A renewal version of the Sanov theorem
Mauro Mariani, Lorenzo Zambotti

To cite this version:
Mauro Mariani, Lorenzo Zambotti. A renewal version of the Sanov theorem. Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2014, 19, pp.1-13. <10.1214/ECP.v19-3325>. <hal-01316539>

HAL Id: hal-01316539
https://hal.sorbonne-universite.fr/hal-01316539
Submitted on 17 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
A renewal version of the Sanov theorem

Mauro Mariani * Lorenzo Zambotti†

Abstract

Large deviations for the local time of a process X_t are investigated, where $X_t = x_i$ for $t \in [S_{i-1}, S_i]$ and (x_j) are i.i.d. random variables on a Polish space, S_j is the j-th arrival time of a renewal process depending on (x_j). No moment conditions are assumed on the arrival times of the renewal process.

Keywords: Large deviations; Renewal processes, Sanov Theorem, Heavy tails.

AMS MSC 2010: 60K05; 60F10.

Submitted to ECP on February 16, 2014, final version accepted on October 8, 2014.

1 Main results

1.1 Outline of the result

Consider an i.i.d. sequence $(x_i)_{i \in \mathbb{N}^+}$ in a Polish space \mathcal{X}, with marginal distribution $\bar{\mu}.$ One may define a stochastic process $(X_t)_{t \geq 0}$ on \mathcal{X} by setting $X_t = x_i$ for $t \in [i-1, i]$, and consider its empirical measure $\pi_t := \frac{1}{t} \int_0^t ds \delta_{X_s}.$ The ergodic theorem then states that $\pi_t \to \bar{\mu}$ as $t \to +\infty$, while the Sanov theorem yields a finer estimate for the probability that π_t is found in a small neighborhood of a given Borel probability measure $\bar{\nu}$ on \mathcal{X}. Such probability is estimated, in the sense of large deviations, as $\exp(-tH(\bar{\nu} | \bar{\mu})),$ where $H(\bar{\nu} | \bar{\mu})$ is the relative entropy of $\bar{\nu}$ with respect to $\bar{\mu}$.

In this paper, we want to provide a similar result, in the case in which the time spent by the process X_t at the point x_i may depend on the process itself. In particular, for $\tau: \mathcal{X} \to [0, +\infty]$ a measurable map, define $N_t := \inf \{n \in \mathbb{N}^+ : \sum_{i=1}^{N_i} \tau(x_i) \geq t\}$, and $X_t := x_{N_t+1}.$ In the next section, the precise mathematical setting for the study of the large deviations of the empirical measure of X_t is recalled, and a large deviations result is established in Section 1.4. While for $\tau \equiv 1$ one gets the classical Sanov theorem, we are mainly interested in the case where the law of τ under $\bar{\mu}$ features heavy tails. In such a case the Markov process $(X_t, t - \sum_{i=1}^{N_i} \tau(x_i))$ does not have good ergodic properties, and the classical Donsker-Varadhan theorem is violated.

1.2 Mathematical setting

In the following $\mathbb{N} = \{0, 1, \ldots\}, \mathbb{N}^+ = \mathbb{N} \setminus \{0\}$; \mathcal{X} is a Polish space, that is a separable, completely metrisable topological space; a general element of $\mathcal{X}^{\mathbb{N}^+}$ will be denoted $x = (x_1, x_2, \ldots); C_b(\mathcal{X})$ and $C_c(\mathcal{X})$ are respectively the spaces of bounded continuous

* Dipartimento di Matematica, Università degli Studi di Roma La Sapienza, Italy. E-mail: mariani@mat.uniroma1.it
† LPMA (CNRS UMR 7599) Université Paris 6 – Pierre et Marie Curie, U.F.R. Mathématiques, France. E-mail: lorenzo.zambotti@upmc.fr
functions and compactly supported continuous functions on \mathcal{X}. $\mathcal{M}_1(\mathcal{X})$ is the space of positive Radon measure on \mathcal{X} with total variation bounded by 1, while $\mathcal{P}(\mathcal{X}) \subset \mathcal{M}_1(\mathcal{X})$ is the set of Borel probability measures on \mathcal{X}. For $\mu \in \mathcal{M}_1(\mathcal{X})$ and f a μ-integrable function, we write $\mu(f) := \int d\mu f$. For $\mu, \nu \in \mathcal{P}(\mathcal{X})$, $\mathcal{H}(\nu|\mu)$ denotes the relative entropy of ν with respect to μ:

\[
\mathcal{H}(\nu|\mu) := \sup_{\varphi \in C_b(\mathcal{X})} \nu(\varphi) - \log \mu(\varphi) = \begin{cases} \int \mu(dx) h \left(\frac{d\nu}{d\mu} \right) & \text{if } \nu \ll \mu; \\ +\infty & \text{otherwise;} \end{cases} \tag{1.1}
\]

where the positive convex function h is defined as $h(g) = g(\log g - 1) + 1$.

We always consider $\mathcal{P}(\mathcal{X})$ equipped with the narrow (or weak) topology, namely the weakest topology such that $\mu \mapsto \mu(f)$ is continuous for all $f \in C_b(\mathcal{X})$. In the particular case in which \mathcal{X} is locally compact, we will also regard $\mathcal{M}_1(\mathcal{X})$ as a topological space, equipped with the vague topology, namely the weakest topology such that $\mu \mapsto \mu(f)$ is continuous for all $f \in C_c(\mathcal{X})$. $\mathcal{P}(\mathcal{X})$ is then a Polish space, and if \mathcal{X} is locally compact $\mathcal{M}_1(\mathcal{X})$ is a compact Polish space.

Fix a reference probability $\bar{\mu} \in \mathcal{P}(\mathcal{X})$ and a measurable function $\tau : \mathcal{X} \to [0, +\infty]$; $\tau(x)$ has to be interpreted as the time elapsed at x. $\bar{\mu}$ and τ are the only ‘inputs’ of the problem.

Define $\xi : \mathcal{X} \to [0, +\infty]$ and $\xi^\infty \in [0, +\infty]$ as

\[
\xi(x) = \inf_{\delta > 0} \sup \left\{ c \geq 0 : \bar{\mu}(e^{ct}1_{B_\delta(x)}) < +\infty \right\}
\]

\[
\xi^\infty := \sup_{K \subset \mathcal{X}, \text{compact}} \sup \left\{ c \geq 0 : \bar{\mu}(e^{ct}1_K) < +\infty \right\} \tag{1.2}
\]

where $B_\delta(x) \subset \mathcal{X}$ is the ball of radius δ centered at x, see (2.4) for another characterisation of ξ. Note $\xi^\infty = +\infty$ if \mathcal{X} is compact.

The role of the auxiliary function ξ and of the assumptions below are discussed at the end of this section. In particular it is remarked that (A2) below is implied by regularity assumptions on τ (e.g. upper semicontinuity at infinity). Hereafter (A1) and (A2) will always be assumed, while our main results are proved whenever at least one of (A3) or (A4) holds (with somehow different statements in the two cases).

