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Abstract

Let B be a Brownian motion and T1 its first hitting time of the level 1. For U a uniform
random variable independent of B, we study in depth the distribution of BUT1/

√
T1,

that is the rescaled Brownian motion sampled at uniform time. In particular, we show
that this variable is centered.
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1 Introduction

In this paper, we study the expectations of the random variables A
(m)
a and Ã

(m)
a

defined for a > 0 and m ≥ 0 by

A(m)
a =

1

T
1+m/2
a

∫ Ta

0

|Bs|msgn(Bs)ds, Ã(m)
a =

1

T
1+m/2
a

∫ Ta

0

|Bs|mds,

where B is a Brownian motion and Ta denotes the first hitting time of the level a by B.
First, remark that Ta/a2 is the first hitting time of a by (Ba2s). Therefore, the scaling

property of the Brownian motion implies that the laws of A(m)
a and Ã(m)

a do not depend
on a.

To fix ideas, let us now focus in this introduction on the variables A(m)
a . These variables

are clearly asymmetric functionals of the Brownian motion. Nevertheless, we may won-
der whether there exist values of m such that A(m)

a is centered (we will show later that
these variables have moments of all orders). Indeed, consider for example the case
where m is an odd integer: using a symmetry argument, it is clear that

E[A(m)
a ] = −E[A

(m)
−a ],
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Brownian functionals up to first hitting times

where A(m)
−a is obviously defined. Since these two quantities do not depend on a, we get

a given value, say vm, for the expectations when the barrier is positive and −vm when
it is negative. This somewhat suggests that vm may be equal to zero.

In fact, it turns out that the random variable A(m)
a is centered only for m = 1. This result

has several interesting consequences. In particular, we show that it can be very simply
interpreted in terms of the Brownian meander. Moreover, we prove that the expectation
of A(m)

a is negative for m < 1 and positive for m > 1.

Finally, note that these expectations are closely connected with the random variable α
defined by

α =
BUT1√
T1

,

where U is a uniform random variable, independent of B. For example, for m an odd
integer, the m-th moment of α is the expectation of A(m)

1 . This led us to give in Theorem
3.3 the law of α.

The paper is organized as follows. The specific case m = 1 is treated in Section 2. Our
main theorem which provides the expectations of A(m)

1 for any m ≥ 0 is given in Section
3 together with its proof and some related results. The proofs of several technical
results together with additional remarks are relegated to the four Appendices A, B, C
and D.

2 The case m = 1

In this section, we state the nullity of the expectation of A(1)
1 , together with some

associated results.

2.1 Centering property in the case m = 1

Theorem 2.1. The random variable A(1)
1 admits moments of all orders and is centered.

Theorem 2.1 states that, as far as the expectation is concerned, between 0 and T1, the
time spent by the Brownian motion in (−∞, 0) is balanced by that spent in [0, 1]. Again,

it is tempting to deduce this result from the scaling and symmetry properties of A(1)
1 .

However, Theorem 3.1 will formalize that such intuition is wrong. Indeed, we will for
example show that the expectation of A(3)

1 is non zero, although it satisfies the same

scaling and symmetry properties as A(1)
1 . In fact, we will see that the expectation of

A
(m)
1 is strictly positive for m > 1 and stricly negative for m < 1.

Theorem 2.1 can in fact be interpreted as a corollary of the general result given in
Theorem 3.1 below. However, using Williams time reversal theorem and some abso-
lute continuity results for Bessel processes, a specific, elegant proof can be written for
Theorem 2.1. So we give this proof in Appendix A.

2.2 More integrability properties for A(1)
1 and connection with Knight’s iden-

tity

Let (Lt)t≥0 be the local time process at 0 of the Brownian motion B and set

τl = inf{t ≥ 0, Lt > l},

for l > 0. Recall that Lévy’s equivalence result, gives the following equality:

(|Bt|, Lt)t≥0 =
L

(St −Bt, St)t≥0,
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Brownian functionals up to first hitting times

with St = sup
s≤t

Bs and =
L

denotes equality in law, see [11]. Thus, we obtain that A(1)
1 has

the same law as the random variable ζ defined by

ζ =
1

τ
3/2
1

∫ τ1

0

(Lu − |Bu|)du.

We obviously have

|ζ| ≤ 1
√
τ1

+
1
√
τ1

sup
u≤τ1
|Bu|.

On the one hand, it is well known that 1/
√
τ1 follows the law of the absolute value of a

standard Gaussian random variable. On the other hand, the celebrated Knight’s identity
states the following equality:

τ1
(sup
u≤τ1
|Bu|)2

=
L
T 3
2 ,

where T 3
2 = inf{t, Rt = 2}, with R a three dimensional Bessel process, see [7]. Using

the scaling property of the three dimensional Bessel process, we easily get the equality:

T 3
2 =
L

4

(sup
u≤1

Ru)2
.

Therefore, we deduce that
1
√
τ1

sup
u≤τ1
|Bu| =

L

1

2
sup
u≤1

Ru.

Hence, we easily deduce the following proposition:

Proposition 2.2. There exists ε > 0 such that

E[exp
(
ε(A

(1)
1 )2

)
] < +∞.

We note that the same arguments yield that A(m)
1 and Ã(m)

1 admit moments of all orders.

2.3 Consequences of Theorem 2.1 for the Bessel process, Brownian meander
and Brownian bridge

We give in this subsection some corollaries of Theorem 2.1 involving very classical
processes, namely the three dimensional Bessel process, the Brownian meander, and
the Brownian bridge. We start with a result about the three dimensional process, whose
proof is given within the proof of Theorem 2.1 in Appendix A.

Corollary 2.3. Let (Rt)t≥0 denote a three dimensional Bessel process. We have

E
[ 1

R2
1

∫ 1

0

Rudu
]

=

√
2

π
.

Let (mt)t≤1 be the Brownian meander. Recall now Imhof’s relation, see [3, 6]:

E
[
F
(
m(u), u ≤ 1

)]
=

√
2

π
E
[
F
(
Ru, u ≤ 1

) 1

R1

]
. (2.1)

We immediately deduce the following corollary from the preceding relation together
with Corollary 2.3.

