Bayesian estimation in a high dimensional parameter framework

Abstract : Sufficient conditions are derived for the asymptotic efficiency and equivalence of componentwise Bayesian and classical estimators of the infinite-dimensional parameters characterizing l 2 valued Poisson process, and Hilbert valued Gaussian random variable models. Conjugate families are considered for the Poisson and Gaussian univariate likelihoods, in the Bayesian estimation of the components of such infinite-dimensional parameters. In the estimation of the functional mean of a Hilbert valued Gaussian random variable, sufficient and necessary conditions, that ensure a better performance of the Bayes estimator with respect to the classical one, are also obtained for the finite-sample size case. A simulation study is carried out to provide additional information on the relative efficiency of Bayes and classical estimators in a high-dimensional framework.
Type de document :
Article dans une revue
Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2014, 8, pp.1604-1640. 〈10.1214/14-EJS935〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01316654
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mardi 17 mai 2016 - 14:43:51
Dernière modification le : lundi 17 décembre 2018 - 01:31:10
Document(s) archivé(s) le : vendredi 19 août 2016 - 16:49:42

Fichier

euclid.ejs.1410181226.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Denis Bosq, Maria Dolores Ruiz-Medina. Bayesian estimation in a high dimensional parameter framework. Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2014, 8, pp.1604-1640. 〈10.1214/14-EJS935〉. 〈hal-01316654〉

Partager

Métriques

Consultations de la notice

206

Téléchargements de fichiers

73