(A1) $\bar{\mu} (\{\tau = 0\}) = \bar{\mu} (\{\tau = +\infty\}) = 0$.

(A2) $\bar{\mu} (\{\xi < +\infty\}) = 0$.

(A3) $\xi^\infty = +\infty$.

(A4) \mathcal{X} is locally compact.

In the following x is sampled as an i.i.d. sequence with marginal law $\bar{\mu}$ and E will denote the expectation of functions of x with respect to $\bar{\mu}^{\otimes N^+}$. By (A1), for each $n \in \mathbb{N}$, $t \geq 0$ and a.e. x, the following random variables are well defined

\[
S_0 \equiv S_0(x) := 0, \quad S_n \equiv S_n(x) := \sum_{i=1}^{n} \tau(x_i), \quad n \geq 1,
\]

\[
N_t \equiv N_t(x) := \inf \{ n \in \mathbb{N} : S_{n+1} \geq t \} = \sum_{n=1}^{\infty} \mathbbm{1}_{(S_n \leq t)},
\]

\[
X_t \equiv X_t(x) := x_{N_t+1},
\]

\[
\pi_t \equiv \pi_t(x) = \frac{1}{t} \int_{[0,t]} ds \delta_{X_s} \in \mathcal{P}(\mathcal{X}). \tag{1.3}
\]
Renewal Sanov theorem

In other words, \(X_t = x_1 \) for \(t \in [0, \tau(x_1)] \), \(X_t = x_2 \) for \(t \in [\tau(x_1), \tau(x_1) + \tau(x_2)] \) and so on, while \(\pi_t: \mathcal{X}^{\mathbb{N}^+} \to \mathcal{P}(\mathcal{X}) \) is the local time or the empirical measure of \(X_t \). Let \(\mathbf{P}_t := \bar{\mu} \circ \pi_t^{-1} \) be the law of \(\pi_t \).

From the ergodic theorem, one expects \(\pi_t \) to concentrate on a deterministic limit as \(t \to +\infty \) (this is easily established, for instance, whenever \(\bar{\mu}(\tau) < +\infty \)). Large deviations of \(\mathbf{P}_t \) are then relevant, and subject of investigation of this paper.

1.3 Some examples

Taking advantage of the general metric setting, one is able to fit in this framework also the case of a process with random waiting time, see the examples (b) and (c) below.

(a) If \(\tau(x) \equiv 1 \), then we are in the framework of the classical Sanov theorem, [2, Chapter 6.2]. Here \(\xi(x) = \xi^\infty = +\infty \) for all \(x \in \mathcal{X} \).

(b) Assume \(\mathcal{X} = \mathcal{Y} \times [0, +\infty] \) for some Polish space \(\mathcal{Y} \). Let \(p \) be a Borel probability on \(\mathcal{Y} \) and for \(p \)-a.e. \(y \) let \(\phi_y \) be a probability on \([0, +\infty] \) concentrated on \([0, +\infty[\), with \(y \mapsto \phi_y \) measurable. Set \(dp(y, t) = dp(y) d\phi_y(t) \) and \(\tau(y, t) = t \). Then we are in the framework of a pure jump process, jumping on \(\mathcal{Y} \) with law \(p \) and spending a random time at a visited point \(y \) with law \(\phi_y \). In this case

\[
\xi(y, t) = \begin{cases}
\sup\{c \geq 0 : \int \phi_y(ds) e^{cs} < +\infty\} & \text{if } t = +\infty \text{ and } y \in \text{Supp}(\nu) \\
+\infty & \text{otherwise.}
\end{cases}
\]

\(\xi^\infty = \sup_{K \subset \mathcal{Y}, K \text{compact}} \inf_{K^\infty \in K^\infty} \xi(y, +\infty) \)

(c) As a special case of (b), take \(\mathcal{X} = [0, +\infty[\times [0, +\infty] \) and for \(\bar{\mu}(dr, s) = \nu(dr) \phi(ds) \), where \(\nu \) is any probability measure on \([0, +\infty] \) and \(\phi \) is the exponential law with mean 1. Set \(\tau((y, s)) = \theta(y)s \), so that, conditionally on \(y \), \(\tau \) is an exponential random variable with mean \(\theta(y) \). In this setting, \(\mathcal{N}_t \) is an inhomogeneous Poisson random process, and the empirical measure \(\pi_t \) keeps track of the rates of the interarrival times. In this case \(\xi(y, t) = +\infty \) for \(t < +\infty \) or \(y \notin \text{Supp}(\nu) \), while \(\xi(y, +\infty) = 1/\theta(y) \) for \(y \in \text{Supp}(\nu) \), and \(\xi^\infty = \lim_{y \to +\infty} \xi(y, +\infty) \).

(d) An interesting example in which \(\tau \) is ‘truly’ deterministic is the following. \(\mathcal{X} = [0, +\infty[^n \), \(\bar{\mu}(dx) = \prod_{i=1}^n \mu_i(dx_i) \) for some probabilities \(\mu_i \in \mathcal{P}([0, +\infty[) \) and \(\tau(x) = \frac{1}{n} \sum_{i=1}^n \tau_i \). This is a model for a particle moving on 1-dimensional torus of length 1. During its motion the particle touches some fixed hot points equi-spaced on the torus, and it changes its speed by sampling a new one with law \(\mu_i \) at the hot point \(i \). \(\tau(x) \) is then the time elapsed to complete a tour of the torus.

One can derive the large deviations of some physical quantities (e.g. kinetic energy of the particle) from the large deviations of the empirical measure of \(X_t \). The physically relevant case is \(\mu_i(x_i) = x_i e^{-\beta_i x_i^2} dx_i \) for some \(\beta_i > 0 \). Then \(\xi^\infty = +\infty \) and \(\xi(x) = +\infty \) unless one the \(x_i \) is 0, in which case \(\xi(x) = 0 \). As remarked below, when \(\{x = 0\} \) is non-empty, the large deviations rate functional is not strictly convex. For \(n = 1 \), this moving particle dynamics has been used as a building block of a toy model of out-of-equilibrium statistical mechanics in [6], where the absence of strict convexity of the rate causes a dynamic phase transition in the model.

1.4 Large deviations results

We recall the following standard definition.

Definition 1.1. Let \(\mathcal{Y} \) be Polish space and \((Q_t)_{t \geq 0} \) a family of Borel probability measures on \(\mathcal{Y} \) and \(I: \mathcal{Y} \to [0, +\infty[\). Then:

ECP 19 (2014), paper 69.