Corollary 2.4. We have

E
[ 1

m1

∫ 1

0

mudu
]

= 1.
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We now give a corollary involving the Brownian bridge.

Corollary 2.5. Let (bt)t≤1 denote the Brownian bridge and (lt)t≤1 its local time at zero.
We have

E
[ 1

l1

∫ 1

0

|bu|du
]

= E
[ 1

l1

∫ 1

0

ludu
]

=
1

2
.

Proof. From [4], we get the following equality:

(mt, t ≤ 1) =
L

(|bt|+ lt, t ≤ 1).

Thus, using Corollary 2.4, we get

E
[ 1

l1

∫ 1

0

(|bu|+ lu)du
]

= 1. (2.2)

Now remark that the process (b̂t) = (b1−t) is also a Brownian bridge whose local time
at time t, denoted by l̂t, satisfies

l̂t = l1 − l1−t.

Consequently,

E
[ 1

l1

∫ 1

0

ludu
]

= E
[ 1

l1

∫ 1

0

l̂udu
]

= E
[ 1

l1

∫ 1

0

(l1 − lu)du
]
.

This implies

E
[ 1

l1

∫ 1

0

ludu
]

=
1

2

and therefore Equation (2.2) provides

E
[ 1

l1

∫ 1

0

|bu|du
]

=
1

2
.

Finally, using a pathwise transformation between the meander and the Brownian excur-
sion, see [2], Corollary 2.4 also enables to show the following result:

Corollary 2.6. Let (et)t≤1 denote the standard Brownian excursion. We have

E
[ ∫ 1

0

etdt

∫ 1

0

1

eu
du
]

=
3

2
.

2.4 The case of two barriers

After the striking result given in Theorem 2.1, it is natural to wonder whether the
expectation remains equal to zero if Ta is replaced by Ta,b, where Ta,b is the first exit
time of the interval (−b, a), with a > 0 and b > 0. Indeed, remark that the random

variable A(1)
a,b defined by

A
(1)
a,b =

1

T
3/2
a,b

∫ Ta,b

0

Bsds,

still enjoys a scaling property in the sense that its law only depends on the ratio b/a. In
fact, the following theorem states that the expectation is no longer zero in this case:
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Theorem 2.7. Let λ = b/a. We have

E[A
(1)
a,b] =

1√
2π

(1 + λ)

∫ ∞
0

δ

sh(δ(1 + λ))2
(λsh(δ)− sh(δλ))dδ.

In particular, E[A
(1)
a,b] 6= 0 if λ 6= 1.

The proof of this result is given in Appendix B. In fact a general formula for

E
[ 1

T θa,b

∫ Ta,b

0

Bsds
]
,

with θ > 0 is given within this proof. Eventually, note that Theorem 2.1 can also be
recovered from Theorem 2.7 letting the downward barrier tend to −∞, see Appendix
B.3.

3 The general case

3.1 Computation of the expectations

For x ∈ R, we set x+ = max(x, 0) and x− = max(−x, 0). For m ≥ 0, we define

A
(m)
+ =

1

T
1+m/2
1

∫ T1

0

(B+
s )mds, A

(m)
− =

1

T
1+m/2
1

∫ T1

0

(B−s )mds,

with the convention 00 = 0. We also write

I
(m)
+ = E[A

(m)
+ ], I

(m)
− = E[A

(m)
− ].

and
I(m) = I

(m)
+ − I(m)

− .

Furthermore, we note that I(m)
± is the moment of order m of the random variable α±

where

α =
BUT1√
T1

,

with U a uniform random variable independent of the Brownian motion B. We study the
variable α in more details in Section 3.3.

For m ≥ 0, let

cm =
Γ(1 +m)

2m/2Γ(1 +m/2)
=

1√
π

2m/2Γ(
1 +m

2
) = E[|N |m],

where N is a standard Gaussian random variable and Γ denotes the Gamma function.
We have the following theorem:

Theorem 3.1. Let m ≥ 0 and introduce

φ(m) =

∫ 2

0

ym+1

1 + y
dy.

The following formulas hold:

I
(m)
+ =

cm
2m+1

φ(m), I
(m)
− =

cm
2m+1

log(3).

In particular, we note that φ(0) = 2 − log(3), φ(1) = log(3), φ(2) = 8/3 − log(3) and
φ(3) = 4/3 + log(3). We give the proof of Theorem 3.1 in Section 3.6.
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3.2 Comments about Theorem 3.1

• The function φ is well defined for m ∈ (−2,+∞) and satisfies φ(−1) = φ(1) = log(3).

Thus, we retrieve in Theorem 3.1 the fact that E[A
(1)
1 ] = I

(1)
+ − I(1)− = 0.

• We easily get that φ is twice differentiable and, for m ≥ 0,

φ′(m) =

∫ 2

0

ym+1log(y)

1 + y
dy, φ′′(m) =

∫ 2

0

ym+1(log(y))2

1 + y
dy.

Hence φ is convex and furthermore, we show in Appendix C that φ′(0) > 0. This implies
that φ and φ′ are increasing on R+. Hence, since

I(m) =
cm

2m+1

(
φ(m)− log(3)

)
,

we get I(m) > 0 for m > 1 and I(m) < 0 for m < 1. This can be interpreted as follows:
from the point of view of A(m)

1 , for m > 1, the time spent by the Brownian motion in
[0, 1] is dominant whereas for m < 1, the time spent in (−∞, 0) is more important.

• Let (Lxt , x ∈ R, t ≥ 0) denote the local time of the Brownian motion B. Within the
proof of Theorem 3.1, we are led to show the following interesting result:

Proposition 3.2. Let µ > 0, 0 < b < 1 and x ≥ 0, we have

E[LbT1
exp(−µ2T1/2)] =

1

µ

(
exp(−µ)− exp

(
− µ(3− 2b)

))
and

E[L−xT1
exp(−µ2T1/2)] =

1

µ

(
exp

(
− µ(1 + 2x)

)
− exp

(
− µ(3 + 2x)

))
.

We also give another proof of Proposition 3.2, based on the Ray-Knight theorem, in
Appendix D.

