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Abstract

Large deviations for the local time of a process Xt are investigated, where Xt = xi

for t ∈ [Si−1, Si[ and (xj) are i.i.d. random variables on a Polish space, Sj is the j-
th arrival time of a renewal process depending on (xj). No moment conditions are
assumed on the arrival times of the renewal process.
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1 Main results

1.1 Outline of the result

Consider an i.i.d. sequence (xi)i∈N+ in a Polish space X , with marginal distribution µ̄.
One may define a stochastic process (Xt)t≥0 on X by setting Xt = xi for t ∈ [i−1, i[, and
consider its empirical measure πt := 1

t

∫
[0,t[

ds δXs . The ergodic theorem then states that
πt → µ̄ as t → +∞, while the Sanov theorem yields a finer estimate for the probability
that πt is found in a small neighborhood of a given Borel probability measure ν̄ on X .
Such probability is estimated, in the sense of large deviations, as exp(−tH(ν̄|µ̄)), where
H(ν̄|µ̄) is the relative entropy of ν̄ with respect to µ̄.

In this paper, we want to provide a similar result, in the case in which the time spent
by the process Xt at the point xi may depend on the process itself. In particular, for
τ : X → [0,+∞] a measurable map, define Nt := inf{n ∈ N+ :

∑n+1
i=1 τ(xi) ≥ t}, and

Xt := xNt+1. In the next section, the precise mathematical setting for the study of the
large deviations of the empirical measure of Xt is recalled, and a large deviations result
is established in Section 1.4. While for τ ≡ 1 one gets the classical Sanov theorem, we
are mainly interested in the case where the law of τ under µ̄ features heavy tails. In such
a case the Markov process (Xt, t −

∑Nt
i=1 τ(xi)) does not have good ergodic properties,

and the classical Donsker-Varadhan theorem is violated.

1.2 Mathematical setting

In the followingN = {0, 1, . . .}, N+ = N\{0}; X is a Polish space, that is a separable,
completely metrisable topological space; a general element of XN+

will be denoted
x = (x1, x2, . . .); Cb(X ) and Cc(X ) are respectively the spaces of bounded continuous
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Renewal Sanov theorem

functions and compactly supported continuous functions on X . M1(X ) is the space
positive Radon measure on X with total variation bounded by 1, while P(X ) ⊂ M1(X )

is the set of Borel probability measures on X . For µ ∈ M1(X ) and f a µ-integrable
function, we write µ(f) :=

∫
dµ f . For µ, ν ∈ P(X ), H(ν|µ) denotes the relative entropy

of ν with respect to µ:

H(ν|µ) := sup
ϕ∈Cb(X )

ν(ϕ)− logµ(eϕ) =

{∫
µ(dx)h

(
dν
dµ

)
if ν << µ;

+∞ otherwise;
(1.1)

where the positive convex function h is defined as h(%) = % (log %− 1) + 1.
We always consider P(X) equipped with the narrow (or weak) topology, namely the

weakest topology such that µ 7→ µ(f) is continuous for all f ∈ Cb(X ). In the particular
case in which X is locally compact, we will also regard M1(X ) as a topological space,
equipped with the vague topology, namely the weakest topology such that µ 7→ µ(f) is
continuous for all f ∈ Cc(X ). P(X) is then a Polish space, and if X is locally compact
M1(X ) is a compact Polish space.

Fix a reference probability µ̄ ∈ P(X ) and a measurable function τ : X → [0,+∞];
τ(x) has to be interpreted as the time elapsed at x. µ̄ and τ are the only ’inputs’ of the
problem.

Define ξ : X → [0,+∞] and ξ∞ ∈ [0,+∞] as

ξ(x) = inf
δ>0

sup
{
c ≥ 0 : µ̄(ecτ1Bδ(x)) < +∞

}
ξ∞ := sup

K⊂X , Kcompact
sup

{
c ≥ 0 : µ̄(ecτ1Kc) < +∞

} (1.2)

where Bδ(x) ⊂ X is the ball of radius δ centered at x, see (2.4) for another characteri-
sation of ξ. Note ξ∞ = +∞ if X is compact.

The role of the auxiliary function ξ and of the assumptions below are discussed at the
end of this section. In particular it is remarked that (A2) below is implied by regularity
assumptions on τ (e.g. upper semicontinuity at infinity). Hereafter (A1) and (A2) will
always be assumed, while our main results are proved whenever at least one of (A3) or
(A4) holds (with somehow different statements in the two cases).

(A1) µ̄({τ = 0}) = µ̄({τ = +∞}) = 0.

(A2) µ̄({ξ < +∞}) = 0.

(A3) ξ∞ = +∞.

(A4) X is locally compact.