Page 3/13
ecp.ejpecp.org
Renewal Sanov theorem

- I is good if $\{y \in \mathcal{Y} : I(y) \leq M\}$ is compact in \mathcal{Y} for all $M > 0$ and $I \not\equiv +\infty$.
- $(Q_i)_{t>0}$ satisfies a large deviations upper bound with good rate I if
 \[
 \lim_{t \to +\infty} \frac{1}{t} \log Q_t(C) \leq - \inf_{u \in C} I(u) \quad \text{for all } C \subset \mathcal{Y} \text{ closed}.
 \]
- $(Q_i)_{t>0}$ satisfies a large deviations lower bound with good rate I, if
 \[
 \lim_{t \to +\infty} \frac{1}{t} \log Q_t(O) \geq - \inf_{u \in O} I(u) \quad \text{for all } O \subset \mathcal{Y} \text{ open}.
 \]

$(P_i)_{t>0}$ is said to satisfy a good large deviations principle if both the upper and lower bounds hold with the same good rate I.

For $\nu \in \mathcal{M}_1(\mathcal{X})$, let ν_a and ν_s be respectively the absolutely continuous and singular parts of ν with respect to μ. If ν is such that $\nu(1/\tau) \in [0, +\infty[$ define $\bar{\nu} \in \mathcal{P}(\mathcal{X})$ as
\[
\bar{\nu}(dx) = \frac{\nu(dx)}{\nu(1/\tau)}.
\]

Proposition 1.2. Define $I : \mathcal{P}(\mathcal{X}) \to [0, +\infty]$ as
\[
I(\nu) = \begin{cases}
\nu_a(1/\tau)H(\nu_a|\bar{\mu}) + \nu_s(\xi) & \text{if } \nu_a(1/\tau) < +\infty, \\
+\infty & \text{otherwise},
\end{cases}
\]
where we define $\nu_a(1/\tau)H(\nu_a|\bar{\mu}) = 0$ whenever $\nu_a(1/\tau) = 0$. If $(A3)$ holds, then I is a good and convex functional on $\mathcal{P}(\mathcal{X})$.

Theorem 1.3. If $(A3)$ holds, then $(P_i)_{t>0}$ satisfies a good large deviations principle on $\mathcal{P}(\mathcal{X})$ with rate I.

In the following remark some features of the functional I are investigated. In particular we characterise the cases where I is strictly convex and those in which it features affine stretches.

Remark 1.4. Assume $(A3)$. Since $\xi(x) = +\infty$ for $x \not\in \text{Supp}(\bar{\mu})$, $I(\nu) = +\infty$ if $\text{Supp}(\nu) \not\subset \text{Supp}(\bar{\mu})$. However, contrary to classical Sanov theorem, in general $I(\nu) < +\infty$ does not imply that ν is absolutely continuous with respect to μ, unless $\xi \equiv \infty$. In general, the nature of $I(\nu)$ depends on the values of ξ and $\bar{\mu}(\tau)$. Indeed let
\[
E := \{x \in \mathcal{X} : \xi(x) = 0\}
\]
be the set of points around which τ has no local exponential moments. Then

1. If $E = \emptyset$, namely if $\xi(x) > 0$ for all $x \in \mathcal{X}$, then a fortiori $\bar{\mu}(\tau) < +\infty$ and $I(\nu) = 0$ iff $\nu = \mu$, where (consistently with (1.4))
\[
\mu(dx) := \frac{\tau(x)\bar{\mu}(dx)}{\bar{\mu}(\tau)}.
\]

2. If $E \neq \emptyset$, there are two possibilities

 (2A) If $\bar{\mu}(\tau) < +\infty$, then $I(\nu) = 0$ iff $\nu = \alpha \mu + (1 - \alpha)\lambda$ for some $\alpha \in [0, 1]$ and some $\lambda \in \mathcal{P}(\mathcal{X})$ such that $\lambda(E) = 1$, where μ is given by (1.5).

 (2B) If $\bar{\mu}(\tau) = +\infty$ then $I(\nu) = 0$ iff ν is concentrated on E.

In particular, Theorem 1.3 implies the convergence in law of π_t to μ in case (1), and in case (2B) if E is a singleton. In all other cases, a nontrivial second order large deviations may hold, see [10] where moderate deviations are discussed in a particular case. Finally, if $E \neq \emptyset$, then the subdifferential of I is nontrivial.
Renewal Sanov theorem

If \(\xi^\infty < +\infty \), (\(P_t \))\(_{t \geq 0} \) is not exponentially tight on \(\mathcal{P}(\mathcal{X}) \), and large deviations need to be investigated on \(\mathcal{M}_1(\mathcal{X}) \). However, in this case we need \(\mathcal{X} \) to be locally compact in order to have good topological properties of \(\mathcal{M}_1(\mathcal{X}) \).

Proposition 1.5. Define \(I' : \mathcal{M}_1(\mathcal{X}) \to [0, +\infty] \) as

\[
I'(\nu) = \begin{cases}
\nu_\alpha(1/\tau)H(\nu_\alpha|\bar{\mu}) + \nu_\alpha(\xi) + (1 - \nu(\mathcal{X}))\xi^\infty & \text{if } \nu_\alpha(1/\tau) < +\infty, \\
+\infty & \text{otherwise,}
\end{cases}
\]

If (A4) holds, then \(I' \) is a good and convex functional on \(\mathcal{M}_1(\mathcal{X}) \).

Theorem 1.6. If (A4) holds, then (\(P_t \))\(_{t \geq 0} \) satisfies a good large deviations principle on \(\mathcal{M}_1(\mathcal{X}) \) with rate \(I' \).

Under (A1), the key assumption (A2) is satisfied whenever

\[
\bar{\mu}(\cap_{M \geq 0} \text{Closure}(\{\tau \geq M\})) = 0.
\]

In particular (A2) holds if \(\tau \) is upper semicontinuous at infinity. Since all the results stated above make sense even dropping (A2), one may wonder whether it is a merely technical condition. While one can prove the large deviations upper bound even dropping this assumption, the lower bound is in general false if (A2) does not hold.

1.5 Outlook

With the same notation as above, one may also introduce the Markov process \(Y_t = (X_t, \sum_{i=0}^{N_t} \tau(x_i)) \in \mathcal{X} \times [0,1] \). Large deviations for the empirical measure of \(Y_t \) would give large deviations of \(X_t \) by a standard contraction argument. Moreover, the Donsker-Varadhan theory [3] and its extensions provide general large deviations results for the empirical measure of a Markov process. However, this approach fails in this case. On the one hand, standard Donsker-Varadhan theorems cannot be applied here, since \(Y_t \) only enjoys weak ergodic properties. On the other hand, even formally, the Donsker-Varadhan rate functional does not provide the right answer, a feature already remarked in [5] for renewal processes. Indeed, it has been proved in [7] that in general the empirical measure of \(Y_t \) does not satisfy a large deviations principle, and in the special case it does (which depends on the law of \(\tau \) under \(\bar{\mu} \)), the rate functional does not correspond to the Donsker-Varadhan functional. Similarly, the large deviations rate functional for \(\pi_t \) does not correspond in general to the one predicted by applying contraction to the Donsker-Varadhan functional for the empirical measure of \(Y_t \) (unless \(\tau \) has all exponential moments bounded). In this respect, it may be remarkable that the law of \(\pi_t \) satisfies a large deviations principle at all.