3.3 Uniform sampling up to hitting time

We now want to interpret Theorem 3.1 as a result about sampling independently and
uniformly the properly rescaled Brownian motion up to its first hitting time T1. More
precisely, let us introduce (ly1 , y ∈ R), the local time at time 1 of the process(BsT1√

T1
, s ≤ 1

)
.

Let f be a Borel non negative function and U a uniform random variable independent
of any other random variable defined here. Using the occupation formula, we get

E[f(α)] = E[f
(BUT1√

T1

)
] = E[

∫ 1

0

f
(BsT1√

T1

)
ds] =

∫ +∞

−∞
f(y)E[ly1 ]dy.

Hence h(y) = E[ly1 ] is the density of α at point y. The following result is easily deduced
from Theorem 3.1, by injectivity of the Mellin transform.

Theorem 3.3. The density h satisfies for y ≥ 0

h(y) =

√
2

π

∫ 2

0

1

1 + w
exp(−2y2/w2)dw

and for y ≤ 0

h(y) =

√
2

π
log(3)exp(−2y2).
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Hence, conditional on α > 0, the law of α+ is a mixture of absolute Gaussian laws,
whereas conditional on α < 0, α− is distributed as the absolute value of a Gaussian
random variable.

Remark that for y ≥ 0, we have the obvious inequality

h(y) ≤
√

2

π
log(3)exp(−y2/2).

Therefore, we have the following corollary:

Corollary 3.4. For ε < 1/2, the random variable α+ satisfies

E[exp
(
ε(α+)2

)
] < +∞.

In fact, thanks to Proposition 3.2, we can even provide the density at point y of α
conditional on T1 = t. We denote this density by h(y, t). Obvious relations between (ly1)

and (Lyt ) yield

h(y, t) = ET1=t[l
y
1 ] =

1√
t
ET1=t[L

y
√
t

t ].

Recalling that the density of T1 at point t > 0 is given by

1√
2π
t−3/2exp

(
− 1/(2t)

)
, (3.1)

we easily obtain the following corollary by identifying h(y, t) from the Laplace transform
in µ of Proposition 3.2 (using for example Equation (3.2)).

Corollary 3.5. The conditional density h(y, t) satisfies for 0 ≤ y
√
t ≤ 1,

h(y, t)exp
(
− 1/(2t)

)
t−1/2 = exp

(
− 1/(2t)

)
− exp

(
− (3− 2y

√
t)2/(2t)

)
and for x ≥ 0

h(−x, t)exp
(
− 1/(2t)

)
t−1/2 = exp

(
− (1 + 2x

√
t)2/(2t)

)
− exp

(
− (1 + 3x

√
t)2/(2t)

)
.

3.4 Interpretation in terms of the Brownian meander

In the same spirit as in Corollary 2.4, we can give an interpretation of Theorem 3.1
in terms of the Brownian meander. Using Williams theorem in the same way as in the
proof of Theorem 2.1, see Appendix A, together with Imhof’s relation, see Equation
(2.1), as already done for Corollary 2.4, we get that for any non negative measurable
functions f and g,

E
[ ∫ 1

0

f
(BsT1√

T1

)
dsg
( 1√

T1

)]
=

√
2

π
E
[ ∫ 1

0

f(m1 −mu)du
g(m1)

m1

]
,

where m denotes the Brownian meander. Let U be a uniform random variable, indepen-
dent of all other quantities. The last relation is equivalent to

E
[
f
(BUT1√

T1

)
g
( 1√

T1

)]
=

√
2

π
E
[
f(m1 −mU )

g(m1)

m1

]
.

Since the density of m1 at point y > 0 is given by yexp(−y2/2), from Corollary 3.5, we
are able to identify the density of mU conditional on the value m1. More precisely, we
have the following theorem:

Theorem 3.6. Let f be a Borel non negative function. We have

Em1=y[f(mU )] =

∫ y

0

h
(
y − z, 1

y2
)
f(z)dz +

∫ +∞

y

h
(
− (z − y),

1

y2
)
f(z)dz.
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3.5 Future developments

In this work, we have studied some properties of random sampling through the
random variable

α =
BUT1√
T1

.

Another interesting variable is the variable β defined by

β =
BUτ1√
τ1
,

with τl = inf{t ≥ 0, Lt > l}. In fact the associated process

(Bsτ1√
τ1
, s ≤ 1

)
is called pseudo Brownian bridge and has been considered more explicitly in the litera-
ture than (BsT1√

T1
, s ≤ 1

)
.

In particular, it enjoys some absolute continuity property with respect to the standard
Brownian bridge, see [3]. We intend to present results related to β in a forthcoming
work, in a way which will help us to recover the interesting law of α. For now, we only
mention that β is distributed as N/2, where N is a standard Gaussian random variable.

3.6 Proof of Theorem 3.1

Let m ≥ 0. We split the proof into several steps.

Step 1: Introducing a natural measure

First, let us remark that

I
(m)
± =

1

Γ(1 +m/2)
E
[ ∫ +∞

0

λm/2exp(−λT1)dλ

∫ T1

0

(B±s )mds
]

=
1

2m/2Γ(1 +m/2)
E
[ ∫ +∞

0

µ1+mexp(−µ2T1/2)dµ

∫ T1

0

(B±s )mds
]
.

Hence, it is natural to introduce for µ ≥ 0 the measure Iµ, which to a positive function
ψ associates

Iµ(ψ) = E
[ ∫ T1

0

ψ(Bs)exp(−µ2T1/2)ds
]

= e−µE
[ ∫ T1

0

ψ(Bs)exp(µ− µ2T1/2)ds
]
.

Step 2: Computation of Iµ(ψ)

Let (Ss) = (sup
u≤s

Bu). Using the martingale property of the process exp(µBs−µ2s/2), we

get

Iµ(ψ) = e−µE
[ ∫ +∞

0

ψ(Bs)1{Ss<1}exp(µBs − µ2s/2)ds
]
.

