories have identical Hamiltoni-
ans, they also share the same spectrum. For comprehensiveness we 
recall the canonical quantization of the Hamiltonian (20).

The eigenvalue equation for the Hamiltonian

H Mψp = 2p2 ψp (21)

reduces, upon the replacement

� −→ −i
d

dφ
, (22)

to the differential equation
(

−1

2

d2

dφ2
+ 2μ̂e2φ − 2p2

)
ψp(φ) = 0, (23)

with the definition μ̂ = πμ. The latter corresponds to the modified 
Bessel equation and the solutions that are well-behaved as φ → ∞
are

ψp(φ) = 2μ̂−ip

�(−2ip)
K2ip(2

√
μ̂ eφ) (24a)

∼−∞ e2ipφ + R0(p)e−2ipφ. (24b)

The eigenfunctions have been normalized such that the incoming 
plane wave has a unit coefficient. The development for φ → −∞
indicates that the waves are reflected by the potential with a re-
flection coefficient

R0(p) = �(2ip)

�(−2ip)
μ̂−2ip . (25)

As a consequence wave functions with ±p form a superposition 
and are not independent, as can be seen from the relation

ψ−p(φ) = R0(−p)ψp(φ). (26)

This divides the number of states by two.
Wave functions are normalizable only for p ∈ R, and they form 

an orthogonal set

∞∫
−∞

dφ ψ∗
p(φ)ψp′(φ) = π δ(p − p′). (27)

Hence physical states are associated to the eigenvalues p ∈ R+ and 
to the wave functions (24a). Moreover it can be seen that the re-
flection coefficient is a pure phase for these states, indicating that 
the potential is totally reflecting.

Finally, a semi-classical approximation of the correlation func-
tions can be computed from integrals involving the wave func-
tions (24a). In particular, the 3-point function in the minisuper-
space approximation is [18]

C0(p1, p2, p3) =
∞∫

−∞
dφ ψp1(φ)e2ip2φψp3(φ) (28a)

= μ̂−2p̃ �(2p̃)
∏

i

�
(
(−1)i2p̃i

)
�(2pi)

(28b)

where we defined

2p̃ =
∑

i

pi, p̃i = p̃ − pi, i = 1,2,3. (29)

5. Conclusion

The main result of this letter is the computation of the spec-
trum of the Mabuchi theory. We have shown that it coincides with 
the spectrum of Liouville theory. This fact is striking since both 
actions have a very different origin and their forms differ vastly be-
yond the minisuperspace approximation (in particular the Mabuchi 
action is non-local in terms of the Liouville field).

On the other hand, it is not known whether the Mabuchi ac-
tion defines a CFT but arguments from consistency of 2d gravity 
in the conformal gauge indicate that it should not be. Indeed the 
sum of the gravity and matter actions should define a CFT of van-
ishing central charge in terms of the metric g0: since the massive 
matter is not invariant its transformation needs to be compensated 
by the gravitational sector, which would not be invariant by itself 
as a consequence. It would be very intriguing to have two the-
ories with the same spectrum, but one being a CFT and not the 
other. From the previous comments one may fear that the Liouville 
and Mabuchi actions describe a unique theory in two different but 
equivalent languages since they share many properties. This is cer-
tainly not the case because they do not contribute in the same 
way to the string susceptibility exponent [12]. This question de-
serves more investigation.

Obtaining a variable area formulation of the Mabuchi action is 
crucial in order to provide a rigorous proof of the minisuperspace 



C. de Lacroix et al. / Physics Letters B 758 (2016) 186–189 189
action (13). Moreover such a formulation would be useful for ad-
dressing other problems since it is more intuitive.

The Mabuchi theory is a key element for understanding two-
dimensional quantum gravity with non-conformal matter, and for 
this reason it is important to study better its physical properties. 
Furthermore, this would also be important in the context of con-
densed matter and it may even provide connections to differential 
geometry.
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