2 The functional \(I \)

This section is devoted to prove Proposition 1.2, Proposition 1.5 and general properties of the functional \(I \), which will play a key role in the proof of the main theorems. First we remark that one can reduce to the case of a compact state space \(\mathcal{X} \).

Proposition 2.1. Suppose that Proposition 1.2 and Theorem 1.3 hold with the additional hypotheses of \(\mathcal{X} \) being a compact Polish space. Then Proposition 1.2, Theorem 1.3, Proposition 1.5 and Theorem 1.6 hold.

Proof. An arbitrary Polish space \(\mathcal{X} \) embeds continuously in the compact Polish space \([0,1]^N\), see [9, Lemma 3.1.2]. Regard \(\mathcal{X} \) as a subset of \([0,1]^N\) and let \(\mathcal{Y} \) be the closure of \(\mathcal{X} \). Then \(\mathcal{Y} \) is compact. Extend \(\bar{\mu} \) to \(\mathcal{Y} \) setting \(\bar{\mu}(\mathcal{Y} \setminus \mathcal{X}) = 0 \) and extend \(\tau \) to \(\mathcal{Y} \) setting \(\tau(x) = +\infty \) for \(x \in \mathcal{Y} \setminus \mathcal{X} \). We denote \(\xi_\mathcal{Y} \) and \(I_\mathcal{Y} \) the object corresponding to \(\xi \) and \(I \) on
Renewal Sanov theorem

\mathcal{Y}. Then (A1), (A2) hold on \mathcal{Y} since they hold on \mathcal{X}, while refa3 is trivially satisfied on \mathcal{Y}. Thus, by the hypotheses of this proposition, the extension of P_t to $\mathcal{P}(\mathcal{Y})$ satisfies a large deviations principle with good rate $I_\mathcal{Y}$. We then separate the two cases, whether (A3) or (A4) hold on \mathcal{X}.

If (A3) holds (on \mathcal{X}), then $\xi_\delta(x) = +\infty$ for $x \in \mathcal{Y} \setminus \mathcal{X}$ (since neighborhoods of such points x in \mathcal{Y} are exactly complements of compact subsets of \mathcal{X}). Thus the map $\Pi : \mathcal{P}(\mathcal{Y}) \to \mathcal{P}(\mathcal{X})$ defined as

$$\Pi(\nu) = \begin{cases} \nu(\cdot | \mathcal{X}) := \frac{\nu(\cdot \cap \mathcal{X})}{\nu(\mathcal{X})} & \text{if } \nu(\mathcal{X}) > 0 \\ \hat{\mu} & \text{otherwise} \end{cases}$$

is continuous on the domain of $I_\mathcal{Y}$. Since II is just the restriction map for probabilities concentrated on \mathcal{X}, the extension of P_t to $\mathcal{P}(\mathcal{Y})$ is mapped to P_t by Π. Then by contraction principle [2, Chapter 4.2], I is good and P_t satisfies a good large deviations principle on $\mathcal{P}(\mathcal{X})$ with rate I. It is immediate to check that Π preserves the convexity, so I is convex.

Suppose now (A4) holds (but not (A3)). Consider the map $\Pi' : \mathcal{P}(\mathcal{Y}) \to \mathcal{M}_1(\mathcal{X})$ defined by

$$\Pi'(\nu)(f) = \nu(f) \quad \forall f \in C_c(\mathcal{X})$$

where we also identified f with its unique continuous extension on \mathcal{Y} (namely $f(x) = 0$ for $x \in \mathcal{Y} \setminus \mathcal{X}$). Then Π' is continuous, and we conclude again by contraction principle.

Motivated by the previous remark, hereafter we assume \mathcal{X} to be compact, with no loss of generality.

For $\delta > 0$, define $\xi_\delta : \mathcal{X} \to [0, +\infty]$ as

$$\xi_\delta(x) = \sup \{ c : \hat{\mu}(e^{ct} \mathds{1}_{B_\delta(x)}) < +\infty \}$$

(2.1)

In particular $\xi = \sup_{\delta > 0} \xi_\delta$. Let ξ_δ be the lower semicontinuous envelope of ξ_δ.

Lemma 2.2. For all $x \in \mathcal{X}$, $\xi(x) = \sup_{\delta > 0} \xi_\delta(x)$. In particular ξ is lower semicontinuous.

Proof. By the very definition of ξ_δ, if $y \in B_\delta(x)$, then $\xi_{2\delta}(x) \leq \xi_\delta(y)$. Therefore

$$\xi_\delta(x) \geq \xi_{\delta}(x) := \sup_{\varepsilon > 0} \inf_{y \in B_{\varepsilon}(x)} \xi_{\delta}(y) \geq \inf_{y \in B_{\delta}(x)} \xi_{\delta}(y) \geq \xi_{2\delta}(x)$$

The lemma follows taking the supremum in $\delta > 0$.

Let $\text{LSC}(\mathcal{X})$ be the set of lower semicontinuous functions $f : \mathcal{X} \to [-\infty, +\infty]$. If $f \in \text{LSC}(\mathcal{X})$ then f is bounded from below.

Lemma 2.3. Recall (2.1). For all $M < +\infty$ and $\varepsilon, \delta > 0$ (hereafter $a \wedge b := \min(a, b)$)

$$\hat{\mu}(e^{\varepsilon \xi(x)} e^{M - \varepsilon T}) < +\infty.$$

(2.2)

On the other hand, if $f \in \text{LSC}(\mathcal{X})$ is such that

$$\hat{\mu}(e^{T f}) < +\infty,$$

(2.3)

then $f(x) \leq \xi(x)$ for all $x \in \mathcal{X}$. In particular

$$\xi(x) = \sup\{ f(x), f \in \text{LSC}(\mathcal{X}) : \hat{\mu}(e^{T f}) < +\infty \}.$$

(2.4)
Note Renewal Sanov theorem

Proof. Fix $M, \varepsilon, \delta > 0$ and let $\{B_{\delta/2}(y_1), \ldots, B_{\delta/2}(y_n)\}$ be a finite covering of the compact space X with balls of radius $\delta/2$. Since $\xi_\delta(x) \leq \xi_\delta(y_i)$ for $x \in B_{\delta/2}(y_i)$

$$\mu(e^{(\zeta_\delta(x)^\delta-M-\varepsilon)^\tau}) \leq \sum_{i=1}^n \mu(e^{(\zeta_\delta(y_i)^\delta-M-\varepsilon)^\tau}\mathbb{1}_{B_{\delta/2}(y_i)}) \leq \sum_{i=1}^n \mu(e^{(\xi_{\delta/2}(y_i)^\delta-M-\varepsilon)^\tau}\mathbb{1}_{B_{\delta/2}(y_i)}).$$

Since $\xi_{\delta/2}(y_i)^\delta-M-\varepsilon < \xi_{\delta/2}(y_i), each term in the summation in the last line of the above formula is finite by the very definition of $\xi_{\delta/2}(y_i)$. Thus (2.2) holds.