We now use the following “well-known" formula, see for example [10]: for s > 0 and
b ∈ R,

P[Ss < 1|Bs = b] = 1− exp
(
− 2

s
(1− b)+

)
.
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It implies that Iµ(ψ) is equal to

e−µ
∫ +∞

0

exp(−µ2s/2)ds

∫ 1

−∞
eµbψ(b)

1√
2πs

exp
(
− b2/(2s)

)(
1− exp

(
− 2

s
(1− b)

))
db,

which can be rewritten

e−µ
∫ 1

−∞
eµbψ(b)db

∫ +∞

0

exp(−µ2s/2)
1√
2πs

(
exp

(
− b2/(2s)

)
− exp

(
− (2− b)2/(2s)

))
ds.

Then, using the density and the value of the first moment of an inverse Gaussian random
variable, we get that for µ > 0 and y ∈ R,∫ +∞

0

1√
2πs

exp
(
− y2/(2s)− µ2s/2

)
ds =

1

µ
exp(−µ|y|). (3.2)

From this, we deduce that when the support of ψ is included in [0, 1],

Iµ(ψ) =
1

µ

∫ 1

0

ψ(b)
(

exp(−µ)− exp
(
− µ(3− 2b)

))
db, (3.3)

and when the support of ψ is included in (−∞, 0),

Iµ(ψ) =
1

µ

∫ +∞

0

ψ(−x)
(

exp
(
− µ(1 + 2x)

)
− exp

(
− µ(3 + 2x)

))
dx. (3.4)

Remark here that Proposition 3.2 immediately follows from Equation (3.3) and Equation
(3.4).

Step 3: End of the proof of Theorem 3.1

We end the proof of Theorem 3.1 in this final step. We start with the following elemen-
tary lemma:

Lemma 3.7. For a > 0, b > 0 and m ≥ 0, we define

L(a, b,m) =

∫ +∞

0

ym
( 1

(a+ y)m+1
− 1

(b+ y)m+1

)
dy.

The following equality holds:
L(a, b,m) = log(b/a).

Proof. We have

L(a, b,m) = lim
n→+∞

∫ n

0

ym
( 1

(a+ y)m+1
− 1

(b+ y)m+1

)
dy

= lim
n→+∞

( ∫ n/a

0

ym

(1 + y)m+1
dy −

∫ n/b

0

ym

(1 + y)m+1
dy
)

= lim
n→+∞

∫ 1/a

1/b

nm+1ym

(1 + ny)m+1
dy = log(b/a).

Now we take ψ(x) = (x±)m in Equation (3.3) and Equation (3.4). Integrating in µ, we
easily derive

I
(m)
+ =

Γ(1 +m)

2m/2Γ(1 +m/2)

∫ 1

0

bm
(
1− 1

(3− 2b)m+1

)
db
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and

I
(m)
− =

Γ(1 +m)

2m/2Γ(1 +m/2)

∫ +∞

0

xm
( 1

(1 + 2x)m+1
− 1

(3 + 2x)m+1

)
dx.

Applying Lemma 3.7, we obtain the result for I(m)
− . For I(m)

+ , we write

I
(m)
+ =

Γ(1 +m)

2m/2Γ(1 +m/2)

( ∫ 1

0

bmdb−
∫ 1

0

1

(3− 2b)

bm

(3− 2b)m
db
)
.

Then we use the change of variable y = b/(3 − 2b) in the second integral in order to

retrieve the expression of I(m)
+ given in Theorem 3.1.
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Appendices

A Proof of Theorem 2.1

Theorem 2.1 can be seen as a particular case of Theorem 3.1. Nevertheless, we give
here a specific proof for this theorem which is interesting on its own. We split it in
several steps.

Step 1: Time reversal

Let us recall Williams time reversal theorem, see for example [11]. We have the follow-
ing equality:

(1−BT1−u, u ≤ T1) =
L

(Ru, u ≤ γ),

where R denotes a three dimensional Bessel process starting from 0 and γ is its last
passage time at level 1:

γ = sup{t ≥ 0, Rt = 1}.

Consequently, since

A
(1)
1 =

1

T
3/2
1

∫ T1

0

(
1− (1−BT1−s)

)
ds,

it has the same law as

1

γ3/2

∫ γ

0

(1−Ru)du =
1
√
γ
−
∫ 1

0

Rvγ√
γ
dv. (A.1)

Step 2: Moments

We now show that A(1)
1 has moments of any order. First recall the following equalities:

1
√
γ

=
L

1√
T1

=
L
|B1|.

Thus, 1√
γ has moments of any order and therefore it is enough to prove the integrability

of ξr, for any r > 0, with

ξ =

∫ 1

0

Rvγ√
γ
dv.

Such integrability result will be deduced from the following absolute continuity relation
that can be found in [3]:

Lemma A.1. For any Borel functional F from C([0, 1],R+) into R+,

E
[
F
(Ruγ√

γ
, u ≤ 1

)]
= E

[
F
(
Ru, u ≤ 1

) 1

R2
1

]
.

Now take r > 0, 1 < p < 3/2 and q such that 1/p + 1/q = 1. From Lemma A.1 together
with Hölder inequality, we obtain

E[(ξr)] = E
[( ∫ 1

0

Rudu
)r 1

R2
1

]
≤
(
E
[( ∫ 1

0

Rudu
)rq])1/q(

E
[ 1

R2p
1

])1/p
.

The first expectation on the right hand side of the last inequality is obviously finite. For
the second one, recall that R2

1 has the distribution of 2Z, with Z following a gamma law
with parameter 3/2. Therefore, the second expectation is also finite since p < 3/2.
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Step 3: Centering property

We end the proof of Theorem 2.1 in this step. We start with the following technical
lemma.

Lemma A.2. Let a > 0. We have

E[R1exp(−R2
1a/2)] =

√
2

Γ(3/2)(1 + a)2
.

Proof. Using again that R2
1 has the distribution of 2Z, with Z following a gamma law

with parameter 3/2, we can write

E[R1exp(−R2
1a/2)] =

√
2

Γ(3/2)

∫ +∞

0

xexp(−x(1 + a))dx.

The result follows easily from this equality.

We now prove that E[A
(1)
1 ] = 0. From Equation (A.1) and Lemma A.1, using the fact that

E[1/
√
γ] = E[|B1|] =

√
2/π, this is equivalent to prove the following lemma:

Lemma A.3. We have

E
[( ∫ 1

0

Rudu
) 1

R2
1

]
=

√
2

π
.