In the following x is sampled as an i.i.d. sequence with marginal law µ̄ and E will
denote the expectation of functions of x with respect to µ̄⊗N

+

. By (A1), for each n ∈ N,
t ≥ 0 and a.e. x, the following random variables are well defined

S0 ≡ S0(x) := 0, Sn ≡ Sn(x) :=

n∑
i=1

τ(xi), n ≥ 1,

Nt ≡ Nt(x) := inf{n ∈ N : Sn+1 ≥ t} =

+∞∑
n=1

1(Sn≤t),

Xt ≡ Xt(x) := xNt+1,

πt ≡ πt(x) =
1

t

∫
[0,t[

ds δXs ∈ P(X ). (1.3)
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Renewal Sanov theorem

In other words, Xt = x1 for t ∈ [0, τ(x1)[, Xt = x2 for t ∈ [τ(x1), τ(x1) + τ(x2)[ and
so on, while πt : XN

+ → P(X ) is the local time or the empirical measure of Xt. Let
Pt := µ̄⊗N

+ ◦ π−1
t be the law of πt.

From the ergodic theorem, one expects πt to concentrate on a deterministic limit
as t → +∞ (this is easily established, for instance, whenever µ̄(τ) < +∞). Large
deviations of Pt are then relevant, and subject of investigation of this paper.

1.3 Some examples

Taking advantage of the general metric setting, one is able to fit in this framework
also the case of a process with random waiting time, see the examples (b) and (c) below.

(a) If τ(x) ≡ 1, then we are in the framework of the classical Sanov theorem, [2, Chap-
ter 6.2]. Here ξ(x) = ξ∞ = +∞ for all x ∈ X .

(b) Assume X = Y × [0,+∞] for some Polish space Y. Let p be a Borel probability on
Y and for p-a.e. y let φy be a probability on [0,+∞] concentrated on ]0,+∞[, with
y 7→ φy measurable. Set dµ̄((y, t)) = dp(y) dφy(t) and τ(y, t) = t. Then we are in the
framework of a pure jump process, jumping on Y with law p and spending a random
time at a visited point y with law φy. In this case

ξ(y, t) =

{
sup{c ≥ 0 :

∫
φy(ds)ecs < +∞} if t = +∞ and y ∈ Supp(ν)

+∞ otherwise.

ξ∞ = sup
K⊂Y, Kcompact

inf
y∈Kc

ξ(y,+∞)

(c) As a special case of (b), take X := [0,+∞[×[0,+∞] and for µ̄(d(r, s)) = ν(dr)φ(ds),
where ν is any probability measure on ]0,+∞[ and φ is the exponential law with
mean 1. Set τ((y, s)) = θ(y)s, so that, conditionally on y, τ is an exponential random
variable with mean θ(y). In this setting, Nt is an inhomogeneous Poisson random
process, and the empirical measure πt keeps track of the rates of the interarrival
times. In this case ξ(y, t) = +∞ for t < +∞ or y 6∈ Supp(ν), while ξ(y,+∞) = 1/θ(y)

for y ∈ Supp(ν), and ξ∞ = limy→+∞ ξ(y,+∞).

(d) An interesting example in which τ is ’truly’ deterministic is the following. X =

]0,+∞[n, µ̄(dx) =
∏n
i=1 µ̄i(dxi) for some probabilities µ̄i ∈ P([0,+∞[) and τ(x) =

1
n

∑n
i=1

1
xi

. This is a model for a particle moving on 1-dimensional torus of length
1. During its motion the particle touches some fixed hot points equi-spaced on the
torus, and it changes its speed by sampling a new one with law µ̄i at the hot point
i. τ(x) is then the time elapsed to complete a tour of the torus.

One can derive the large deviations of some physical quantities (e.g. kinetic energy
of the particle) from the large deviations of the empirical measure of Xt. The phys-
ically relevant case is µ̄i(xi) = xie

−βix2
i dxi for some βi > 0. Then ξ∞ = +∞ and

ξ(x) = +∞ unless one the xi is 0, in which case ξ(x) = 0. As remarked below, when
{ξ = 0} is non-empty, the large deviations rate functional is not strictly convex. For
n = 1, this moving particle dynamics has been used as a building block of a toy
model of out-of-equilibrium statistical mechanics in [6], where the absence of strict
convexity of the rate causes a dynamic phase transition in the model.

1.4 Large deviations results

We recall the following standard definition.

Definition 1.1. Let Y be Polish space and (Qt)t>0 a family of Borel probability measures
on Y and I : Y → [0,+∞]. Then:
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• I is good if {y ∈ Y : I(y) ≤M} is compact in Y for all M > 0 and I 6≡ +∞.

• (Qt)t>0 satisfies a large deviations upper bound with good rate I if

lim
t→+∞

1

t
logQt(C) ≤ − inf

u∈C
I(u) for all C ⊂ Y closed.

• (Qt)t>0 satisfies a large deviations lower bound with good rate I, if

lim
t→+∞

1

t
logQt(O) ≥ − inf

u∈O
I(u) for all O ⊂ Y open.

(Pt)t>0 is said to satisfy a good large deviations principle if both the upper and lower
bounds hold with the same good rate I.