Let now $f \in LSC(X)$, and suppose that for some $x \in X$ and $\varepsilon > 0$, $f(x) \geq \xi(x) + 2\varepsilon$. Since f is lower semicontinuous, there exists $\delta > 0$ such that $\inf_{y \in B_{\delta}(x)} f(y) \geq \xi(x) + \varepsilon$. Then

$$\mu((e^{\tau f}) \mathbb{1}_{B_{\delta}(x)}) \geq \mu((e^{\tau f(x)+\varepsilon}) \mathbb{1}_{B_{\delta}(x)}) \geq \mu((e^{\tau f(x)+\varepsilon}) \mathbb{1}_{B_{\delta}(x)}) = +\infty.$$

Therefore if (2.3) holds, then $f \leq \xi$ everywhere. \hfill \Box

Proposition 2.4. For each $\nu \in \mathcal{P}(X)$

$$I(\nu) = \sup \left\{ \nu(f), f \in LSC(X) : \mu(e^{\tau f}) \leq 1 \right\} =: \bar{I}(\nu).$$

(2.5)

In particular Proposition 1.2 holds.

Proof. Fix $\nu \in \mathcal{P}(X)$, and let $f : X \to \mathbb{R}$ be Borel measurable, ν-integrable, such that $\mu(e^{\tau f}) < 1$ and $f \leq (\xi_\delta + M - \varepsilon)$ for some $M, \delta, \varepsilon > 0$. Since continuous functions are dense in $L_1(\nu + \mu)$, there exists a sequence (f_n) in $LSC(X)$ such that $f_n \to f$ in $L_1(d\nu)$ (and up to passing to a subsequence) also μ-almost everywhere. Moreover one can assume $f_n \leq \xi_\delta + M - \varepsilon$, since the sequence $f_n \wedge (\xi_\delta + M)$ is in $LSC(X)$ and enjoys the aforementioned properties as well. Dominated convergence and (2.2) imply

$$\lim_{n \to \infty} \mu(e^{\tau f_n}) = \mu(e^{\tau f}) < 1.$$

Then $\mu(e^{\tau f}) \leq \mu(e^{\tau f} \mathbb{1}_A) \leq \mu(e^{\tau \varepsilon}) \leq e^{-\varepsilon} < 1.$

If $\nu_n(1/\tau) = +\infty$, take $\varphi \equiv 1$ in (2.7). Then f is ν-integrable and by monotone convergence $\nu(f) \to +\infty$ as one lets $M \to +\infty$ and $\delta \downarrow 0$, so that $\bar{I}(\nu) = +\infty$ by (2.6). Thus $\bar{I}(\nu) = I(\nu) = +\infty$ whenever $\nu_n(1/\tau) = +\infty$.

Consider then the case $\nu_n(1/\tau) = +\infty$. Since φ is bounded, any f of the form (2.7) is ν-integrable, and thus by (2.6)

$$\bar{I}(\nu) \geq \nu(f) = \nu(\mathbb{1}_A \wedge \xi_\delta M) + \nu_\delta(\xi_\delta + M) - \varepsilon.$$

(2.7)

Then $\mu(e^{\tau f}) = \nu(\mathbb{1}_A \wedge \xi_\delta M) \leq \mu(e^{\tau \varepsilon}) \leq e^{-\varepsilon} < 1.$

If $\nu_n(1/\tau) = +\infty$, take $\varphi \equiv 1$ in (2.7). Then f is ν-integrable and by monotone convergence $\nu(f) \to +\infty$ as one lets $M \to +\infty$ and $\delta \downarrow 0$, so that $\bar{I}(\nu) = +\infty$ by (2.6). Thus $\bar{I}(\nu) = I(\nu) = +\infty$ whenever $\nu_n(1/\tau) = +\infty$.

Consider then the case $\nu_n(1/\tau) = +\infty$. Since φ is bounded, any f of the form (2.7) is ν-integrable, and thus by (2.6)

$$\bar{I}(\nu) \geq \nu(f) = \nu_\delta(\xi_\delta + M) + \nu_\delta(\xi_\delta + M) - \varepsilon.$$

Take the limit $M \to +\infty$, $\delta \downarrow 0$, $\varepsilon \downarrow 0$. Monotone convergence and Lemma 2.2 then yield

$$\bar{I}(\nu) \geq \nu_\delta(\xi_\delta) + \nu_\delta(\sup_{\delta > 0} \xi_\delta) = \nu_\delta(\xi_\delta) + \nu_\delta(\xi) = \nu_\delta(1/\tau)\nu_\delta(\varphi) + \nu_\delta(\xi)$$

where the last equality is a direct consequence of (1.4). Now optimize over φ to get

$$\bar{I}(\nu) \geq \nu_\delta(1/\tau) \sup \left\{ \nu_\delta(\varphi), \varphi \in C(X) : \mu(e^{\tau \varphi}) \leq 1 \right\} + \nu_\delta(\xi)$$

$$\geq \nu_\delta(1/\tau) \sup \left\{ \varphi \in C(X) : \mu(e^{\tau \varphi}) \leq 1 \right\} + \nu_\delta(\xi)$$
Renewal Sanov theorem

Notice that the condition $\bar{\mu}(e^\varphi) = 1$ can now be dropped in the supremum in the last line above, since for any $c \in \mathbb{R}$ the change $\varphi \mapsto \varphi + c$ leaves the quantity $\tilde{\nu}_a(\varphi) - \log \bar{\mu}(e^\varphi)$ invariant. Therefore the supremum over φ equals the relative entropy as defined in (1.1), so that $I \geq 1$.

In order to prove $I(\nu) \geq \bar{I}(\nu)$, one only needs to consider the case $\nu_a(1/\tau) < +\infty$, the inequality being trivial otherwise. Then for $\varphi \in L_1(d\tilde{\nu}_a)$ such that $\bar{\mu}(e^\varphi) \leq 1$,

$$\nu_a(1/\tau)\mathbf{H}(\tilde{\nu}_a|\mu) \geq \nu_a(1/\tau)\big[\tilde{\nu}_a(\varphi) - \log \bar{\mu}(e^\varphi)\big] \geq \nu_a(\varphi/\tau) = \nu_a(f),$$

where $f := \varphi/\tau$ and the above conditions on φ translates into $f \in L_1(d\tilde{\nu}_a)$ and $\bar{\mu}(e^{\tau f}) \leq 1$. Therefore, optimizing over $f \in LSC(\mathcal{X})$ satisfying these two conditions, and noting that Lemma 2.3 implies $f \leq \xi$ for such a f

$$I(\nu) = \nu_a(1/\tau)\mathbf{H}(\tilde{\nu}_a|\mu) + \nu_a(\xi) \geq \sup\{\nu_a(f), f \in LSC(\mathcal{X}) \cap L_1(d\tilde{\nu}_a) : \bar{\mu}(e^{\tau f}) \leq 1\} + \nu_a(\xi) = \sup\{\nu_a(f) + \nu_a(\xi), f \in LSC(\mathcal{X}) : \bar{\mu}(e^{\tau f}) \leq 1\} \geq \sup\{\nu_a(f), f \in LSC(\mathcal{X}) : \bar{\mu}(e^{\tau f}) \leq 1\} = \bar{I}(\nu).$$

Now (2.5) states in particular that I is the supremum of a family of linear lower semicontinuous mappings, thus Proposition 1.2 follows. \qed

Lemma 2.5. For $A \subset \mathcal{X}$ a Borel set, define

$$\xi^A := \sup \{c \geq 0 : \bar{\mu}(e^{\tau 1_A}) < +\infty\},$$

$$\underline{\xi}^A := -\lim_{L \to +\infty} \frac{1}{L} \log \bar{\mu}(\{\tau \geq L\} \cap A).$$

Then $\underline{\xi}^A = \xi^A$.