Proof. First, using Markov property, we get

E
[Ru
R2

1

]
= E

[
RuERu [

1

R2
1−u

]
]
,

where Er denotes the expectation of a three dimensional Bessel process starting from
point r. From Proposition 2, page 99, in [12], we know that

Er
[ 1

R2
t

]
=

∫ 1/(2t)

0

exp(−r2v)(1− 2tv)−1/2dv.

Thus, using the last equality together with a change of variable and the scaling property
of the Bessel process, we get

E
[Ru
R2

1

]
=
√
uE
[
R1

∫ 1

0

(1− w)−1/2

2(1− u)
exp

(
− R2

1uw

2(1− u)

)
dw
]
.

From Lemma A.2, we obtain

E
[Ru
R2

1

]
=

√
u(1− u)√
2Γ(3/2)

∫ 1

0

1√
x(1− ux)2

dx =
(1− u)√
2Γ(3/2)

∫ u

0

1
√
y(1− y)2

dy.

Using Fubini’s theorem when integrating in u from 0 to 1, and remarking that Γ(3/2) =√
π/2, we easily conclude the proof of Lemma A.3 and so the proof of Theorem 2.1.

B The double barriers case: proofs

Let a > 0, b > 0 and θ > 0. In this section, we consider ψ(a, b, θ) defined by

ψ(a, b, θ) = E

[
1

τθ

∫ τ

0

Bsds

]
,

where τ is the exit time of the interval (−b, a) by the Brownian motion B.
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B.1 General result

We start with a general result. We give here a representation of ψ(a, b, θ) in term of
a Lebesgue integral. Let δ > 0, a > 0, b > 0 and p > −1. Recall that cp denotes the p−th
absolute moment of a standard Gaussian random variable and define φδ(a, b, p) by

φδ(a, b, p) = ab+ b2
(
p− 1− (p− 2)ch(δ(a+ b))

)
.

We have the following result.

Theorem B.1. Let θ > 0. We have

ψ(a, b, θ) =

√
2√

πc2θ−1

∫ ∞
0

δ2θ−1Eδdδ,

with

Eδ =
bsh(δa)− ash(δb)

2δ2sh(δ(a+ b))
+

(a2sh(δb)− b2sh(δa))(ch(δ(a+ b))− 1)

2δsh(δ(a+ b))2
.

For θ 6= 1, another representation for ψ(a, b, θ) is

√
2√

πc2θ−1

∫ ∞
0

δ2θ−2

4(θ − 1)sh(δ(a+ b))2
(
sh(δa)φδ(a, b, 2θ − 1)− sh(δb)φδ(b, a, 2θ − 1)

)
dδ.

Proof. Our proof is based on Feynman-Kac formula, see for example [5]. Note that
in [8], the author used this formula in order to derive the joint Laplace transform of
(τ,
∫ τ
0
Bsds), see also [9] for related computations. We propose here a specific method

for our problem. We introduce the function

g : (x, δ, ρ) 7→ Ex

[
e−(δ

2/2)τ+ρ
∫ τ
0
Bsds

]
.

By Feynman-Kac formula, g solves on (−b, a)

gxx(x, δ, ρ)− (δ2 − 2ρx)g(x, δ, ρ) = 0 , with g(a, .) = g(−b, .) = 1.

For ρ = 0, we denote g0 : (x, δ) 7→ g(x, δ, 0) which solves on (−b, a)

g0xx(x, δ, ρ)− δ2g0(x, δ, ρ) = 0, with g0(a, .) = g0(−b, .) = 1.

Thus, g0 is of the form
g0(x, δ) = Aδch(δx) +Bδsh(δx).

Differentiating the dynamics of g with respect to ρ and introducing

f : (x, δ) 7→ gρ(x, δ, 0),

we observe that f solves on (−b, a)

fxx(x, δ)− δ2f(x, δ) + 2xg0(x, δ) = 0, with f(a, .) = f(−b, .) = 0.

Furthermore, by definition of g, f satisfies

f(x, δ) = Ex

[
e−(δ

2/2)τ

∫ τ

0

Bsds

]
.

Due to its dynamics, we get that f is of the form

f(x, δ) = Eδch(δx) + Fδsh(δx) + f0(x, δ),
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where f0 is a particular solution of the ODE of interest. Applying the variation of the
constant method, we look for f0 such that

f0(x, δ) = Cδ(x)ch(δx) +Dδ(x)sh(δx) (B.1)

f0x(x, δ) = Cδ(x)δsh(δx) +Dδ(x)δch(δx), (B.2)

so that f rewrites

f(x, δ) = (Eδ + Cδ(x))ch(δx) + (Fδ +Dδ(x))sh(δx).

This function f is of particular interest since for p > −1,

E

[
τ−(p+1)/2

∫ τ

0

Bsds

]
is equal to

√
2√
πcp

E

[(∫ ∞
0

δpe−(δ
2/2)τdδ

)(∫ τ

0

Bsds

)]
=

√
2√
πcp

∫ ∞
0

f(0, δ)δpdδ.

Hence, denoting p = 2θ− 1, the first part of Theorem B.1 boils down to the computation
of ∫ ∞

0

f(0, δ)δpdδ =

∫ ∞
0

(Eδ + Cδ(0))δpdδ, (B.3)

so that we need to identify Aδ, Bδ, Cδ(.), Dδ(.), Eδ and Fδ.

Observe that from the boundary conditions g0(a, .) = g0(−b, .) = 1, we obtain that Aδ
and Bδ satisfy

Aδch(δa) +Bδsh(δa) = 1, Aδch(δb)−Bδsh(δb) = 1.

We recall now for later use the classical ch and sh formulas:

ch(x)ch(y)±sh(x)sh(y) = ch(x±y),

ch(x)sh(y)±sh(x)ch(y) = sh(x±y).