For ν ∈M1(X ), let νa and νs be respectively the absolutely continuous and singular
parts of ν with respect to µ̄. If ν is such that ν(1/τ) ∈]0,+∞[ define ν̄ ∈ P(X ) as

ν̄(dx) =

1
τ(x)ν(dx)

ν(1/τ)
. (1.4)

Proposition 1.2. Define I : P(X )→ [0,+∞] as

I(ν) =

{
νa(1/τ)H(ν̄a|µ̄) + νs(ξ) if νa(1/τ) < +∞,

+∞ otherwise,

where we define νa(1/τ)H(ν̄a|µ̄) = 0 whenever νa(1/τ) = 0. If (A3) holds, then I is a
good and convex functional on P(X ).

Theorem 1.3. If (A3) holds, then (Pt)t>0 satisfies a good large deviations principle on
P(X ) with rate I.

In the following remark some features of the functional I are investigated. In partic-
ular we characterise the cases where I is strictly convex and those in which it features
affine stretches.

Remark 1.4. Assume (A3). Since ξ(x) = +∞ for x 6∈ Supp(µ̄), I(ν) = +∞ if Supp(ν) 6⊂
Supp(µ̄). However, contrary to classical Sanov theorem, in general I(ν) < +∞ does not
imply that ν is absolutely continuous with respect to µ̄, unless ξ ≡ ∞. In general, the
nature of I(ν) depends on the values of ξ and µ̄(τ). Indeed let

E := {x ∈ X : ξ(x) = 0}

be the set of points around which τ has no local exponential moments. Then

(1) If E = ∅, namely if ξ(x) > 0 for all x ∈ X , then a fortiori µ̄(τ) < +∞ and I(ν) = 0

iff ν = µ, where (consistently with (1.4))

µ(dx) :=
τ(x)µ̄(dx)

µ̄(τ)
. (1.5)

(2) If E 6= ∅, there are two possibilities

(2A) If µ̄(τ) < +∞, then I(ν) = 0 iff ν = αµ+ (1− α)λ for some α ∈ [0, 1] and some
λ ∈ P(X) such that λ(E) = 1, where µ is given by (1.5).

(2B) If µ̄(τ) = +∞ then I(ν) = 0 iff ν is concentrated on E.

In particular, Theorem 1.3 implies the convergence in law of πt to µ in case (1), and
in case (2B) if E is a singleton. In all other cases, a nontrivial second order large
deviations may hold, see [10] where moderate deviations are discussed in a particular
case. Finally, if E 6= ∅, then the subdifferential of I is nontrivial.
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If ξ∞ < +∞, (Pt)t>0 is not exponentially tight on P(X ), and large deviations need
to be investigated onM1(X ). However, in this case we need X to be locally compact in
order to have good topological properties ofM1(X ).

Proposition 1.5. Define I ′ : M1(X )→ [0,+∞] as

I ′(ν) =

{
νa(1/τ)H(ν̄a|µ̄) + νs(ξ) + (1− ν(X ))ξ∞ if νa(1/τ) < +∞,

+∞ otherwise,

If (A4) holds, then I ′ is a good and convex functional onM1(X ).

Theorem 1.6. If (A4) holds, then (Pt)t>0 satisfies a good large deviations principle on
M1(X ) with rate I ′.

Under (A1), the key assumption (A2) is satisfied whenever

µ̄
(
∩M>0 Closure({τ ≥M})

)
= 0.

In particular (A2) holds if τ is upper semicontinuous at infinity. Since all the results
stated above make sense even dropping (A2), one may wonder whether it is a merely
technical condition. While one can prove the large deviations upper bound even drop-
ping this assumption, the lower bound is in general false if (A2) does not hold.

1.5 Outlook

With the same notation as above, one may also introduce the Markov process Yt =

(Xt,
t−

∑Nt
i=1 τ(xi)

τ(xNt+1) ) ∈ X × [0, 1[. Large deviations for the empirical measure of Yt would

give large deviations of Xt by a standard contraction argument. Moreover, the Donsker-
Varadhan theory [3] and its extensions provide general large deviations results for the
empirical measure of a Markov process. However, this approach fails in this case. On
the one hand, standard Donsker-Varadhan theorems cannot be applied here, since Yt
only enjoys weak ergodic properties. On the other hand, even formally, the Donsker-
Varadhan rate functional does not provide the right answer, a feature already remarked
in [5] for renewal processes. Indeed, it has been proved in [7] that in general the empir-
ical measure of Yt does not satisfy a large deviations principle, and in the special case it
does (which depends on the law of τ under µ̄), the rate functional does not correspond
to the Donsker-Varadhan functional. Similarly, the large deviations rate functional for
πt does not correspond in general to the one predicted by applying contraction to the
Donsker-Varadhan functional for the empirical measure of Yt (unless τ has all exponen-
tial moments bounded). In this respect, it may be remarkable that the law of πt satisfies
a large deviations principle at all.

2 The functional I

This section is devoted to prove Proposition 1.2, Proposition 1.5 and general prop-
erties of the functional I, which will play a key role in the proof of the main theorems.
First we remark that one can reduce to the case of a compact state space X .

Proposition 2.1. Suppose that Proposition 1.2 and Theorem 1.3 hold with the addi-
tional hypotheses of X being a compact Polish space. Then Proposition 1.2, Theo-
rem 1.3, Proposition 1.5 and Theorem 1.6 hold.

Proof. An arbitrary Polish space X embeds continuously in the compact Polish space
[0, 1]N, see [9, Lemma 3.1.2]. Regard X as a subset of [0, 1]N and let Y be the closure of
X . Then Y is compact. Extend µ̄ to Y setting µ̄(Y \ X ) = 0 and extend τ to Y setting
τ(x) = +∞ for x ∈ Y \ X . We denote ξY and IY the object corresponding to ξ and I on
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Y. Then (A1), (A2) hold on Y since they hold on X , while refa3 is trivially satisfied on
Y. Thus, by the hypotheses of this proposition, the extension of Pt to P(Y) satisfies a
large deviations principle with good rate IY . We then separate the two cases, wether
(A3) or (A4) hold on X .

If (A3) holds (on X ), then ξY(x) = +∞ for x ∈ Y \ X (since neighborhoods of
such points x in Y are exactly complements of compact subsets of X ). Thus the map
Π: P(Y)→ P(X ) defined as

Π(ν) =

{
ν(·|X ) := ν(· ∩X )

ν(X ) if ν(X ) > 0

µ̄ otherwise

is continuous on the domain of IY . Since Π is just the restriction map for probabilities
concentrated on X , the extension of Pt to P(Y) is mapped to Pt by Π. Then by con-
traction principle [2, Chapter 4.2], I is good and Pt satisfies a good large deviations
principle on P(X ) with rate I. It is immediate to check that Π preserves the convexity,
so I is convex.

Suppose now (A4) holds (but not (A3)). Consider the map Π′ : P(Y) → M1(X ) de-
fined by

Π′(ν)(f) = ν(f) ∀f ∈ Cc(X)

where we also identified f with its unique continuous extension on Y (namely f(x) = 0

for x ∈ Y \ X ). Then Π′ is continuous, and we conclude again by contraction principle.

Motivated by the previous remark, hereafter we assume X to be compact, with no
loss of generality.

For δ > 0, define ξδ : X → [0,+∞] as

ξδ(x) = sup
{
c : µ̄(ecτ1Bδ(x)) < +∞

}
(2.1)

In particular ξ = supδ>0 ξδ. Let ξ̂δ be the lower semicontinuous envelope of ξδ.

Lemma 2.2. For all x ∈ X , ξ(x) = supδ>0 ξ̂δ(x). In particular ξ is lower semicontinuous.

Proof. By the very definition of ξδ, if y ∈ Bδ(x), then ξ2δ(x) ≤ ξδ(y). Therefore

ξδ(x) ≥ ξ̂δ(x) := sup
ε>0

inf
y∈Bε(x)

ξδ(y) ≥ inf
y∈Bδ(x)

ξδ(y) ≥ ξ2δ(x)

The lemma follows taking the supremum in δ > 0.

Let LSC(X ) be the set of lower semicontinuous functions f : X →] − ∞,+∞]. If
f ∈ LSC(X ) then f is bounded from below.

Lemma 2.3. Recall (2.1). For all M < +∞ and ε, δ > 0 (hereafter a ∧ b := min(a, b))

µ̄(e(ξδ∧M−ε)τ ) < +∞. (2.2)

On the other hand, if f ∈ LSC(X ) is such that

µ̄(eτf ) < +∞, (2.3)

then f(x) ≤ ξ(x) for all x ∈ X . In particular

ξ(x) = sup{f(x), f ∈ LSC(X ) : µ̄(eτf ) < +∞}. (2.4)
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Proof. Fix M, ε, δ > 0 and let {Bδ/2(y1), . . . , Bδ/2(yn)} be a finite covering of the com-
pact space X with balls of radius δ/2. Since ξδ(x) ≤ ξδ/2(yi) for x ∈ Bδ/2(yi)

µ̄(e(ξδ∧M−ε)τ ) ≤
n∑
i=1

µ̄(e(ξδ∧M−ε)τ1Bδ/2(yi)) ≤
n∑
i=1

µ̄(e(ξδ/2(yi)∧M−ε)τ1Bδ/2(yi)).

Since ξδ/2(yi)∧M−ε < ξδ/2(yi), each term in the summation in the last line of the above
formula is finite by the very definition of ξδ/2(yi). Thus (2.2) holds.

Let now f ∈ LSC(X ), and suppose that for some x ∈ X and ε > 0, f(x) ≥ ξ(x) + 2ε.
Since f is lower semicontinuous, there exists δ > 0 such that infy∈Bδ(x) f(y) ≥ ξ(x) + ε.
Then

µ̄(eτf ) ≥ µ̄(eτf1Bδ(x)) ≥ µ̄(eτ [ξ(x)+ε]
1Bδ(x)) ≥ µ̄(eτ [ξδ(x)+ε]

1Bδ(x)) = +∞.

Therefore if (2.3) holds, then f ≤ ξ everywhere.

Proposition 2.4. For each ν ∈ P(X )

I(ν) = sup
{
ν(f), f ∈ LSC(X ) : µ̄(eτ f ) ≤ 1

}
=: Ĩ(ν). (2.5)

In particular Proposition 1.2 holds.

Proof. Fix ν ∈ P(X ), and let f : X → R be Borel measurable, ν-integrable, such that
µ̄(eτ f ) < 1 and f ≤ (ξ̂δ ∧ M − ε) for some M, δ, ε > 0. Since continuous functions
are dense in L1(ν + µ̄), there exists a sequence (fn) in LSC(X ) such that fn → f in
L1(dν) and (up to passing to a subsequence) also µ̄-almost everywhere. Moreover one
can assume fn ≤ ξ̂δ ∧M − ε, since the sequence fn ∧ (ξ̂δ ∧M − ε) is in LSC(X ) and
enjoys the aforementioned properties as well. Dominated convergence and (2.2) imply
limn µ̄(eτfn) = µ̄(eτf ) < 1. Therefore µ̄(eτfn) ≤ 1 for n large enough. Thus

Ĩ(ν) ≥ sup
M, δ, ε>0

sup
{
ν(f), f ν-integrable such that µ̄(eτ f ) < 1, f ≤ ξ̂δ ∧M − ε

}
. (2.6)

By (A2), the Borel set A = {ξ = +∞}\Supp(νs) is such that µ̄ and νa are concentrated on
A and νs is concentrated on Ac. Fix M, δ, ε > 0 and take ϕ ∈ C(X ) such that µ̄(eϕ) ≤ 1.
In the right hand side of (2.6) consider a f of the form

f =
(ϕ
τ
∧ ξ̂δ ∧M

)
1A + (ξ̂δ ∧M)1Ac − ε. (2.7)

Then µ̄(eτf ) = µ̄(eτf1A) ≤ µ̄(eϕ−ε) ≤ e−ε < 1.
If νa(1/τ) = +∞, take ϕ ≡ 1 in (2.7). Then f is ν-integrable and by monotone

convergence ν(f) → +∞ as one lets M → +∞ and δ ↓ 0, so that Ĩ(ν) = +∞ by (2.6).
Thus Ĩ(ν) = I(ν) = +∞ whenever νa(1/τ) = +∞.

Consider then the case νa(1/τ) < +∞. Since ϕ is bounded, any f of the form (2.7) is
ν-integrable, and thus by (2.6)

Ĩ(ν) ≥ ν(f) = νa
(ϕ
τ
∧ ξ̂δ ∧M

)
+ νs(ξ̂δ ∧M)− ε.

Take the limit M → +∞, δ ↓ 0, ε ↓ 0. Monotone convergence and Lemma 2.2 then yield

Ĩ(ν) ≥ νa
(ϕ
τ

)
+ νs(sup

δ>0
ξ̂δ) = νa

(ϕ
τ

)
+ νs(ξ) = νa(1/τ)ν̄a(ϕ) + νs(ξ)

where the last equality is a direct consequence of (1.4). Now optimize over ϕ to get

Ĩ(ν) ≥ νa(1/τ) sup
{
ν̄a(ϕ), ϕ ∈ C(X ) : µ̄(eϕ) ≤ 1

}
+ νs(ξ)

≥ νa(1/τ) sup
{
ν̄a(ϕ)− log µ̄(eϕ), ϕ ∈ C(X ) : µ̄(eϕ) = 1

}
+ νs(ξ)
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Notice that the condition µ̄(eϕ) = 1 can now be dropped in the supremum in the last line
above, since for any c ∈ R the change ϕ 7→ ϕ + c leaves the quantity ν̄a(ϕ) − log µ̄(eϕ)

invariant. Therefore the supremum over ϕ equals the relative entropy as defined in
(1.1), so that Ĩ ≥ I.

In order to prove I(ν) ≥ Ĩ(ν), one only needs to consider the case νa(1/τ) < +∞,
the inequality being trivial otherwise. Then for ϕ ∈ L1(dν̄a) such that µ̄(eϕ) ≤ 1,

νa(1/τ)H(ν̄a|µ̄) ≥ νa(1/τ)
[
ν̄a(ϕ)− log µ̄(eϕ)

]
≥ νa(ϕ/τ) = νa(f),

where f := ϕ/τ and the above conditions on ϕ translates into f ∈ L1(dνa) and µ̄(eτf ) ≤
1. Therefore, optimizing over f ∈ LSC(X ) satisfying these two conditions, and noting
that Lemma 2.3 implies f ≤ ξ for such a f

I(ν) = νa(1/τ)H(ν̄a|µ̄) + νs(ξ)

≥ sup{νa(f), f ∈ LSC(X ) ∩ L1(dνa) : µ̄(eτ f ) ≤ 1}+ νs(ξ)

= sup{νa(f) + νs(ξ), f ∈ LSC(X ) : µ̄(eτ f ) ≤ 1}
≥ sup{νa(f) + νs(f), f ∈ LSC(X ) : µ̄(eτ f ) ≤ 1} = Ĩ(ν).

Now (2.5) states in particular that I is the supremum of a family of linear lower semi-
continuous mappings, thus Proposition 1.2 follows.

Lemma 2.5. For A ⊂ X a Borel set, define

ξA := sup
{
c ≥ 0 : µ̄(ecτ1A) < +∞

}
,

ξA := − lim
L→+∞

1

L
log µ̄

(
{τ ≥ L} ∩A

)
.

Then ξA = ξA.

Proof. For c > 0

µ̄(ecτ1A) =

∫
R+

dη µ̄({ecτ ≥ η} ∩A) = c

∫
R+

dL µ̄({τ ≥ L} ∩A) ec L.

It is then easy to check that, for c > ξA, µ̄(ecτ1A) = +∞, while if ξA > 0 and 0 < c < ξA,

then µ̄(ecτ1A) < +∞. It follows ξA = ξA.

Proposition 2.6. Define J : P(X )→ [0,+∞] as

J(ν) =

{
I(ν) if ν = νa,

+∞ otherwise.
(2.8)

I is the lower semicontinuous envelope of J .

Notice that in the classical case τ ≡ 1, J coincides with I. However, in this general
case, I = J iff ξ ≡ +∞.

Proof of Proposition 2.6. Since J ≥ I and I is lower semicontinuous, the lower semi-
continuous envelope of J is greater than I. Therefore it is enough to show that for
each ν ∈ P(X ) such that I(ν) < +∞, there exists a sequence νn → ν such that
limn J(νn) ≤ I(ν).

Let ν = νa + νs satisfy I(ν) < +∞. Since X is compact, for each δ ∈ (0, 1) there
exist nδ ∈ N+ and a finite Borel partition (Aδ1, . . . , A

δ
nδ) of X such that each Aδi has
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diameter bounded by δ, has nonempty interior, and satisfies νs(∂Aδi ) = 0. For δ > 0 and
M > L ≥ 0, define

Aδ,L,Mi := {L ≤ τ ≤M} ∩Aδi .

Fix a j ∈ {1, . . . , nδ}. We claim that

if νs(A
δ
j) > 0 then ∀L ≥ 0, ∃ML ≥ L such that µ̄(Aδ,L,Mj ) > 0 for all M ≥ML. (2.9)

Indeed νs(ξ) ≤ I(ν) < +∞, thus νs is concentrated on {ξ < +∞}. Since νs(∂Aδj) = 0,
there exists a point xδj in the interior of Aδj such that ξ(xδj) < +∞. Then, for each
c > ξ(xδj) and ε > 0

lim
M→+∞

µ̄
(
ecτ1Bε(xδj )1L≤τ≤M

)
= µ̄(ecτ1Bε(xδj )1τ≥L) = +∞.

Hence for M large enough {L ≤ τ ≤M} has positive µ̄-measure in each neighbourhood
of xδj , including Aδj . The claim (2.9) is thus proved.

By (2.9), for each L = (L1, L2, . . .) ∈ [0,+∞[N there exists ML ∈ [0,+∞[N, such that
the probability measure

νδ,L,M(dx) := νa(dx) +

nδ∑
i=1

νs(A
δ
i )
τ(x)µ̄(dx|Aδ,Li,Mi

i )

µ̄(τ |Aδ,Li,Mi

i )
(2.10)

is well defined whenever M ≥ML, provided the terms in the summation are understood
to vanish whenever νs(Aδi ) does. It follows straightforwardly from this definition that
for each ϕ ∈ Cb(X )

lim
δ↓0

sup
L∈[0,+∞[N,M≥ML

∣∣νδ,L,M(ϕ)− ν(ϕ)
∣∣

≤ lim
δ↓0

nδ∑
i=1

νs(A
δ
i )
[

sup
x∈Aδi

ϕ(x)− inf
x∈Aδi

ϕ(x)
]

= 0.

(2.11)

Note that for each δ > 0 and L, M ∈ [0,+∞[N with M ≥ ML, νδ,L,M is absolutely
continuous with respect to µ̄. By the convexity of I proved in Proposition 2.4

J(νδ,L,M) =I(νδ,L,M) ≤ νa(X )I
( 1

νa(X )
νa

)
+

nδ∑
i=1

νs(A
δ
i )I
(τ(x)µ̄(dx|Aδ,Li,Mi

i )

µ̄(τ |Aδ,Li,Mi

i )

)

= I(ν)−
[
νs(ξ)−

nδ∑
i=1

νs(A
δ
i )I
(τ(x)µ̄(dx|Aδ,Li,Mi

i )

µ̄(τ |Aδ,Li,Mi

i )

)]
(2.12)

where the corresponding terms above are understood to vanish whenever νa(X ) or
νs(A

δ
i ) do. By direct computation

I
(τ(x)µ̄(dx|Aδ,Li,Mi

i )

µ̄(τ |Aδ,Li,Mi

i )

)
= − 1

µ̄(τ |Aδ,Li,Mi

i )
log µ̄(Aδ,Li,Mi

i )

≤ − 1

Li
log µ̄({Li ≤ τ ≤Mi} ∩Aδi ).

Thus, from Lemma 2.5

lim
Li→+∞

lim
Mi→+∞

(τ(x)µ̄(dx|Aδ,Li,Mi

i )

µ̄(τ |Aδ,Li,Mi

i )

)
≤ ξA

δ
i .
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Now, since ξ ≥ ξAδi on Aδi

lim
L→+∞

lim
M→+∞

nδ∑
i=1

νs(A
δ
i )I
(τ(x)µ̄(dx|Aδ,L

δ
i,k

i )

µ̄(τ |A
δ,Lδi,k
i )

)]
≤

nδ∑
i=1

νs(A
δ
i )ξ

Aδi ≤ νs(ξ).

Together with (2.12) this implies

sup
δ>0

lim
L→+∞

lim
M→+∞

J(νδ,L,M) ≤ I(ν).

Combining this with (2.11), by a standard diagonal argument, there exists a sequence
νn = νδ

n,Ln,Mn

converging to ν such that limn I(νn) ≤ I(ν).

3 Large deviations of the empirical measure

The following identity follows immediately from (1.3), and will come handy in this
section.

πt =
1

t

Nt∑
i=1

τ(xi)δxi +
t− SNt

t
δxNt+1. (3.1)

Lemma 3.1. Let f : X → [−∞,+∞] be a measurable function such that µ̄(eτ f ) ≤ 1.
Then

sup
t≥1

1

t
E exp[t πt(f)] < +∞.

Proof. It is enough to prove the result in the case µ̄(eτ f ) = 1. Then define µ̄f ∈ P(X ) as

µ̄f (dx) := eτ(x) f(x)µ̄(dx).

Thus

E exp[t πt(f)] =

∞∑
n=0

E exp
[ n∑
i=1

τ(xi) f(xi) + (t− Sn) f(xn+1)
]
1Nt=n

=

∞∑
n=0

∫
Xn+1

( n∏
i=1

µ̄f (dxi)
)
µ̄(dxn+1) exp[(t− Sn)f(xn+1)]1Nt=n.

Note that {Nt = n} = {Sn < t} ∩ {τ(xn+1) ≥ t− Sn}, so that denoting ζn,f ∈ P([0,+∞])

the law of Sn = τ(x1) + . . .+ τ(xn) with respect to
∏n
i=1 µ̄f (dxi)

E exp[t πt(f)] =

∞∑
n=0

∫
[0,t[

ζn,f (ds)

∫
{τ≥t−s}

µ̄(dx)e(t−s)f(x).

The rightest integral is bounded by 2, since e(t−s)f(x) ≤ 1 + eτ(x)f(x) on {τ ≥ t− s}. Thus

1

t
E exp[t πt(f)] ≤ 2

t

∞∑
n=0

ζn,f ([0, t)) =
2

t

∞∑
n=0

Ef1Nt≥n = 2Ef
Nt
t
,

where Ef denotes expectation with respect to µ̄⊗N
+

f . By general renewal theory [1,

Chapter V.4], EfNt/t→ 1
µ̄f (τ) < +∞ as t→ +∞.

Proof of Theorem 1.3, upper bound. Fix O an open subset of P(X ). Then for each f ∈
LSC(X ) such that µ̄(eτf ) ≤ 1

1

t
logPt(O) =

1

t
logEe−tπt(f)etπt(f)

1πt∈O

≤ 1

t
log
[
e−t infν∈O ν(f)Eetπt(f)

]
= − inf

ν∈O
ν(f) +

1

t
logEetπt(f).
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By taking the limsup t→∞, the last term in the above formula vanishes by Lemma 3.1.
Optimizing over f

lim
t

1

t
logPt(O) ≤ − sup{ inf

ν∈O
ν(f), f ∈ LSC(X ) : µ̄(eτf ) ≤ 1}. (3.2)

Since (3.2) holds true for each open set O ⊂ X , and ν 7→ ν(f) is lower semicontinuous
for f ∈ LSC(X ), the minimax lemma [4, Appendix 2, Lemma 3.3] yields

lim
t

1

t
logPt(K) ≤ − inf

ν∈K
sup{ν(f), f ∈ LSC(X ) : µ̄(eτf ) ≤ 1}

for each compact K ⊂ P(X ). By Lemma 2.4, the large deviations upper bound then
holds true on compact sets. But closed sets are compact since P(X ) is compact.

The following remark provides a standard approach for proving large deviations
lower bounds, see for instance [8] and references therein.

Remark 3.2. If for each ν ∈ P(X ) there exists a sequence (Qt) in P(P(X )) such that
limtQt = δν narrowly in P(P(X )) and

lim
t

1

t
H(Qt|Pt) ≤ J(ν),

then (Pt)t>0 satisfies a large deviations lower bound with rate given by the lower semi-
continuous envelope of J .

For t > 0 let Ft be the smallest σ-algebra on XN+

such that the map

XN
+

3 x 7→ (x1, . . . , xNt(x)+1) ∈ ∪n∈N+Xn ↪→ XN
+

is Borel measurable. Note in particular that Nt : XN
+ → N and πt : XN

+ → P(X ) are
Ft measurable (with respect to the discrete σ-algebra of N and the Borel σ-algebra on
P(X ) respectively).

Lemma 3.3. Let Y be a Polish space, F : XN+ → Y a Ft-Borel measurable map, (µ̄i)i∈N+ ,
(ν̄i)i∈N+ be sequences in P(X ) and set Ωµ :=

∏
i∈N+ µ̄i, Ων :=

∏
i∈N+ ν̄i. Let PF , QF ∈

P(Y) be the laws of F under Ωµ and Ων respectively. Then

H(QF |PF ) ≤
∞∑
j=1

H(ν̄j |µ̄j) Ων(Nt ≥ j − 1).

In particular, if µ̄i = µ̄ and ν̄i = ν̄, then

H(QF |PF ) ≤ H(ν̄|µ̄) Ων(Nt + 1).

Proof. For r > 0 let (as above) h(r) = r(log r − 1) + 1, and let FF ⊂ Ft be the σ-algebra
generated by F . Then for Ωµ-a.e. x

dQF

dPF
(F (x)) =

dΩν ◦ F−1

dΩµ ◦ F−1
(F (x)) = Ωµ

(dΩν

dΩµ
∣∣FF )(x).

Therefore changing variables in the integration and using the convexity of h

H(QF |PF ) =

∫
Y
PF (dy)h

(dQF

dPF
(y)
)

=

∫
XN+

Ωµ(dx)h
(
Ωµ
(dΩν

dΩµ
∣∣FF )(x)

)
≤
∫
XN+

Ωµ(dx)h
(
Ωµ
(dΩν

dΩµ
∣∣Ft)(x)

)
.
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For n ∈ N, and x such that Nt(x) = n one has Ωµ
(
dΩν

dΩµ

∣∣Ft)(x) =
∏n+1
j=1

dνj
dµj

(xj)

and thus

H(QF |PF ) ≤
∑
n∈N

∫
Xn+1

n+1∏
i=1

µi(dxi)h
( n+1∏
j=1

dνj
dµj

(xj)
)
1Nt(x)=n

=
∑
n∈N

∫
Xn+1

n+1∏
i=1

νi(dxi) log
( n+1∏
j=1

dνi
dµj

(xj)
)
1Nt(x)=n

=
∑
j∈N+

∫
X j

j∏
i=1

νi(dxi) log
dνj
dµj

(xj)1Nt(x)≥j−1.

The event {Nt(x) ≥ j − 1} only depends on (x1, . . . , xj−1). Therefore the last integral in
the above formula splits into a product as

H(QF |PF ) ≤
∑
j∈N+

∫
X j−1

j−1∏
i=1

νi(dxi)1Nt(x)≥j−1

∫
X
νj(dxj) log

dνj
dµj

(xj)

which is easily rewritten as in the statement.

Proof of Theorem 1.3, lower bound. In view of Proposition 2.6, and Remark 3.2, for
each ν ∈ P(X ) such that J(ν) < +∞, one needs to find a sequence (Qt) in P(P(X ))

such that Qt → δν narrowly and limt
1
tH(Qt|Pt) ≤ J(ν).

Fix a ν ∈ P(X ) absolutely continuous with respect to µ̄ and such that ν(1/τ) ∈
]0,+∞[, and let Ων(dx) :=

∏
i∈N+ ν̄(dxi) as in Lemma 3.3. Set Qt := Ων ◦ π−1

t . Since
ν(1/τ) < +∞, ergodic theorem yields limtQt = δν . On the other hand, since πt is Ft
measurable, one may apply Lemma 3.3 with F = πt to get

1

t
H(Qt|Pt) ≤ H(ν̄|µ̄)

Ων(Nt + 1)

t
. (3.3)

The renewal theorem [1, Chapter V.4] implies limt Ων(Nt)/t = ν(1/τ), which concludes
the proof.
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