Proof. For $c > 0$

$$\bar{\mu}(e^{\tau 1_A}) = \int_{\mathbb{R}^+} d\eta \, \bar{\mu}(\{e^{\tau} \geq \eta\} \cap A) = \int_{\mathbb{R}^+} dL \, \bar{\mu}(\{\tau \geq L\} \cap A) e^{cL}.$$

It is then easy to check that, for $c > \underline{\xi}^A$, $\bar{\mu}(e^{\tau 1_A}) = +\infty$, while if $\xi^A > 0$ and $0 < c < \xi^A$, then $\bar{\mu}(e^{\tau 1_A}) < +\infty$. It follows $\underline{\xi}^A = \xi^A$. \qed

Proposition 2.6. Define $J : \mathcal{P}(\mathcal{X}) \to [0, +\infty]$ as

$$J(\nu) = \begin{cases} I(\nu) & \text{if } \nu = \nu_a, \\ +\infty & \text{otherwise}. \end{cases} \quad (2.8)$$

I is the lower semicontinuous envelope of J.

Notice that in the classical case $\tau \equiv 1$, J coincides with I. However, in this general case, $I = J$ iff $\xi \equiv +\infty$.

Proof of Proposition 2.6. Since $J \geq I$ and I is lower semicontinuous, the lower semicontinuous envelope of J is greater than I. Therefore it is enough to show that for each $\nu \in \mathcal{P}(\mathcal{X})$ such that $I(\nu) < +\infty$, there exists a sequence $\nu^n \to \nu$ such that $\lim_{n \to \infty} J(\nu^n) \leq I(\nu)$.

Let $\nu = \nu_n + \nu_a$ satisfy $I(\nu) < +\infty$. Since \mathcal{X} is compact, for each $\delta \in (0, 1)$ there exist $n^\delta \in \mathbb{N}^+$ and a finite Borel partition $(A_1^\delta, \ldots, A_n^\delta)$ of \mathcal{X} such that each A_i^δ has...
Renewal Sanov theorem

diameter bounded by δ, has nonempty interior, and satisfies $\nu_s(\partial A^\delta_i) = 0$. For $\delta > 0$ and $M > L \geq 0$, define

$$A^\delta_i := \{L \leq \tau \leq M \cap A^\delta_i.$$

Fix a $j \in \{1, \ldots, n^\delta\}$. We claim that

$$\text{if } \nu_s(A^\delta_j) > 0 \text{ then } \forall L \geq 0, \exists M^L \geq L \text{ such that } \bar{\mu}(A^\delta_i, M^L) > 0 \text{ for all } M \geq M^L. \quad (2.9)$$

Indeed $\nu_s(\xi) \leq I(\nu) < +\infty$, thus ν_s is concentrated on $\{\xi < +\infty\}$. Since $\nu_s(\partial A^\delta_i) = 0$, there exists a point x^δ_j in the interior of A^δ_i such that $\xi(x^\delta_j) < \infty$. Then, for each $c > \xi(x^\delta_j)$ and $\delta > 0$

$$\lim_{M \to +\infty} \bar{\mu}(e^{\delta^T B_x(x^\delta_j)} \mathbf{1}_{\delta \leq \tau \leq M}) = \bar{\mu}(e^{\delta^T B_x(x^\delta_j)} \mathbf{1}_{\tau \geq L}) = +\infty.$$

Hence for M large enough $\{L \leq \tau \leq M\}$ has positive $\bar{\mu}$-measure in each neighbourhood of x^δ_j, including A^δ_i. The claim (2.9) is thus proved.

By (2.9), for each $L = (L_1, L_2, \ldots) \in [0, +\infty[^R$ there exists $M^L \in [0, +\infty[^R$, such that the probability measure

$$\nu^\delta_i L, M(dx) := \nu_s(dx) + \sum_{i=1}^{n^\delta} \nu_s(A^\delta_i) \frac{\tau(x)\bar{\mu}(dx|A^\delta_i, L, M)}{\bar{\mu}(\tau|A^\delta_i, L, M)} \quad (2.10)$$

is well defined whenever $M \geq M^L$, provided the terms in the summation are understood to vanish whenever $\nu_s(A^\delta_i)$ does. It follows straightforwardly from this definition that for each $\varphi \in C_b(X')$

$$\sup_{\delta, \theta} \left\| \nu^{\delta, \theta, L, M} - \nu(\varphi) \right\| \leq \lim_{M \to +\infty} \left| \nu^{\delta, \theta, L, M} - \nu(\varphi) \right| = 0 \quad (2.11)$$

Note that for each $\delta > 0$ and $L, M \in [0, +\infty[^R$, with $M \geq M^L$, $\nu^\delta L, M$ is absolutely continuous with respect to $\bar{\mu}$. By the convexity of I proved in Proposition 2.4

$$J(\nu^\delta L, M) = I(\nu^\delta L, M) \leq \nu_s(X) \left\{ \frac{1}{\nu_s(X)} \nu_s \right\} + \sum_{i=1}^{n^\delta} \nu_s(A^\delta_i) I \left(\frac{\tau(x)\bar{\mu}(dx|A^\delta_i, L, M)}{\bar{\mu}(\tau|A^\delta_i, L, M)} \right) \quad (2.12)$$

where the corresponding terms above are understood to vanish whenever $\nu_s(X)$ or $\nu_s(A^\delta_i)$ do. By direct computation

$$I \left(\frac{\tau(x)\bar{\mu}(dx|A^\delta_i, L, M)}{\bar{\mu}(\tau|A^\delta_i, L, M)} \right) = - \frac{1}{\bar{\mu}(\tau|A^\delta_i, L, M)} \log \bar{\mu}(A^\delta_i, L, M) \leq - \frac{1}{L_i} \log \bar{\mu}(\{L_i \leq \tau \leq M_i \} \cap A^\delta_i).$$

Thus, from Lemma 2.5

$$\lim_{L_i \to +\infty} \lim_{M_i \to +\infty} \left(\frac{\tau(x)\bar{\mu}(dx|A^\delta_i, L, M)}{\bar{\mu}(\tau|A^\delta_i, L, M)} \right) \leq \xi A^\delta_i.$$
Renewal Sanov theorem