We deduce that Aδ and Bδ are given by :

Aδ =
sh(δb) + sh(δa)

sh(δ(a+ b))
, Bδ =

ch(δb)− ch(δa)

sh(δ(a+ b))
. (B.4)

Similarly we can compute Eδ and Fδ in terms of Cδ(.) and Dδ(.). Indeed, the boundary
conditions of f imply

Eδch(δa) + Fδsh(δa) = −Cδ(a)ch(δa)−Dδ(a)sh(δa),

Eδch(δb)− Fδsh(δb) = −Cδ(−b)ch(δb) +Dδ(−b)sh(δb).

Consequently, we get that Eδsh(δ(a+ b)) is equal to

−Cδ(a)ch(δa)sh(δb) − Dδ(a)sh(δa)sh(δb)

−Cδ(−b)ch(δb)sh(δa) + Dδ(−b)sh(δb)sh(δa)

and Fδsh(δ(a+ b)) to

−Cδ(a)ch(δa)ch(δb) − Dδ(a)sh(δa)ch(δb)

+Cδ(−b)ch(δb)ch(δa) − Dδ(−b)sh(δb)ch(δa).
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It now remains to compute Cδ(.) and Dδ(.), which are both defined up to a constant by
Equations (B.1)-(B.2). Thus, since f0xx − δ2f0 + 2xg0(x) = 0, C ′δ and D′δ satisfy

C ′δ(x)ch(δx) +D′δ(x)sh(δx) = 0

C ′δ(x)δsh(δx) +D′δ(x)δch(δx) = −2xg0(x).

Therefore, we get

C ′δ(x) =
2xg0(x)

δ
sh(δx), D′δ(x) = −2xg0(x)

δ
ch(δx).

We now compute Cδ, which is given by

Cδ(x) =
2

δ

∫ x

0

t (Aδch(δt) +Bδsh(δt)) sh(δt)dt

=
Aδ
δ

∫ x

0

tsh(2δt)dt+
Bδ
δ

∫ x

0

t(ch(2δt)− 1)dt

=
Aδ
2δ2

(
xch(2δx)− sh(2δx)

2δ

)
− Bδx

2

2δ
+
Bδ
2δ2

(
xsh(2δx)− ch(2δx)

2δ
+

1

2δ

)
.

In the same way, Dδ is given by

Dδ(x) = −2

δ

∫ x

0

t (Aδch(δt) +Bδsh(δt)) ch(δt)dt

= −Bδ
δ

∫ x

0

tsh(2δt)dt− Aδ
δ

∫ x

0

t(1 + ch(2δt))dt

= − Bδ
2δ2

(
xch(2δx)− sh(2δx)

2δ

)
− Aδx

2

2δ
− Aδ

2δ2

(
xsh(2δx)− ch(2δx)

2δ
+

1

2δ

)
.

Since Cδ(0) = 0, observe that the quantity of interest (B.3) rewrites∫ ∞
0

δpEδdδ,

where Eδ is given above as a function of Cδ(a), Cδ(−b), Dδ(a) and Dδ(−b). We now give
an expression for

sh(δ(a+ b))Eδ.

First recall that it is equal to

−Cδ(a)ch(δa)sh(δb)−Dδ(a)sh(δa)sh(δb)− Cδ(−b)ch(δb)sh(δa) +Dδ(−b)sh(δb)sh(δa).

Plugging the values for the coefficients, this can be rewritten

−
[
Aδ
2δ2

(
ach(2δa)− sh(2δa)

2δ

)
− Bδa

2

2δ
+
Bδ
2δ2

(
ash(2δa)− ch(2δa)

2δ
+

1

2δ

)]
ch(δa)sh(δb)

−
[
− Bδ

2δ2

(
ach(2δa)− sh(2δa)

2δ

)
− Aδa

2

2δ
− Aδ

2δ2

(
ash(2δa)− ch(2δa)

2δ
+

1

2δ

)]
sh(δa)sh(δb)

−
[
Aδ
2δ2

(
−bch(2δb) +

sh(2δb)

2δ

)
− Bδb

2

2δ
+
Bδ
2δ2

(
bsh(2δb)− ch(2δb)

2δ
+

1

2δ

)]
ch(δb)sh(δa)

+

[
− Bδ

2δ2

(
−bch(2δb) +

sh(2δb)

2δ

)
− Aδb

2

2δ
− Aδ

2δ2

(
bsh(2δb)− ch(2δb)

2δ
+

1

2δ

)]
sh(δb)sh(δa),
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which leads to the expression:

1

2δ

[
a2sh(δb) (Aδsh(δa) +Bδch(δa))− b2sh(δa) (Aδsh(δb)−Bδch(δb))

]
+
ash(δb)

2δ2
[Aδ (sh(2δa)sh(δa)− ch(2δa)ch(δa)) +Bδ (ch(2δa)sh(δa)− sh(2δa)ch(δa))]

+
bsh(δa)

2δ2
[−Aδ (sh(2δb)sh(δb)− ch(2δb)ch(δb)) +Bδ (ch(2δb)sh(δb)− sh(2δb)ch(δb))]

+
Aδ
4δ3

[sh(δb) (sh(2δa)ch(δa)− ch(2δa)sh(δa))− sh(δa) (sh(2δb)ch(δb)− ch(2δb)sh(δb))]

+
Bδ
4δ3

[sh(δb) (ch(2δa)ch(δa)− sh(2δa)sh(δa)) + sh(δa) (ch(2δb)ch(δb)− sh(2δb)sh(δb))]

− Bδ
4δ3

[ch(δa)sh(δb) + ch(δb)sh(δa)] .

After obvious computations, we obtain that it is also equal to

1

2δ

[
a2sh(δb) (Aδsh(δa) +Bδch(δa))− b2sh(δa) (Aδsh(δb)−Bδch(δb))

]
+
ash(δb)

2δ2
[−Aδch(δa)−Bδsh(δa)] +

bsh(δa)

2δ2
[Aδch(δb)−Bδsh(δb)] .

By definition, Aδch(δa) +Bδsh(δa) = Aδch(δb)−Bδsh(δb) = 1. Therefore, we get

sh(δ(a+ b))Eδ =
1

2δ

[
a2sh(δb) (Aδsh(δa) +Bδch(δa))− b2sh(δa) (Aδsh(δb)−Bδch(δb))

]
− ash(δb)− bsh(δa)

2δ2
.

Recall also that Aδ and Bδ are explicitly given by (B.4) so that

Aδsh(δa) +Bδch(δa) =
sh(δb)sh(δa) + sh(δa)2 + ch(δb)ch(δa)− ch(δa)2

sh(δ(a+ b))

=
ch(δ(a+ b))− 1

sh(δ(a+ b))

and

Aδsh(δb)−Bδch(δb) =
sh(δb)sh(δa) + sh(δb)2 + ch(δb)ch(δa)− ch(δb)2

sh(δ(a+ b))

=
ch(δ(a+ b))− 1

sh(δ(a+ b))
.

Plugging these expressions in the previous one provides

Eδ =
bsh(δa)− ash(δb)

2δ2sh(δ(a+ b))
+

(a2sh(δb)− b2sh(δa))(ch(δ(a+ b))− 1)

2δsh(δ(a+ b))2
.

Recalling that p = 2θ − 1, this ends the proof of the first part of Theorem B.1.

We now give the proof of the second part. By integration by parts we get that∫ ∞
0

δpEδdδ
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is equal to∫ ∞
0

bsh(δa)− ash(δb)

2sh(δ(a+ b))
δp−2dδ +

∫ ∞
0

(a2sh(δb)− b2sh(δa))(ch(δ(a+ b))− 1)

2sh(δ(a+ b))2
δp−1dδ

=

[
bsh(δa)− ash(δb)

2sh(δ(a+ b))

δp−1

p− 1

]∞
0

−
∫ ∞
0

bach(δa)− bach(δb)

2sh(δ(a+ b))

δp−1

p− 1
dδ

+

∫ ∞
0

(b(a+ b)sh(δa)− a(a+ b)sh(δb))(ch(δ(a+ b)))

2sh(δ(a+ b))2
δp−1

p− 1
dδ

+

∫ ∞
0

(a2sh(δb)− b2sh(δa))(ch(δ(a+ b))− 1)

2sh(δ(a+ b))2
δp−1dδ.

Then, we easily obtain that the last expression is equal to

−
∫ ∞
0

bach(δa)− bach(δb)

2sh(δ(a+ b))

δp−1

p− 1
dδ +

∫ ∞
0

(bash(δa)− absh(δb))(ch(δ(a+ b)))

2sh(δ(a+ b))2
δp−1

p− 1
dδ

+

∫ ∞
0

δp−1
(a2sh(δb)− b2sh(δa))

2sh(δ(a+ b))2
ch(δ(a+ b))

p− 2

p− 1
dδ −

∫ ∞
0

(a2sh(δb)− b2sh(δa))

2sh(δ(a+ b))2
δp−1dδ.

After obvious simplifications, this can be rewritten

ba

∫ ∞
0

−sh(δb) + sh(δa)

2sh(δ(a+ b))2
δp−1

p− 1
dδ −

∫ ∞
0

(a2sh(δb)− b2sh(δa))

2sh(δ(a+ b))2
δp−1dδ

+

∫ ∞
0

δp−1
(a2sh(δb)− b2sh(δa))

2sh(δ(a+ b))2
ch(δ(a+ b))

p− 2

p− 1
dδ.

Thus, using the function φδ defined before Theorem B.1, we obtain∫ ∞
0

δpEδdδ =

∫ ∞
0

δp−1

(p− 1)2sh(δ(a+ b))2
(sh(δa)φδ(a, b, p)− sh(δb)φδ(b, a, p))dδ.

B.2 Proof of Theorem 2.7

We now give the proof of Theorem 2.7. From Theorem B.1, we get

ψ(a, b, 3/2) =
1√
2π

∫ ∞
0

δ

sh(δ(a+ b))2
(sh(δa)φδ(a, b, 2)− sh(δb)φδ(b, a, 2)dδ.

Then we use that

φδ(a, b, 2) = ab+ b2, φδ(b, a, 2) = ab+ a2

in order to obtain

ψ(a, b, 3/2) =
1√
2π

(a+ b)

∫ ∞
0

δ

sh(δ(a+ b))2
(bsh(δa)− ash(δb))dδ.

Taking λ = b/a, we get

ψ(a, b, 3/2) =
1√
2π

(1 + λ)

∫ ∞
0

δa

sh(δa(1 + λ))2
(aλsh(δa)− ash(δaλ))dδ.

We finally obtain the result after the change of variable x = δa.
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B.3 A Feynman-Kac based proof of the centering property of A(1)
1

We show here that the centering property of A(1)
1 can also be retrieved as a conse-

quence of Theorem 2.7. To give a self contained proof, we only rely on results derived
in Appendix B. In particular, we first need to check the integrability of A(1)

1 . To do so,

we write A(1)
1 under the form

A
(1)
1 1{T1<1} +

+∞∑
n=1

A
(1)
1 1{n≤T1<n+1}.

Thus,

E[|A(1)
1 |] ≤ E

[ 1

T
3/2
1

∫ 1

0

|Bs|ds
]

+

+∞∑
n=1

1

n3/2

∫ n+1

0

E
[
|Bs|1{n≤T1<n+1}

]
ds.

Using that the first hitting time of a constant value by the Brownian motion is a random
variable with negative moments of any order, we easily obtain that the first term on the
right hand side of the last inequality is finite. Let 1 < q < 3/2 and p = 1− 1/q. Applying
Hölder inequality, we get that the second term is smaller than

2

3
c1/pp

+∞∑
n=1

(n+ 1

n

)3/2
(P[n ≤ T1 < n+ 1])1/q. (B.5)

Now using the expression of the density of T1, see Equation (3.1), we deduce that

(P[n ≤ T1 < n+ 1])1/q ≤
( 1√

2π

)1/q
n−3/(2q).

Using that q < 3/2, we obtain the finiteness of the sum (B.5) and therefore the integra-

bility of A(1)
1 .

We now prove that E[A
(1)
1 ] = 0. First, note that almost surely,

lim
b→+∞

A
(1)
1,b = A

(1)
1 .

Our goal is to show that such a convergence also holds for expectations. Let b > 1. We
have

|A(1)
1,b | ≤ |A

(1)
1 |+ |A

(1)
−b1{T−b<T1}| ≤ |A

(1)
1 |+

b√
T−b

1{T−b<T1}.

Now recall that for µ > 0,

E[exp(−µT−b)] = exp(−
√

2µb).

Thus we deduce that

E
[
1/(T−b)

2] =

∫ +∞

0

µexp(−
√

2µb)dµ =
1

16

∫ +∞

0

x7exp(−x2b/2)dx =
√

2π
c7
32
b−4.

Then, using Cauchy-Schwarz inequality together with the fact that

P[T−b < T1] =
1

1 + b
,

we derive

E
[
(

b√
T−b

1{T−b<T1})
2
]
≤ Cb−1/2,
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for some constant C > 0. Consequently, using the integrability of A(1)
1 , we get

lim
b→+∞

E
[
|A(1)

1 |+
b√
T−b

1{T−b<T1}
]

= E[|A(1)
1 |].

Furthermore, almost surely,

lim
b→+∞

|A(1)
1 |+

b√
T−b

1{T−b<T1} = |A(1)
1 |.

Hence we can apply Pratt’s lemma which gives

lim
b→+∞

E[|A(1)
1,b |] = E[|A(1)

1 |].

Using the explicit expression from Theorem 2.7 and a symmetry argument, we obtain

E[A
(1)
1 ] = − lim

λ→0

√
2√
π

(1 + λ)

∫ ∞
0

δ

4sh(δ(1 + λ))2
(
λsh(δ)− sh(δλ)

)
dδ.

Since for 0 < λ < 1 and δ > 0,∣∣ δ

4sh(δ(1 + λ))2
(λsh(δ)− sh(δλ))

∣∣ ≤ δ

2(sh(δ))2
exp(δ)1{δ≥1} +

δ2

(sh(δ))2
1{δ≤1},

we can apply the dominated convergence theorem to get

E[A
(1)
1 ] = 0,

which concludes the proof.

C Some computations about the function φ defined in Theorem
3.1

Recall that the function φ is defined for m > −2 by

φ(m) =

∫ 2

0

ym+1

1 + y
dy.

We wish to compute

φ′(0) =

∫ 2

0

ylog(y)

1 + y
dy.

We denote by Li2 the dilogarithm function defined for x such that |x| ≤ 1 by

Li2(x) =

+∞∑
n=1

xn

n2
,

see [1] for more details. We start with the following general lemma:

Lemma C.1. For C ≥ 1, we define the function ∆ by

∆(C) =

∫ C

0

ylog(y)

1 + y
dy.

We have

∆(C) = Clog(C)− C −
(
log(C)

)
log(C + 1) +

π2

6
+

1

2

(
log(C)

)2
+ Li2

(
− 1

C

)
.
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Proof. We get the equality of the two functions in Lemma C.1 by showing that they
have the same derivatives and that they coincide for C = 1. To show the equality of the
derivatives, after straightforward computations, we see that we need to prove that

−log
( 1

C
+ 1
)

+
1

C
(Li2)′

(
− 1

C

)
is equal to zero. Now we use the fact that for |x| ≤ 1,

(Li2)′(x) = − log(1− x)

x
,

see [1], in order to get the result.

We now show that the values of the two functions in Lemma C.1 coincide for C = 1. We
have ∫ 1

0

ylog(y)

1 + y
dy =

+∞∑
n=0

(−1)n
∫ 1

0

y1+nlog(y)dy.

Using integration by parts arguments, we deduce∫ 1

0

ylog(y)

1 + y
dy = −

+∞∑
n=2

(−1)n

n2
= −(Li2(−1) + 1).

We conclude using the fact that Li2(−1) = −π2/12, see again [1].

Recall that φ′(0) = ∆(2). Using Lemma C.1 together with the facts that Li2(−1/2) >

−1/2 and

2log(2)− 2− log(2)log(3) +
π2

6
+

1

2

(
log(2)

)2
>

1

2
,

we get the following lemma:

Lemma C.2. We have φ′(0) > 0 (φ′(0) ≈ 0.0615). Therefore, the convex function φ is
increasing on R+.

Eventually, we give the graphs of the functions φ, φ′ and ∆ in Figures 1, 2 and 3.
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Figure 1: Function φ, from −1 to 10.
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Figure 2: Function φ′, from −1 to 10 (left) and from −0.5 to 0.5 (right).

2 4 6 8 10

0
2

4
6

8
10

12

x

∆(
x)

1.6 1.8 2.0 2.2 2.4

−
0.

1
0.

0
0.

1
0.

2
0.

3

x

∆(
x)

Figure 3: Function ∆, from 1 to 10 (left) and from 1.5 to 2.5 (right).
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D Yet another proof of Proposition 3.2

In this section, we give a proof of Proposition 3.2 which is based on the Ray-Knight
theorem. First note that multiplying both sides of the equalities in Proposition 3.2 by
exp(µ) and using Girsanov’s theorem, we see it is equivalent for 0 < b < 1 and x ≥ 0 to

E[L1−b
T1

(µ)] =
1

µ

(
1− exp(−2µb)

)
and

E[L−xT1
(µ)] =

1

µ

(
exp(−2µx)− exp

(
− 2µ(1 + 2x)

))
,

where LyT1
(µ) denotes the local time at level y of the Brownian motion with drift µ, Bµ,

considered up to its first hitting time of 1. Let us write Xb = L1−b
T1

(µ). Ray-Knight’s
theorem tells us that for 0 < b < 1, Xb is a (weak) solution of the following stochastic
differential equation (SDE):

Xb = 2

∫ b

0

√
Xsdβs − 2µ

∫ b

0

Xsds+ 2b,

where β is a Brownian motion, see [5], pages 74-79. We now wish to compute u(b) =

E[Xb]. From the preceding SDE, we get

u(b) = −2µ

∫ b

0

u(c)dc+ 2b.

This ordinary differential equation can be easily solved using the variation of the con-
stant method so that we get

u(b) =
1

µ

(
1− exp(−2µb)

)
.

The proof for L−xT1
(µ) goes similarly.
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