Now, since $\xi \geq \xi_{A_i}^l$ on A_i^l

$$\lim_{L \to +\infty} \lim_{M \to +\infty} \sum_{i=1}^n \nu_k(A_i^l) I\left(\frac{\tau(x)\mu(dx|A_i^L)}{\mu(A_i^L)}\right) \leq \sum_{i=1}^n \nu(A_i^l) \xi_{A_i}^l \leq \nu_* \xi.$$

Together with (2.12) this implies

$$\sup_{\delta > 0} \lim_{L \to +\infty} \lim_{M \to +\infty} J(\nu^L,M) \leq I(\nu).$$

Combining this with (2.11), by a standard diagonal argument, there exists a sequence $\nu_n = \nu^{\delta,n}L^{n,M}$ converging to ν such that $\lim_{n \to \infty} I(\nu_n) \leq I(\nu)$.

\[\square\]

3 Large deviations of the empirical measure

The following identity follows immediately from (1.3), and will come handy in this section.

$$\pi_t = \frac{1}{t} \sum_{i=1}^{N_t} \tau(x_i)\delta_{x_i} + \frac{t-S_{N_t}}{t} \delta_{x_{N_t+1}}. \quad (3.1)$$

Lemma 3.1. Let $f: \mathcal{X} \to [-\infty, +\infty]$ be a measurable function such that $\bar{\mu}(e^{tf}) \leq 1$. Then

$$\sup_{t \geq 1} \frac{1}{t} \mathbf{E}(e^{t \pi_t(f)}) < +\infty.$$

Proof. It is enough to prove the result in the case $\bar{\mu}(e^{tf}) = 1$. Then define $\bar{\mu}_f \in \mathcal{P}(\mathcal{X})$ as

$$\bar{\mu}_f(dx) := e^{t(x)f(x)} \bar{\mu}(dx).$$

Thus

$$\mathbf{E}(e^{t \pi_t(f)}) = \sum_{n=0}^{\infty} \mathbf{E}\left[\sum_{i=1}^{n} \tau(x_i) f(x_i) + (t-S_n) f(x_{n+1}) \mathbb{1}_{N_t=n} \right].$$

$$= \sum_{n=0}^{\infty} \int_{\mathcal{X}^{n+1}} \left(\prod_{i=1}^{n} \bar{\mu}_f(dx_i) \right) \bar{\mu}(dx_{n+1}) \exp[(t-S_n) f(x_{n+1}) \mathbb{1}_{N_t=n}].$$

Note that $\{N_t = n\} = \{S_n < t\} \cap \{\tau(x_{n+1}) \geq t - S_n\}$, so that denoting $\zeta_{n,f} \in \mathcal{P}([0, +\infty))$ the law of $S_n = \tau(x_1) + \ldots + \tau(x_n)$ with respect to $\prod_{i=1}^{n} \bar{\mu}_f(dx_i)$

$$\mathbf{E}(e^{t \pi_t(f)}) = \sum_{n=0}^{\infty} \int_{[0,t]} \zeta_{n,f}(dx) \int_{[\tau \geq t-s]} \bar{\mu}(dx) e^{(t-s)f(x)}.$$

The rightest integral is bounded by 2, since $e^{(t-s)f(x)} \leq 1 + e^{\tau(x)f(x)}$ on $\{\tau \geq t-s\}$.

Thus

$$\frac{1}{t} \mathbf{E}(e^{t \pi_t(f)}) \leq 2 \sum_{n=0}^{\infty} \zeta_{n,f}(0,t) + 2 \sum_{n=0}^{\infty} \mathbf{E}_f \mathbb{1}_{N_t \geq n} = 2 \mathbf{E}_f \frac{N_t}{t},$$

where \mathbf{E}_f denotes expectation with respect to $\bar{\mu}_f^{\otimes n_t}$. By general renewal theory [1, Chapter V.4], $\mathbf{E}_f \frac{N_t}{t} \to \frac{1}{\bar{\mu}(\tau)} < +\infty$ as $t \to +\infty$.

\[\square\]

Proof of Theorem 1.3, upper bound. Fix \mathcal{O} an open subset of $\mathcal{P}(\mathcal{X})$. Then for each $f \in LSC(\mathcal{X})$ such that $\bar{\mu}(e^{tf}) \leq 1$

$$\frac{1}{t} \log \mathbf{P}_t(\mathcal{O}) = \frac{1}{t} \log \mathbf{E}_f e^{-t\pi_t(f)} e^{t\pi_t(f)} \mathbb{1}_{\pi_t \in \mathcal{O}}$$

$$\leq \frac{1}{t} \log \left[e^{-t\inf_{v \in \mathcal{O}} v(f)} \mathbb{E}_f e^{t\pi_t(f)} \right] = -\inf_{v \in \mathcal{O}} v(f) + \frac{1}{t} \log \mathbb{E}_f e^{t\pi_t(f)}.$$
Renewal Sanov theorem

By taking the limsup $t \to \infty$, the last term in the above formula vanishes by Lemma 3.1. Optimizing over f

$$\lim_{t \to \infty} -\frac{1}{t} \log P_t(\mathcal{O}) \leq -\sup_{\nu \in \mathcal{O}} \{ \inf_{f \in \mathcal{L}(\mathcal{X})} \nu(e^{-f}) \leq 1 \}. \quad (3.2)$$

Since (3.2) holds true for each open set $\mathcal{O} \subset \mathcal{X}$, and $\nu \mapsto \nu(f)$ is lower semicontinuous for $f \in \mathcal{L}(\mathcal{X})$, the minimax lemma [4, Appendix 2, Lemma 3.3] yields

$$\lim_{t \to \infty} -\frac{1}{t} \log P_t(K) \leq -\inf_{\nu \in K} \{ \nu(f), f \in \mathcal{L}(\mathcal{X}) : \nu(e^{-f}) \leq 1 \}$$

for each compact $K \subset \mathcal{P}(\mathcal{X})$. By Lemma 2.4, the large deviations upper bound then holds true on compact sets. But closed sets are compact since $\mathcal{P}(\mathcal{X})$ is compact.

The following remark provides a standard approach for proving large deviations lower bounds, see for instance [8] and references therein.

Remark 3.2. If for each $\nu \in \mathcal{P}(\mathcal{X})$ there exists a sequence (Q_t) in $\mathcal{P}(\mathcal{P}(\mathcal{X}))$ such that $\lim_t Q_t = \delta_\nu$, narrowly in $\mathcal{P}(\mathcal{P}(\mathcal{X}))$ and

$$\lim_{t \to \infty} -\frac{1}{t} \log H(Q_t|P_t) \leq J(\nu),$$

then $(P_t)_{t>0}$ satisfies a large deviations lower bound with rate given by the lower semicontinuous envelope of J.

For $t > 0$ let \mathcal{F}_t be the smallest σ-algebra on $\mathcal{X}^\mathbb{N}^+$ such that the map

$$\mathcal{X}^\mathbb{N}^+ \ni x \mapsto (x_1, \ldots, x_{N_t(x)+1}) \in \bigcup_{n \in \mathbb{N}^+} \mathcal{X}^n \mapsto \mathcal{X}^\mathbb{N}^+$$

is Borel measurable. Note in particular that $N_t: \mathcal{X}^\mathbb{N}^+ \to \mathbb{N}$ and $\pi_t: \mathcal{X}^\mathbb{N}^+ \to \mathcal{P}(\mathcal{X})$ are \mathcal{F}_t measurable (with respect to the discrete σ-algebra of \mathbb{N} and the Borel σ-algebra on $\mathcal{P}(\mathcal{X})$ respectively).

Lemma 3.3. Let \mathcal{Y} be a Polish space, $F: \mathcal{X}^\mathbb{N}^+ \to \mathcal{Y}$ a \mathcal{F}_t-Borel measurable map, $(\mu_i)_{i \in \mathbb{N}^+}$, $(\nu_i)_{i \in \mathbb{N}^+}$ be sequences in $\mathcal{P}(\mathcal{X})$ and set $\Omega^\mu = \prod_{i \in \mathbb{N}^+} \mu_i$, $\Omega^\nu = \prod_{i \in \mathbb{N}^+} \nu_i$. Let \tilde{P}^F, $Q^F \in \mathcal{P}(\mathcal{Y})$ be the laws of F under Ω^μ and Ω^ν respectively. Then

$$H(Q^F|P^F) \leq \sum_{j=1}^{\infty} H(\nu_j|\bar{\nu}_j) \Omega^\mu(N_t \geq j - 1).$$

In particular, if $\bar{\mu}_i = \bar{\mu}$ and $\bar{\nu}_i = \bar{\nu}$, then

$$H(Q^F|P^F) \leq H(\bar{\nu}|\bar{\mu}) \Omega^\nu(N_t + 1).$$

Proof. For $r > 0$ let (as above) $h(r) = r(\log r - 1) + 1$, and let $\mathcal{F}_r \subset \mathcal{F}_t$ be the σ-algebra generated by F. Then for Ω^μ-a.e. x

$$\frac{dQ^F}{dP^F}(F(x)) = \frac{d\Omega^\mu \circ F^{-1}}{d\Omega^\nu \circ F^{-1}}(F(x)) = \Omega^\mu \left(\frac{d\Omega^\nu}{d\Omega^\mu} (\mathcal{F}_t) \right)(x).$$

Therefore changing variables in the integration and using the convexity of h

$$H(Q^F|P^F) = \int_{\mathcal{Y}} P^F(dy) h(\frac{dQ^F}{dP^F}(y))$$

$$= \int_{\mathcal{X}^\mathbb{N}^+} \Omega^\mu(dx) h(\Omega^\mu \left(\frac{d\Omega^\nu}{d\Omega^\mu} (\mathcal{F}_t) \right)(x)) \leq \int_{\mathcal{X}^\mathbb{N}^+} \Omega^\nu(dx) h(\Omega^\mu \left(\frac{d\Omega^\nu}{d\Omega^\mu} (\mathcal{F}_t) \right)(x)).$$

ECP 19 (2014), paper 69.
Renewal Sanov theorem

For $n \in \mathbb{N}$, and x such that $N_t(x) = n$ one has $\Omega^\nu(\frac{d\nu}{d\mu}(x))(x) = \prod_{j=1}^{n+1} \frac{d\nu}{d\mu}(x_j)$ and thus

$$
\mathcal{H}(Q^F | P^F) \leq \sum_{n \in \mathbb{N}} \int_{X^{n+1}} \mu_i(dx_i) \; h \left(\prod_{j=1}^{n+1} \frac{d\nu}{d\mu}(x_j) \right) \mathbf{1}_{N_t(x) = n} \\
= \sum_{n \in \mathbb{N}} \int_{X^{n+1}} \nu_i(dx_i) \log \left(\prod_{j=1}^{n+1} \frac{d\nu}{d\mu}(x_j) \right) \mathbf{1}_{N_t(x) = n} \\
= \sum_{j \in \mathbb{N}^+} \int_{X^j} \nu_i(dx_i) \log \frac{d\nu}{d\mu}(x_j) \mathbf{1}_{N_t(x) \geq j-1}.
$$

The event $\{N_t(x) \geq j-1\}$ only depends on (x_1, \ldots, x_{j-1}). Therefore the last integral in the above formula splits into a product as

$$
\mathcal{H}(Q^F | P^F) \leq \sum_{j \in \mathbb{N}^+} \int_{X^{j-1}} \prod_{i=1}^{j-1} \nu_i(dx_i) \mathbf{1}_{N_t(x) \geq j-1} \int_X \nu_j(dx_j) \log \frac{d\nu_j}{d\mu}(x_j)
$$

which is easily rewritten as in the statement. \qed

Proof of Theorem 1.3, lower bound. In view of Proposition 2.6, and Remark 3.2, for each $\nu \in \mathcal{P}(X)$ such that $J(\nu) < +\infty$, one needs to find a sequence (Q_t) in $\mathcal{P}(\mathcal{P}(X))$ such that $Q_t \to \delta_\nu$ narrowly and $\lim_{t} \frac{1}{t} \mathcal{H}(Q_t | P_t) \leq J(\nu)$.

Fix a $\nu \in \mathcal{P}(X)$ absolutely continuous with respect to μ and such that $\nu(1/\tau) \in [0, +\infty]$, and let $\Omega^\nu(dx) := \prod_{i \in \mathbb{N}^+} \nu(dx_i)$ as in Lemma 3.3. Set $Q_t := \Omega^\nu \circ \pi^{-1}_t$. Since $\nu(1/\tau) < +\infty$, ergodic theorem yields $\lim_t Q_t = \delta_\nu$. On the other hand, since π_t is \mathcal{F}_t measurable, one may apply Lemma 3.3 with $F = \pi_t$ to get

$$
\frac{1}{t} \mathcal{H}(Q_t | P_t) \leq \mathcal{H}(\Omega^\nu | \mu) \frac{\Omega^\nu(N_t + 1)}{t}.
$$

The renewal theorem [1, Chapter V.4] implies $\lim_t \Omega^\nu(N_t)/t = \nu(1/\tau)$, which concludes the proof. \qed

References

Renewal Sanov theorem

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)

Economical model of EJP-ECP

- Low cost, based on free software (OJS1)
- Non profit, sponsored by IMS2, BS3, PKP4
- Purely electronic and secure (LOCKSS5)

Help keep the journal free and vigorous

- Donate to the IMS open access fund6 (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

1OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
2IMS: Institute of Mathematical Statistics http://www.imstat.org/
3BS: Bernoulli Society http://www.bernoulli-society.org/
4PK: Public Knowledge Project http://pkp.sfu.ca/
5LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm