
HAL Id: hal-01316654
https://hal.sorbonne-universite.fr/hal-01316654

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bayesian estimation in a high dimensional parameter
framework

Denis Bosq, Maria Dolores Ruiz-Medina

To cite this version:
Denis Bosq, Maria Dolores Ruiz-Medina. Bayesian estimation in a high dimensional parameter frame-
work. Electronic Journal of Statistics , 2014, 8, pp.1604-1640. �10.1214/14-EJS935�. �hal-01316654�

https://hal.sorbonne-universite.fr/hal-01316654
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Electronic Journal of Statistics

Vol. 8 (2014) 1604–1640
ISSN: 1935-7524
DOI: 10.1214/14-EJS935

Bayesian estimation in a high

dimensional parameter framework∗

Denis Bosq
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Abstract: Sufficient conditions are derived for the asymptotic efficiency
and equivalence of componentwise Bayesian and classical estimators of the
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and Hilbert valued Gaussian random variable models. Conjugate families
are considered for the Poisson and Gaussian univariate likelihoods, in the
Bayesian estimation of the components of such infinite-dimensional param-
eters. In the estimation of the functional mean of a Hilbert valued Gaussian
random variable, sufficient and necessary conditions, that ensure a better
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also obtained for the finite-sample size case. A simulation study is carried
out to provide additional information on the relative efficiency of Bayes and
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1. Introduction

In the last two decades, there have been numerous contributions for the statis-
tical inference in function spaces, motivated by the analysis of high-dimensional
data (see, for example, [3, 6, 7, 11, 14, 15, 16], among others). We particularly
refer to the general overview on statistical estimation in high-dimensional spaces
provided in Bosq and Blanke [7], and the references therein. In the cited ref-
erences, special attention has been paid to the Hilbert valued random variable
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context. Specifically, Bosq [6] addresses the problem of infinite-dimensional pa-
rameter estimation and prediction of autoregressive Hilbert valued processes,
deriving their asymptotic properties. In this framework, alternative projection
methodologies have been considered in [1], for wavelet bases, in [4], for spline
bases, in [17], for the autocorrelation operator’s left and right eigenvector sys-
tems, among others. Recent developments in the context of directed acyclic
graphs (also known as Bayesian networks) allow the efficient estimation of the
adjacency matrix closely related with the influence matrix (see [18]). In partic-
ular, penalized likelihood estimation is considered in [19]. These results can be
applied to the estimation of the autocorrelation operator eigenvalues (defining
the influence matrix) of an autoregressive Hilbertian process. We finally refer
to the Bayesian framework adopted by [10] in the statistical analysis of high-
dimensional longitudinal, spatial and history data, in terms of suitable priors
for the coefficients obtained after projection in general bases, e.g., spline bases.
Special attention is paid to the semiparametric regression, and the generalized
linear mixed effect model frameworks (see also [5], in relation to Bayesian pre-
diction for stochastic processes).

The present paper provides new developments in relation to the comparison
of componentwise Bayesian and classical parameter estimators, in terms of their
asymptotic efficiency, for the l2 valued Poisson process and Hilbert valued Gaus-
sian random variable framework. Specifically, the main goal of the paper is to
provide sufficient conditions, that ensure the same asymptotic efficiency of com-
ponentwise Bayesian and classical estimators of the infinite-dimensional param-
eters characterizing such models. For the l2 valued Poisson process, conjugate
Gamma priors on the intensity components are considered for their Bayesian
estimation. Theorem 1 provides the asymptotic equivalence of the Bayesian and
classical estimators of the infinite-dimensional intensity vector, as well as of the
corresponding plug-in preditors of l2 valued Poisson process.

In the Hilbert valued Gaussian random variable context, suitable ranges of
the values of the projections of the mean function, with respect to the auto-
covariance eigenvector system, are obtained, for a more efficient performance
of the functional mean Bayes estimator with respect to the classical one, when
Bayesian estimation is achieved under the Gaussian conjugate family framework,
in the finite sample size case. The asymptotic efficiency of Bayesian and classical
estimators of the mean in the one-dimensional and infinite-dimensional cases is
respectively obtained in Theorems 2 and 3, where the asymptotic equivalence
of both estimators is also proved. Gamma priors are considered in the Bayesian
estimation of the eigenvalues of the auto-covariance operator of a Hilbert valued
Gaussian random variable. Sufficient conditions for the asymptotic equivalence
of the Bayesian and classical estimators of the covariance operator are estab-
lished in Theorem 4, with the explicit derivation of the common limit of their
functional mean-square errors as well.

A simulation study is undertaken illustrating the results on asymptotic equiv-
alence of Bayes, and classical estimators of the infinite-dimensional intensity
vector, in the l2 valued Poisson process case. Specifically, the empirical approx-
imations of the functional mean-square errors of Bayes and classical estimators



1606 D. Bosq and M. D. Ruiz-Medina

of the infinite-dimensional vector of intensities are computed. Different rates of
convergence of the intensity components are analyzed. The relative empirical
efficiency is calculated as well, showing that its value is one for the increasing
sequence of sample sizes tested, in all the cases studied. The same statistics are
computed for comparing classical and Bayesian estimators of the mean function
of a Gaussian Hilbert valued random variable, when different rates of conver-
gence of the eigenvalues of the covariance operator are considered, obtaining
similar results in relation to the rate of convergence to zero of the empirical
mean-square errors, when the sample size increases, as well as in relation to the
empirical relative efficiency, which again is equal to one.

Special attention is devoted to the numerical results obtained in relation to
the Bayesian and classical estimation of the covariance operator of a Hilbert
valued zero-mean Gaussian random variable, since in that case the empirical
results seem to depend on the rate of convergence of the auto-covariance oper-
ator eigenvalues. Specifically, for the finite sample sizes and for the truncation
orders tested, the equivalence between Bayesian and classical estimators holds
when the eigenvalues of the auto-covariance operator display an integer-order
polynomial rate of convergence. However, for fractional-order polynomial and
negative exponential rates, the relative efficiency of Bayes and classical estima-
tors depends on the truncation order and the finite sample size tested. Namely,
classical estimator outperforms the Bayesian estimator in the high-dimensional
case corresponding to large truncation orders.

The remainder of the paper is organized as follows: Section 2 provides the
fundamental concepts needed in the development of the paper, in relation to
Hilbert valued parameter estimation and asymptotic efficiency. Section 3 shows
the asymptotic equivalence of Bayesian and classical parameter estimators of
the infinite-dimensional intensity vector of the l2 valued Poisson process. The
problem of estimation of the functional mean from the observation of a sample
of independent and identically distributed (i.i.d.) Hilbert valued Gaussian ran-
dom variables is addressed in Section 4.2, in a Bayesian and classical framework.
Sufficient conditions for the asymptotic equivalence of the Bayes and classical
estimators of the functional mean are derived as well. The Bayesian and classi-
cal estimation of the auto-covariance operator is studied in Section 5, where the
asymptotic equivalence of both estimators is also established. Finally, a simu-
lation study is undertaken in Section 6 providing additional information of the
relative efficiency of Bayes and classical parameter estimators, when trunca-
tion is performed, and an increasing sequence of finite functional sample sizes
is tested, for different rate of convergence to zero on the components of the
infinite-dimensional parameters approximated.

2. Estimation and prediction in Hilbert spaces

In the following all the functions are supposed to be measurable and defined
on a basic probability space (Ω,A, P ). Also, given some real separable Hilbert
space (RSH), say G, its scalar product will be denoted by 〈·, ·〉G and its norm
by ‖ · ‖G.
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Now, let X be an observed random variable taking values in some real separa-
ble Hilbert spaceH. The distribution Pθ ofX depends on an unknown parameter
θ ∈ Θ ⊆ Θ0, with Θ0 being also a RSH. In this paper we address the problem
of approximating g(X, θ) from s(X). If g(X, θ) = g(θ), we will refer to it as
an estimation problem. It becomes a prediction problem if g(X, θ)=Eθ(Y |X)
where Y is also an H valued random variable such that E‖Y ‖2H < ∞, and where
Eθ(. |X) denotes conditional expectation with respect to X . It can be seen that
the prediction problem consisting of the estimation of the functional response Y
coincides with the problem of approximating Eθ(Y |X) (see [7]). Here, we will
refer to the prediction problem only in the case of the l2 valued Poisson process,
since the asymptotic properties of the predictor directly follow from the ones
derived for the corresponding infinite-dimensional intensity estimator.

In this paper, the quality of the approximation is measuring in the sense of
the following preference relation

s1(X) ≺ s2(X) ⇐⇒ Eθ ‖s1(X)− g(X, θ)‖2 ≤ Eθ ‖s2(X)− g(X, θ)‖2 , θ ∈ Θ,
(1)

where the norm ‖ · ‖ is taken in the RSH Θ0, when the estimation problem is
addressed, i.e., when g(X, θ) = g(θ). The norm ‖ · ‖ is taken in the space H,
when the prediction problem is considered, that is, when g(X, θ) = Eθ(Y |X).
However, a somewhat different point of view is to ask for which values of θ,
s1(X) is better than s2(X)? This question will be addressed in Section 4.2.
Specifically, sufficient and necessary conditions that ensure that the Bayesian
estimator of the infinite-dimensional mean outperforms the classical estimator,
in the sense of equation (1), are provided.

Through this paper we will say that two functional estimators, s1n(X1, . . . , Xn)
and s2n(X1, . . . , Xn) are asymptotically equivalent if

lim
n→∞

nEθ ‖s1n(X1, . . . , Xn)− gn(X1, . . . , Xn, θ)‖
2

= lim
n→∞

nEθ ‖s2n(X1, . . . , Xn)− gn(X1, . . . , Xn, θ)‖
2 < ∞. (2)

In this paper, we will refer to the case where s1n and s2n are componentwise
classical and Bayesian estimators, respectively. In the next section, using crite-
rion (2), we will compare classical and Bayesian estimators of the intensity of
l2 valued Poisson process. As commented, asymptotic comparison of the corre-
sponding plug-in predictors then follows.

3. Estimation and prediction of a Poisson process in a Hilbert space

Let {Nt,j, t ∈ R+, j ≥ 1} be a sequence of independent homogeneous Poisson
processes with respective intensities λj > 0, j ≥ 1, such that

∑
j λj < ∞. Since

E


∑

j

N2
t,j


 =

∑

j

E
(
N2

t,j

)
=
∑

j

[
λjt+ (λjt)

2
]
< ∞,
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it follows that
∑

j N
2
t,j < ∞ almost surely. Then, Mt = {Nt,j, j ≥ 0} de-

fines a random variable with values in l2 and satisfying E‖Mt‖2 < ∞. Thus,
{Mt, t ≥ 0} is a continuous time l2 valued process.

3.1. Classical prediction

Assume that MT is observed and we want to predict MT+h (h > 0). For this
purpose, we first define a MLE for {λj , j ≥ 1}. Let N ⊂ l2 be the family of
sequences {xj , j ≥ 1} = (xj) such that xj is an integer for each j and xj = 0,
for sufficiently large j. We may write

N =
⋃

k

Nk,

where Nk = {(xj) : (x1, . . . xk) ∈ N
k; xj = 0, j > k}. Clearly, Nk is countable

for every k. It then follows that N is countable since it is the countable union of
countable sets. Thus, one may define the counting measure µ on N and extend
it by setting µ(l2 −N ) = 0. The obtained measure is then σ- finite.

Now Mt is considered as N valued random variable. Actually, since N2
t,j is

an integer,
∑

j N
2
t,j < ∞ (a.s.) implies that Nt,j = 0, a.s. for j large enough.

More precisely: There exists Ω0 such that P (Ω0) = 1, and for all ω ∈ Ω0, there
exists a j0(ω, λ, T ) such that NT,j(ω) = 0, for j > j0. Therefore, one may define
the likelihood of MT with respect to µ by setting

L(MT (ω), λ) =

j0(ω,λ,T )∏

j=1

exp (−λjT )
(λjT )

NT,j(ω)

NT,j(ω)!
,

hence, the MLE of (λ) is given by:

(λ̂)T =

(
NT,j

T
, j ≥ 1

)
= (λ̂j,T , j ≥ 1). (3)

Clearly,
∑∞

j=1 λ̂j,T < ∞ (a.s) and (λ̂)T is unbiased ((λ) being considered as

a parameter with values in l2). It follows that

f(MT ) =
T + h

T
MT (4)

is an unbiased predictor of MT+h and of

Eλ (MT+h|MT ) = h(λ) +MT , (λ) ∈ l2,

since

Eλ[MT+h] = Eλ [Eλ (MT+h|MT )] = (λ)(T + h) = Eλ [f(MT )] .
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Concerning efficiency, one may write

Eλ‖f(MT )− h(λ)−MT ‖
2 =

∑

j

E

(
T + h

T
NT,j − hλj −NT,j

)2

=
∑

j

E

[(
T + h

T
− 1

)
NT,j − hλj

]2

=
∑

j

(
h

T

)2

E[NT,j − λjT ]
2 =

h2

T

∑

j

λj . (5)

Thus, f(MT ) is an unbiased efficient predictor provided the following defini-
tion: f(MT ) is said to be efficient if and only if each component of f(MT ) is an
efficient predictor of the associated component of MT+h.

3.2. Bayesian prediction

In order to define a Bayesian parameter estimator of (λ), and a Bayesian predic-
tor ofMT+h, we set the a-priori distribution Γ(aj , bj) on each λj , with aj , bj > 0,
for each j ≥ 1. The posterior distribution is then given by the Gamma distri-
bution Γ(aj + NT,j , bj + T ), for each j ≥ 1 (see, for example, [13]). Therefore,
the Bayesian estimator is

λ̃j,T =
aj +NT,j

bj + T
, j ≥ 1, (6)

and the corresponding predictor

f0(MT ) = h(λ̃)T +MT , (λ̃)T = (λ̃j,T ). (7)

This predictor is well defined if
∑

j λ̃j,T < ∞ almost surely, a natural condi-

tion (even if
∑

j λ̃
2
j,T < ∞ a.s. should be enough). A sufficient condition for this

is ∑

j

aj < ∞,

since, clearly,

∑

j

λ̃j,T ≤
1

T



∑

j

aj +
∑

j

NT,j


 < ∞ a.s.

3.2.1. Asymptotic equivalence of classical and Bayesian parameter estimators
and predictors

This section provides the asymptotic equivalence of the classical and Bayes pa-
rameter estimators and predictors in the sense of equation (2). In particular, the
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asymptotic efficiency of the Bayes estimator, and the resulting plug-in predictor
is also proved. In the derivation of the next theorem, the following assumption
is made.

Assumption A0. Consider
∑

j≥1 aj < ∞, and supj≥1 bj < ∞.

Theorem 1. Let (λ̂)T be the classical parameter estimator introduced in (3),

and (λ̃)T be the Bayes estimator of (λ) constructed from (6). As before, we
denote by f0(MT ) and f(MT ) the respective Bayesian and classical predictors.
Under Assumption A0, the following identities hold:

lim
T→∞

TE‖(λ̂)T − (λ)‖2l2 = lim
T→∞

T

∞∑

j=1

E[λ̂j,T − λj ]
2 < ∞ (8)

lim
T→∞

TE‖(λ̃)T − (λ)‖2l2 = lim
T→∞

T

∞∑

j=1

E[λ̃j,T − λj ]
2 < ∞ (9)

lim
T→∞

TE‖f0(MT )− h(λ)−MT ‖
2 = lim

T→∞
TE‖f(MT )− h(λ)−MT ‖

2 < ∞.

(10)

Proof. From equations (3) and (5), equation (8) follows in a direct way with

lim
T→∞

TE‖(λ̂)T − (λ)‖2l2 =

∞∑

j=1

λj .

Hence, the classical estimator (λ̂)T of (λ) is asymptotically efficient.
Equation (9) is now proved. Specifically, for each j ≥ 1, from equation (6),

E[λ̃j,T − λj ]
2 =

1

(bj + T )2
[
a2j + λjT + (λjbj)

2 − 2λjajbj
]

=
λjT

(bj + T )2
+

(aj − λjbj)
2

(bj + T )2
= Aj(T ) +Bj(T ). (11)

We then study the limit as T → ∞ of
∑∞

j=1 TAj(T ). Since

λjT
2

(bj + T )2
< λj ,

(i.e., T 2 < (bj+T )2, T > 1, bj > 0), and
∑

j λj < ∞, we can applied Dominated
Convergence Theorem with dominant summable sequence λj , j ≥ 1, to conclude
that, for every j ≥ 1,

lim
T→∞

T

∞∑

j=1

Aj(T ) =

∞∑

j=1

lim
T→∞

TAj(T ) =

∞∑

j=1

λj < ∞. (12)

Secondly, we prove that limT→∞

∑∞

j=1 TBj(T ) = 0. Indeed, we have that

∞∑

j=1

(aj − λjbj)
2

(bj + T )2
≤

1

T 2

∞∑

j=1

(aj − λjbj)
2
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≤
1

T 2




∞∑

j=1

a2j +

[
sup
j≥1

bj

]2 ∞∑

j=1

λ2
j − 2min

j
bj

∞∑

j=1

λjaj


 . (13)

As there exist positive constants c1 and c2 such that
∑∞

j=1 a
2
j ≤ c1

∑∞

j=1 aj < ∞,
∑∞

j=1 λ
2
j ≤ c2

∑∞

j=1 λj < ∞, and
∑∞

j=1 ajλj ≤
√∑∞

j=1 a
2
j

√∑∞

j=1 λ
2
j < ∞, the

upper bound in equation (13) is given by C
T 2 , with C being a finite constant,

which leads to limT→∞

∑∞

j=1 TBj(T ) = 0.
From equation (11),

lim
T→∞

TE[λ̃j,T − λj ]
2 = λj , ∀j ≥ 1,

and from (12) and (13),

lim
T→∞

TEλ‖(λ̃)T − (λ)‖2 =

∞∑

j=1

lim
T→∞

TE[λ̃j,T − λj ]
2 =

∞∑

j=1

λj . (14)

Therefore, the Bayesian estimator (λ̃)T of (λ) is asymptotically efficient.
Finally, equation (10) is obtained from the following identities, keeping in

mind equation (5)

lim
T→∞

TEλ‖f0(MT )− h(λ)−MT ‖
2

= lim
T→∞

h2
∑

j

TEλ(λ̃j,T − λj)
2 = h2

∑

j

λj . (15)

4. Bayesian and classical estimation of the mean in the H valued

Gaussian random variable framework

Sufficient conditions, for a better performance of the Bayes estimator of the
mean of a Hilbert valued Gaussian random variable against the classical one,
are derived. Conjugate Gaussian priors are considered in the Bayesian estimation
of the mean projections with respect to the eigenvectors of the autocovariance
operator. The asymptotic equivalence, in the sense of (2), of the Bayes and
classical estimators of the functional mean is also obtained.

4.1. Bayesian and classical mean estimators in the real valued case

Let us first begin with the one-dimensional Gaussian case, where we denote
by Xn and θ̃n the classical and Bayesian estimators of the mean, respectively.
Let also X1, . . . , Xn be a sample of independent and identically distributed real
valued Gaussian random variables with mean θ1 and variance λ1 > 0. That is,
Xi ∼ N (θ1, λ1), i = 1, . . . , n. In the Bayesian estimation, we consider as prior
for θ1, a zero-mean Gaussian distribution, i.e., θ1 ∼ N (0, γ1), γ1 > 0. Then, the
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Bayesian estimator of θ1, the mean of the a-posteriori distribution, is given by

θ̃1n =
Xn

1 + 1
n

λ1

γ1

:= αnXn

(see [13], p. 234). The values of θ1 for which the Bayesian estimator outperforms
the classical one are given in the following lemma.

Lemma 1. For a finite sample size n,

Eθ1(θ̃1n − θ1)
2 ≤ Vθ1(Xn) =

λ1

n
⇔ |θ1| ≤

(
λ1

n
+ 2γ1

)1/2

. (16)

Proof. By direct computation

Eθ1

(
θ̃1n − θ1

)2
= α2

n

[
λ1

n
+ θ21

]
+ θ21 − 2αnθ

2
1 . (17)

Replacing, in equation (17),

αn =
γ1

γ1 +
λ1

n

,

the condition Eθ1(θ̃1n − θ1)
2 ≤ Vθ1(Xn) =

λ1

n is equivalent to

γ2
1

λ1

n
+ γ2

1θ
2
1 + θ21

[
γ1 +

λ1

n

]2
− 2γ1

[
γ1 +

λ1

n

]
θ21 ≤

[
γ1 +

λ1

n

]2 [
λ1

n

]
. (18)

That is, denoting x = λ1/n, equation (18) holds if and only if

θ21 ≤
(γ1 + x)2x− γ2

1x

γ2
1 + [γ1 + x]2 − 2γ1[γ1 + x]

⇔ |θ1| ≤
√
x+ 2γ1,

which yields to the desired condition in terms of the upper bound
√

λ1

n + 2γ1.

The asymptotic equivalence in the sense of (2) of Xn and θ̃1n is now estab-
lished in Theorem 2.

Theorem 2. The following identities hold:

lim
n→∞

nEθ1 |Xn − θ1|
2 = λ1 = lim

n→∞
nEθ1 |θ̃1n − θ1|

2. (19)

Proof. First, we recall

Eθ1 |Xn|
2 =

λ1

n
+ θ21,

and

Eθ1 |Xn − θ1|
2 :=

λ1

n
.

Hence,
nEθ1 |Xn − θ1|

2 = λ1.
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Now
nEθ1 |θ̃1n − θ1|

2 = λ1α
2
n + n(1− αn)

2θ21 := An + nBn,

where An −→ λ1, as n → ∞, and

Bn = (1− αn)
2θ21 =

(
λ1

nγ1

)2

(
nγ1+λ1

nγ1

)2 θ
2
1 =

(λ1θ1)
2

(nγ1 + λ1)2
=

(λ1θ1)
2

(nγ1)2 + λ2
1 + 2nγ1λ1

≤
1

n2

(λ1θ1)
2

γ2
1

= O

(
1

n2

)
. (20)

Thus, equation (19) holds.

4.2. Bayesian and classical estimators of the functional mean

Denote, as before, by H a real separable Hilbert space equipped with its scalar
product 〈·, ·〉H , and its norm ‖ · ‖H . Let us now consider {Xn, n ≥ 1} to be a
sequence of i.i.d H valued Gaussian random variables such that

Eθ(Xn) = θ, θ ∈ H,

and its auto-covariance operator C is given by

C = Eθ ((Xn − θ)⊗ (Xn − θ)) , (21)

where h ⊗ g denotes the tensor product of functions h and g in H, defining a
Hilbert-Schmidt operator on H as follows:

f ⊗ g(h) = f 〈g, h〉H , ∀h ∈ H. (22)

We suppose that C does not depend on θ. From equations (21) and (22), it
defines a Hilbert-Schmidt operator on H admitting a spectral decomposition
in terms of a pure point spectrum {λj , j ≥ 1}, with λj ≥ 0, j ≥ 1, and an
associated system of eigenvectors {vj , j ≥ 1} in H satisfying

Cvj = λjvj , j ≥ 1.

Hence, from Hilbert-Schmidt Theorem, C can be represented as

C =

∞∑

j=1

λj(vj ⊗ vj), (23)

in the sense that

C(h) =
H

∞∑

j=1

λj 〈vj , h〉H vj , ∀h ∈ H

(see [9], pp. 119 and 126). In the following we also assume that C is in the trace
class, i.e.,

∑∞

j=1 λj < ∞. Furthermore, the eigenvectors {vj} of C constitute
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an orthonormal complete system in H. Consequently, θ admits the following
representation in H :

θ =
∞∑

j=1

〈θ, vj〉H vj =
∞∑

j=1

θjvj .

Then,

Eθ‖Xn‖
2
H =

∞∑

j=1

Eθ

[
〈Xn, vj〉H

]2
=

∞∑

j=1

Eθ[Xnj ]
2 =

∞∑

j=1

(λj + θ2j ) < ∞,

and

Eθ‖Xn − θ‖2H =

∞∑

j=1

Eθ (Xnj − θj)
2 =

∞∑

j=1

λj < ∞,

since C is in the trace class. Note that independence of {Xn, n ≥ 1} induces
global independence of {Xnj, n ≥ 1, j ≥ 1}.

As an a-priori distribution of the unknown parameter θ we consider θ ∼
N (0,Γ), where Γ denotes, as usual, the covariance operator of the H valued
random variable θ, i.e., Γ = E[θ⊗θ]. We also assume that Γ admits the following
spectral representation in terms of the eigenvectors of the covariance operator
C of X :

Γ =

∞∑

j=1

γj(vj ⊗ vj),

i.e.,

Γ(h) =
H

∞∑

j=1

γj 〈vj , h〉H vj , ∀h ∈ H,

where γj > 0, j ≥ 1, are the respective eigenvalues of Γ associated with the
eigenvectors vj , j ≥ 1, satisfying Γvj = γjvj , j ≥ 1. To applying Kolmogorov
extension theorem in the definition of the prior θ ∼ N (0,Γ), we assume that∑∞

j=1 γj < ∞ (see, for example, [8], and [12]). Hence, θj ∼ N (0, γj). In order
to compute E(θ|X1, . . . , Xn), we suppose that θj⊥(Xi,j′ , i ≥ 1, j′ 6= j), which
leads to

〈E (θ|X1, . . . , Xn) , vj〉H = E (θj |X1, . . . , Xn) = E (θj |X1,j , . . . , Xn,j) .

We can then perform an independent computation of the respective posterior
distributions of the projections θj , j ≥ 1, with respect to the eigenvectors
{vj , j ≥ 1}, of parameter θ. Thus, for j ≥ 1, since the prior θj ∼ N (0, γj)

is conjugate with the likelihood Xnj |θj ∼ N (θj ,
λj

n ), the Bayesian estimator θ̃jn
of θj is given by

θ̃jn =
Xnj

1 + 1
n

λj

γj

, j ≥ 1, (24)
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provided that the posterior distribution

θj |Xnj ∼ N


 Xnj

1 + 1
n

λj

γj

,
λjγj

n
λj

n + γj




(see [13], p. 234). Hence,

θ̃n =

∞∑

j=1

θ̃jnvj .

Clearly,

‖θ̃n‖
2
H =

∞∑

j=1

θ̃2jn < ∞ a.s.,

since |θ̃jn| ≤ |Xnj |, and

Eθ




∞∑

j=1

X
2

nj


 =

∞∑

j=1

Eθ

(
X

2

nj

)
=

∞∑

j=1

(
λj

n
+ θ2j

)

<

∞∑

j=1

(
λj + θ2j

)
= Eθ‖Xn‖

2
H < ∞. (25)

Let us consider the problem of looking for conditions that provide the val-
ues of θ for which the Bayes estimator outperforms the classical estimator, in
the sense of variance, as given in Lemma 1 in the real valued case. The follow-
ing proposition addresses this problem, considering additional conditions now
formulated:

Assumption A1. There exists m,M > 0, such that

0 < m ≤ inf
j

λj

γj
≤ sup

j

λj

γj
≤ M < ∞. (26)

Assumption A2.
λj

γj
= M = m, j ≥ 1.

Proposition 1. The following assertions hold for a finite sample size n:

(i) A sufficient condition for θ̃n ≺ Xn is

Tr(A) = Tr

(
Θ2 −

1

n
C − 2Γ

)
≤ 0, (27)

where

Θ2(f) =
H

∞∑

j=1

θ2j 〈vj , f〉H vj , ∀f ∈ H

C(f) =
H

∞∑

j=1

λj 〈vj , f〉H vj , ∀f ∈ H
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Γ(f) =
H

∞∑

j=1

γj 〈vj , f〉H vj , ∀f ∈ H,

and hence,

trace(Θ2) =

∞∑

j=1

θ2j

trace(C) =

∞∑

j=1

λj

trace(Γ) =

∞∑

j=1

γj .

(ii) Under Assumption A1,

θ̃n ≺ Xn ⇔ ‖θ‖2H ≤

(
1 + M

n
M
n

)2
(1 + m

n )2 − 1

(1 + m
n )2

∞∑

j=1

λj

n
.

(iii) Under Assumption A2,

θ̃n ≺ Xn ⇔ ‖θ‖2H ≤
2

m

∞∑

j=1

λj .

Proof.

(i) First, note that

Eθ‖θ̃n − θ‖2H =

∞∑

j=1

Eθ(θ̃nj − θj)
2 =

∞∑

j=1

[
α2
jn

λj

n
+ (αjn − 1)2θ2j

]
,

where

αjn =
1

1 + ajn
,

and ajn =
λj

nγj
, for j ≥ 1.

From equation (25),

E‖Xn − θ‖2H =

∞∑

j=1

λj

n
.

For each j ≥ 1, recall that similarly to the one-dimensional case (see Lemma 1):

α2
jn

λj

n
+ (αjn − 1)2θ2j ≤

λj

n
⇔ θ2j ≤

λj

n
+ 2γj.

In assertion (i) we have used the fact that Θ2, C and Γ are trace operators.
Specifically, trace(Θ2) =

∑∞

j=1 θ
2
j < ∞ by Parseval identity, keeping in mind
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that θ ∈ H, with vj , j ≥ 1, being an orthonormal basis of H. As we consider
before, trace(C) =

∑∞

j=1 λj < ∞, since
∑∞

j=1 λj = E‖X − θ‖2H < ∞. Finally,

trace(Γ) =
∑∞

j=1 γj < ∞ as we assumed in the definition of the Gaussian prior

distribution for H valued random variable θ. Therefore, A = Θ2 − 1
nC − 2Γ is

also in the trace class. From the positiveness and trace property of operators
Θ2, C and Γ inequality (27) implies

θ2j ≤
λj

n
+ 2γj, ∀j ≥ 1, (28)

which is equivalent (see Lemma 1) to the inequality

α2
jn

λj

n
+ (αjn − 1)2θ2j ≤

λj

n
, j ≥ 1,

leading to

Eθ‖θ̃n − θ‖2H =

∞∑

j=1

α2
jn

λj

n
+ (αjn − 1)2θ2j ≤

∞∑

j=1

λj

n
= Vθ(Xn) = Eθ‖Xn − θ‖2H .

(ii) Under Assumption A1, the following inequalities hold:

1

1 + M
n

≤ αjn ≤
1

1 + m
n

,

and ( m
n

1 + m
n

)2

≤ (αjn − 1)2 ≤

(
M
n

1 + M
n

)2

.

Therefore,

Eθ‖θ̃n − θ‖2H =

∞∑

j=1

α2
jn

λj

n
+ (αjn − 1)2θ2j

≤
∞∑

j=1

[
1

1 + m
n

]2
λj

n
+

(
M
n

1 + M
n

)2

θ2j . (29)

A sufficient condition can then be derived from (29) by imposing

∞∑

j=1

[
1

1 + m
n

]2
λj

n
+

(
M
n

1 + M
n

)2

θ2j ≤
∞∑

j=1

λj

n
, (30)

which is equivalent to

(
M
n

1 + M
n

)2 ∞∑

j=1

θ2j ≤

(
1−

[
1

1 + m
n

]2) ∞∑

j=1

λj

n
.
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That is,

(
M
n

1 + M
n

)2

‖θ‖2H ≤
(1 + m

n )
2 − 1

(1 + m
n )2

∞∑

j=1

λj

n
,

⇔ ‖θ‖2H ≤

(
1 + M

n
M
n

)2
(1 + m

n )2 − 1

(1 + m
n )2

∞∑

j=1

λj

n
(31)

leading to the sufficient condition for θ̃n ≺ Xn formulated in (ii). Note that this
condition still depends on n, since the upper bound (31) decreases with n, i.e.,

1

n

(
1 + M

n
M
n

)2
(1 + m

n )2 − 1

(1 + m
n )2

=

(
1

n
+

n

M2
+

2

M

)
m2 + 2nm

m2 + 2nm+ n2
.

(iii) To find an upper bound independently of n, we consider Assumption A2.
Under A1–A2, the upper bound (31) can be reformulated independently of n.
Specifically, since

1

n

(
1 + M

n
M
n

)2
(1 + m

n )2 − 1

(1 + m
n )2

=
1

n

(
M + n

M

)2
m(m+ 2n)

(m+ n)2
,

in the case where M = m, we have

1

n

(
M + n

M

)2
m(m+ 2n)

(m+ n)2
=

1

n

m(m+ 2n)

m2
=

1

n
+

2

m
≥

2

m
,

yielding to the sufficient condition not depending on n,

‖θ‖2H ≤
2

m

∞∑

j=1

λj ,

ensuring that θ̃n ≺ Xn, for every n ≥ 1.
The asymptotic equivalence of θ̃n and Xn in the sense of (2) is now derived

under Assumptions A1 in the following theorem.

Theorem 3. Under Assumption A1, the following identities hold:

lim
n→∞

nEθ‖Xn − θ‖2H =

∞∑

j=1

λj = lim
n→∞

nEθ‖θ̃n − θ‖2H . (32)

Proof. First, we recall

Eθ‖Xn‖
2
H =

∞∑

j=1

Eθ

[〈
Xn, vj

〉
H

]2
=

∞∑

j=1

(
λj

n
+ θ2j

)
< ∞,
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and

Eθ‖Xn − θ‖2H =

∞∑

j=1

Eθ

(
Xnj − θj

)2
=

∞∑

j=1

λj

n
.

Hence,

nEθ‖Xn − θ‖2H =

∞∑

j=1

λj .

Now

nEθ‖θ̃n − θ‖2H =

∞∑

j=1

λjα
2
jn + n

∞∑

j=1

(1 − αjn)
2θ2j := An + nBn.

Uniformly in n, (
nγj

nγj+λj
)2λj ≤ λj = g(j), with g independent of n, and∑∞

j=1 g(j) < ∞, due to the trace property of operator C. Thus, from Domi-
nated Convergence Theorem, we can interchange the limit when n → ∞ with
the sum in An, obtaining

lim
n→∞

An =

∞∑

j=1

lim
n→∞

(
nγj

nγj + λj

)2

λj =

∞∑

j=1

λj .

Additionally,

Bn =
∞∑

j=1

(1 − αjn)
2θ2j =

∞∑

j=1

(
λj

nγj

)2

(
nγj+λj

nγj

)2 θ
2
j

=

∞∑

j=1

(λjθj)
2

(nγj + λj)2
=

∞∑

j=1

(λjθj)
2

(nγj)2 + λ2
j + 2nγjλj

≤
1

n2

∞∑

j=1

(λjθj)
2

γ2
j

= O

(
1

n2

)
, (33)

provided that
∞∑

j=1

(λjθj)
2

γ2
j

< ∞.

In particular, under A1,

∞∑

j=1

(λjθj)
2

γ2
j

≤ M2
∞∑

j=1

θ2j = (M‖θ‖H)2 < ∞.

Thus,

lim
n→∞

nEθ‖θ̃n − θ‖2H =
∞∑

j=1

λj = lim
n→∞

nEθ‖Xn − θ‖2H ,

i.e., θ̃n and Xn are asymptotically equivalent.
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Remark 1. Since C and Γ are assumed to be in the trace class, their respective
sequences of eigenvalues {λj}j≥1 and {γj}j≥1 converge to zero when j → ∞.
Hence, 1/γj → ∞ when j → ∞. Thus, A1 holds if and only if {λj}j≥1 and
{γj}j≥1 go to zero with the same rate, i.e., λj = O(γj), j → ∞. This condition
is equivalent to

lim
ω→∞

NC(ω)

NΓ(ω)
= K,

for some positive constant K, where NC(λ) and NΓ(γ) denote the respective
counting functions associated with the eigenvalues of operators C and Γ, given
by

NC(λ) = Card {n ≥ 1 such that λn ≤ λ}

NΓ(γ) = Card {n ≥ 1 such that γn ≤ γ}

with Card denoting the cardinality of a set. In particular, NC(λk) = k, and
NΓ(γk) = k.

In practice, when C is known we can propose as prior distributions for the
projections θj , j ≥ 1, of θ with respect to the eigenvectors vj , j ≥ 1, a se-
quence of zero-mean Gaussian distributions whose variances γj , j ≥ 1, define
a real positive summable sequence such that γj = Lλj , for some positive con-
stant L. In the case where λj , j ≥ 1, are unknown the problem becomes more
difficult, requiring, for example, the consistent estimation of the covariance op-
erator eigenvalues (see, for example, [6]). Furthermore, if vj , j ≥ 1, are also
unknown, suitable estimators should be computed (see, for example, [2]).

5. Estimation of the covariance operator

Suppose that for i = 1, . . . , n, Xi ∼ N (0, C), is a set of i.i.d. Hilbert valued
zero-mean Gaussian random variables with, as before,

C =

∞∑

j=1

λj(vj ⊗ vj) (34)

being in the trace class, i.e.,
∑∞

j=1 λj < ∞. Assume that {vj, j ≥ 1} are known,
but {λj , j ≥ 1} are unknown. Recall that, for i = 1, . . . , n,

λj = E
[
〈Xi, vj〉H

]2
, j ≥ 1.

For each j ≥ 1, the joint density of Xij = 〈Xi, vj〉H , i = 1, . . . , n, is then given
by

L(X1j , . . . , Xnj , τj) = Cτ
n/2
j exp

(
−τj

n∑

i=1

x2
ij

)
, τj =

1

2λj
. (35)

For each j ≥ 1, as conjugate prior for parameter τj = 1
2λj

, let us choose

τj ∼ Γ(gj ,
1
βj
), for gj > 2. Note that, hence, E[ 1

τj
] =

βj

gj−1 . The posterior
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density of τj given xij , i = 1, . . . , n, is

C

(
n∑

i=1

x2
ij

)
τ
n/2+gj−1
j exp

(
−τj

(
βj +

n∑

i=1

x2
ij

))
,

which is a Gamma distribution with parameters n/2+gj and 1/(βj+
∑n

i=1 x
2
ij),

for each j ≥ 1. For the loss function defined in terms of the squared error, the
Bayes estimator of 2λj = 1/τj is the posterior expectation of 1/τj, given by

(βj +
∑n

i=1 x
2
ij)/(n/2 + gj − 1), for each j ≥ 1. The Bayes estimator λ̃jn of

λj = 1/2τj is then

λ̃jn =
βj +

∑n
i=1 x

2
ij

n+ 2gj − 2
, j ≥ 1 (36)

(see [13], p. 236). Hence, from (34), the componentwise Bayes estimator of C is
constructed as

C̃n =

∞∑

j=1

λ̃jn(vj ⊗ vj)

(see also Theorem 1.2.1, p. 9, [8]).
Let us begin with the analysis of the classical estimator of the covariance

operator

Cn =
∞∑

j=1

λjn(vj ⊗ vj),

where

λjn =
1

n

n∑

i=1

x2
ij (37)

is an unbiased estimator of λj . Clearly,

E




∞∑

j=1

λjn


 =

∞∑

j=1

E(λjn) =

∞∑

j=1

λj < ∞.

Thus,
∞∑

j=1

λjn < ∞, a.s.

Now recall that, if N ∼ N (0, σ2), then EN4 = 3σ4, and

V (N2) = 3σ4 − σ4 = 2σ4.

Since Cn − C, as an element of the Hilbert space S(H) of Hilbert-Schmidt
operators onH, has coordinates λjn−λj , j ≥ 1, with respect to the orthonormal
basis vj ⊗ vj , j ≥ 1, of S(H), by Parseval identity,

‖Cn − C‖2S(H) =

∞∑

j=1

[λjn − λj ]
2, j ≥ 1.
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Hence,

E‖Cn − C‖2S(H) =

∞∑

j=1

E[λjn − λj ]
2 =

∞∑

j=1

V (λjn) =
2

n

∞∑

j=1

λ2
j , (38)

provided that there exists a positive constant c such that
∑∞

j=1 λ
2
j ≤ c

∑∞

j=1 λj <
∞, by assumption. As before, ‖ · ‖S(H) denotes the norm in S(H).

For each j ≥ 1, let us now consider the Bayesian estimator λ̃jn of λj . Then,

λ̃jn − λj =
1

bj,n
(λjn − λj) +

aj,n
bj,n

+
1− bj,n
bj,n

λj , (39)

where

aj,n =
βj

n
, bj,n = 1 +

2

n
(gj − 1).

From equations (38) and (39),

E[λ̃jn − λj ]
2 =

1

b2j,n
E[λjn − λj ]

2 +

[
aj,n
bj,n

+
1− bj,n
bj,n

λj

]2

+ 2
E
[
λjn − λj

]
[aj,n + (1 − bj,n)λj ]

b2j,n
.

=
2

nb2j,n
λ2
j +

(aj,n + (1− bj,n)λj)
2

b2j,n

=
2

nb2j,n
λ2
j +

1

n2

(βj − 2(gj − 1)λj)
2

b2j,n

=
2nλ2

j

[n+ 2(gj − 1)]2
+

[βj − 2(gj − 1)λj ]
2

[n+ 2(gj − 1)]2

= An(j) +Bn(j). (40)

Since gj > 2, we have,

|nAn(j)| = nAn(j) =
2(nλj)

2

n2 + 4(gj − 1)2 + 4n(gj − 1)
≤

2n2λ2
j

n2
= 2λ2

j ,

and there exists a positive constant c such that 2
∑∞

j=1 λ
2
j ≤ 2c

∑∞

j=1 λj < ∞.

Then, by applying Dominated Convergence Theorem,

lim
n→∞

n

∞∑

j=1

An(j) =

∞∑

j=1

lim
n→∞

nAn(j) = 2

∞∑

j=1

λ2
j < ∞, (41)
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where the sum is interpreted as an integral with respect to a counting measure
µ(dx) =

∑∞

j=1 δAn(j)(x)dx, with δa(x) denoting the Dirac Delta measure at
point a, and An(j), j ≥ 1, are given in equation (40).

Additionally, again keeping in mind that gj > 2,

n

∞∑

j=1

Bn(j) =

∞∑

j=1

n[βj − 2(gj − 1)λj ]
2

n2 + 4(gj − 1)2 + 4n(gj − 1)

≤
1

n

∞∑

j=1

[βj − 2(gj − 1)λj ]
2 = O

(
1

n

)
, (42)

provided that
∑∞

j=1[βj−2(gj−1)λj ]
2 < ∞. In particular, the following assump-

tion gives a sufficient condition for
∑∞

j=1[βj − 2(gj − 1)λj ]
2 < ∞ to hold:

Assumption A3. For j ≥ 1,

βj

2(gj − 1) + 1
≤ λj .

Remark 2. Note that for gj = 3, j ≥ 1, we have βj ≤ 5λj , j ≥ 1. Thus,
Assumption A3 leads to some upper bounds on the parameters of the a-priori
Gamma distribution, in terms of the eigenvalues λj , j ≥ 1, of the covariance
operator C. Some prior knowledge about λj is then required. To ensure that
condition A3 holds parameters gj , and βj , j ≥ 1, involved in the respective
Gamma priors proposed for parameters τj = 1

2λj
, j ≥ 1, could be chosen as

follows:

gj = 2 + jǫ1(j)

βj = (2(gj − 1) + 1)λj − ǫ2(j). (43)

Here, ǫi(j), j ≥ 1, i = 1, 2, are arbitrary positive constants that, in particular,
could not depend on j.

In particular, from equation (43), since for τj ∼ Γ(gj,
1
βj
), and considering

ǫ2(j) ≥ λj ,

µλj
= E[λj ] = E

[
1

2τj

]
=

βj

2gj − 2

=
(2(gj − 1) + 1)λj − ǫ2(j)

2gj − 2
≤ λj , j ≥ 1, (44)

we have
∞∑

j=1

µλj
=

∞∑

j=1

E[λj ] =
∞∑

j=1

E

[
1

2τj

]
≤

∞∑

j=1

λj < ∞.

Thus, the means µλj
, j ≥ 1, of parameters λj = 1/(2τj), j ≥ 1, with

τj ∼ Γ(gj,
1
βj
), j ≥ 1, define a l1 sequence when ǫ2(j) ≥ λj in equation (43).
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For implementation of equation (43) in practice, since λj , j ≥ 1, are unknown,
a possible choice could be to replace in (43) λj , j ≥ 1, by a sequence of positive
real numbers, whose sum is smaller than the empirical variance computed from
the data.

The following result is then formulated.

Theorem 4. Under assumption A3, the estimators Cn and C̃n satisfy

lim
n→∞

nE‖C̃n − C‖2S(H) = lim
n→∞

nE‖Cn − C‖2S(H) = 2

∞∑

j=1

λ2
j .

That is, they are asymptotically equivalent in the sense of equation (2).

Proof. Under A3,

∞∑

j=1

[βj − 2(gj − 1)λj ]
2 ≤

∞∑

j=1

λ2
j < ∞.

Thus, equation (42) holds, which jointly with equations (38), (40) and (41)
yields to the desired equality

lim
n→∞

nE‖C̃n − C‖2S(H) = lim
n→∞

nE‖Cn − C‖2S(H) = 2

∞∑

j=1

λ2
j .

6. Simulation study

The comparison of the efficiency of the finite-dimensional approximation of the
studied Bayesian and classical estimators, in the l2 valued Poisson process and
the Hilbert valued Gaussian random variable frameworks, is now performed
through a simulation study, for an increasing sequence of functional sample
sizes.

6.1. Equivalence of Bayesian and classical estimators and

predictors of l
2 valued Poisson process

We study the following models of l2 valued Poisson process Mt = {Nt,j, j ≥ 0},
with infinite-dimensional vectors of intensities {λji, j ≥ 1}, i = 1, 2, 3, respec-
tively given by:

λk1 = (1/k)6, k ≥ 1

λk2 = (1/10)k, k ≥ 1

λk3 = (1/k)k, k ≥ 1. (45)

Note that in equation (45), λki, k ≥ 1, are selected in order to ensure that∑∞

k=1 λki < ∞, testing different rates of convergence, for each model i, with
i = 1, 2, 3.
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Table 1

For i = 1, 2 MSEICi and MSEIBi values in equation (47) are displayed for
S ∈ [1000, 10000], with DSS = 500, and for M = 75

S.S MSEIC1 MSEIB1 MSEIC2 MSEIB2

1000 0.1048e− 002 0.1052e− 002 0.1252e− 003 0.1249e− 003
1500 0.7038e− 003 0.7037e− 003 0.7449e− 004 0.7441e− 004
2000 0.4581e− 003 0.4562e− 003 0.5200e− 004 0.5192e− 004
2500 0.4173e− 003 0.4163e− 003 0.4447e− 004 0.4446e− 004
3000 0.3513e− 003 0.3537e− 003 0.3998e− 004 0.3993e− 004
3500 0.2881e− 003 0.2877e− 003 0.2882e− 004 0.2881e− 004
4000 0.2481e− 003 0.2480e− 003 0.2690e− 004 0.2689e− 004
4500 0.2412e− 003 0.2417e− 003 0.2473e− 004 0.2471e− 004
5000 0.1948e− 003 0.1950e− 003 0.2286e− 004 0.2286e− 004
5500 0.1895e− 003 0.1901e− 003 0.2055e− 004 0.2055e− 004
6000 0.1879e− 003 0.1887e− 003 0.1847e− 004 0.1846e− 004
6500 0.1583e− 003 0.1581e− 003 0.1502e− 003 0.1740e− 004
7000 0.1502e− 003 0.1504e− 003 0.1595e− 004 0.1595e− 004
7500 0.1308e− 003 0.1305e− 003 0.1415e− 004 0.1415e− 004
8000 0.1320e− 003 0.1316e− 003 0.1506e− 004 0.1506e− 004
8500 0.1267e− 003 0.1265e− 003 0.1336e− 004 0.1336e− 004
9000 0.1145e− 003 0.1149e− 003 0.1328e− 004 0.1327e− 004
9500 0.1158e− 003 0.1158e− 003 0.1213e− 004 0.1213e− 004
10000 0.8589e− 004 0.8597e− 004 0.1006e− 004 0.1006e− 004

The following parameters values are tested for the Gamma distributions defin-
ing the priors on the intensity components (45)

ak1 = (1/2)2k, bk1 = 3, k ≥ 1

ak2 = (1/5)6k, bk2 = 1, k ≥ 1

ak3 = (1/4)3k, bk3 = 2, k ≥ 1. (46)

Note that {aki}k≥1 and {bki}k≥1 are selected in order to ensure that As-

sumption A0 holds, since
∑∞

k=1 aki < ∞, and supk≥1 bki < ∞ for each
i = 1, 2, 3. In addition, for each model i = 1, 2, 3, different rates of conver-
gence to zero are tested in the selection of parameter sequence {aki}k≥1 in
equation (46).

Tables 1–2 show the statistics MSEICi and MSEIBi respectively denoting the
integrated (truncated) empirical mean-square errors of the classical and Bayes
estimators of the intensity vector of the Poisson process, obtained after trunca-
tion at term M, in Model i, for i = 1, 2, 3. Integration here is understood with
respect to a counting measure given by µ(dx) =

∑M
k=1 δ1/R

∑
R
l=1

[λ̂l
kS,i

−λki]2
(x)dx,

in the case of MSEICi, and given by µ(dx) =
∑M

k=1 δ1/R
∑

R
l=1

[λ̃l
kS,i

−λki]2
(x)dx,

in the case of MSEIBi, for i = 1, 2, 3, where, as before, δa(x) denotes the Dirac
delta measure at point a. The number of observed times is denoted as S. In
these tables the values of S displayed are in the interval [1000, 10000], i.e.,
S ∈ [1000, 10000], with discretization step size DSS = 500. The truncation or-
der considered is M = 75. The showed integrated empirical mean-square errors
are based on R = 500 repetitions. Specifically, Tables 1–2 (see also Figure 1)
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Table 2

MSEIC3 and MSEIB3 values in equation (47) are displayed for S ∈ [1000, 10000], with
DSS = 500, and for M = 75

S.S MSEIC3 MSEIB3

1000 0.1270e− 002 0.1266e − 002
1500 0.8466e− 003 0.8477e − 003
2000 0.6272e− 003 0.6297e − 003
2500 0.4801e− 003 0.4810e − 003
3000 0.4668e− 003 0.4678e − 003
3500 0.3557e− 003 0.3547e − 003
4000 0.3462e− 003 0.3473e − 003
4500 0.2949e− 003 0.2955e − 003
5000 0.2745e− 003 0.2740e − 003
5500 0.2287e− 003 0.2287e − 003
6000 0.2173e− 003 0.2183e − 003
6500 0.2091e− 003 0.2088e − 003
7000 0.1816e− 003 0.1815e − 003
7500 0.1737e− 003 0.1738e − 003
8000 0.1656e− 003 0.1658e − 003
8500 0.1424e− 003 0.1422e − 003
9000 0.1424e− 003 0.1424e − 003
9500 0.1361e− 003 0.1357e − 003
10000 0.1439e− 003 0.1441e − 003

show the empirical values

MSEICi =

M∑

k=1

[
1

R

R∑

l=1

[λ̂l
kS,i − λki]

2

]
, i = 1, 2, 3

MSEIBi =

M∑

k=1

[
1

R

R∑

l=1

[λ̃l
kS,i − λki]

2

]
, i = 1, 2, 3, (47)

where λ̃l
kS,i represents the Bayesian estimator of the kth component of the vector

of intensities associated with the l2 valued Poisson process {Mt,i, t ≥ 0}, based
on the lth observed realization {M l

t,i, t = 1, . . . , S} of the process generated in

Model i, for i = 1, 2, 3, with M l
t,i = {N l

t,k,i, k = 1, . . . ,M}, for t ∈ {1, . . . , S},

and for l = 1, . . . , R. Similarly, λ̂l
kS,i denotes the classical estimator of the kth

component of the vector of intensities associated with the l2 valued Poisson
process {Mt,i, t ≥ 0}, based on the lth observed realization {M l

t,i, t = 1, . . . , S}

of the process generated in Model i, for i = 1, 2, 3, with M l
t,i = {N l

t,k,i, k =
1, . . . ,M}, for t ∈ {1, . . . , S}, and for l = 1, . . . , R.

The classical and Bayes estimators of the intensity vector display the same
behavior in relation to the rate of convergence to zero of their integrated empir-
ical mean-square errors, when the sample size increases. A faster decreasing can
be seen in Model 2, attaching the theoretical order of magnitude 1/n = 10−4.
While the order of magnitude of the integrated empirical mean-square error in
Models 1 and 3 is 10−3, presenting a slower rate of decrease for the samples sizes
tested. These observed rates of decrease of the integrated empirical mean square
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Fig 1. Results reflected in Tables 1–2 are represented here for Model 1 at the top-left, for
Model 2 at the top-right, and for Model 3 at the bottom. Note that the red and blue lines
coincide in all the cases.

errors in the three models analyzed reflect that the empirical approximations
of Ak(T ) and Bk(T ), k = 1, . . . ,M = 75 (see equation (11)), providing upper
bounds of the computed integrated empirical mean square errors, decrease when
the parameters aki, k ≥ 1, and λki, k ≥ 1, decrease, for i = 1, 2, 3. Therefore,
the smallest values of such empirical quantities correspond to Model 2. Note
that the differences between parameters involved in Models 1 and 3 are not
significative in relation to the sample sizes tested. Summarizing, the rate of de-
crease of parameters aki, k ≥ 1, as well as of the components of the intensity
vector λki, k ≥ 1, for i = 1, 2, 3 affects the rate of convergence to zero of the
integrated empirical mean square errors of the Bayes and classical estimators of
the intensity vector of l2 valued Poisson process.

To illustrate that the relative efficiency of Bayes and classical predictors is
one, the absolute distances of their scaled, by the sample size, integrated em-
pirical mean square errors to the theoretical limit derived in Theorem 1 (see
also equation (15)) are displayed in Figure 2. Specifically, for model i = 1, 2, 3,
by AEBPi we denote the absolute distance of the integrated empirical mean
square error, scaled by the sample size S, of the Bayes predictor to the theoret-
ical value h2

∑M
k=1 λki, obtained in Theorem 1. Similarly, for model i = 1, 2, 3,

AECPi denotes the absolute distance of the integrated empirical mean square
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Fig 2. AEBPi, and AECPi values defined in equation (48), for i = 1 at the top-left, i = 2 at
the top-right, and i = 3 at the bottom. They are represented with respect to the sample sizes
S ∈ [1000, 10000], reflected in the horizontal axis, where discretization step size DSS = 500
is considered.

error, scaled by the sample size S, of the classical predictor to the theoretical
value h2

∑M
k=1 λki given in Theorem 1. Equivalently, for i = 1, 2, 3, the following

empirical quantities are displayed in Figure 2:

AEBPi =

∣∣∣∣∣S
M∑

k=1

[
1

R

R∑

l=1

[λ̃l
kS,ih+N l

S,k,i − (λkih+N l
S,k,i)]

2

]
− h2

M∑

k=1

λki

∣∣∣∣∣

AECPi =

∣∣∣∣∣S
M∑

k=1

[
1

R

R∑

l=1

[h(λ̂l
kS,i − λki)]

2

]
− h2

M∑

k=1

λki

∣∣∣∣∣ , (48)

where the value h = 2 has been considered with the same notation as before.
The sample sizes studied coincide with the ones tested in Tables 1–2, S ∈
[1000, 10000], with discretization step size DSS = 500, and truncation order
M = 75. The approximation of the integrated empirical mean-square error is
computed from R = 500 realizations of Poisson process over the interval (0, S].
The results displayed show almost the same values of the absolute distances to
the fixed theoretical limit h2

∑M
k=1 λki, given in Theorem 1, of the the integrated

empirical mean-square errors of the Bayes and classical estimators, for the 20
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samples sizes S tested between 1000 and 10000. It can also be observed that a
larger number of realizations of Poisson process over the interval (0, S] should
be generated for each S studied, in order to smoothing the absolute distances
observed. However, memory restrictions, as well as running time have limited
our computations to the case of 500 realizations of Poisson process, which allows
us to illustrate our primary objective in relation to the value one of the relative
efficiency of Bayes and classical estimators.

6.2. Equivalence of Bayesian and classical mean estimators for H

valued Gaussian random variables

To generate examples of trace, and, in particular, of Hilbert-Schmidt covariance
operators, admitting the spectral decomposition given in equation (23), in terms
of a system of eigenvalues and eigenvectors, we will consider the resolution of
the identity

∑∞

k=1 φk ⊗ φk, defined in terms of the system of eigenfunctions of
the Dirichlet negative Laplacian operator on L2([0, T ]), given by

φk(t) =

√
2

T
sin

(
kπt

T

)
, k ≥ 1, t ∈ [0, T ], (49)

where L2([0, T ]) denotes the space of square integrable functions on [0, T ] (see,
for example, [20]). As usual, by Dirichlet negative Laplacian operator on
L2([0, T ]), denoted as (−∆)[0,T ], we understand the operator defined by

(−∆)[0,T ](f)(t) = −
d2

dt2
(f)(t), ∀t ∈ (0, T ),

with f(0) = f(T ) = 0.
The following examples of covariance operators are then considered:

Ci =

∞∑

k=1

λkiφk ⊗ φk, i = 1, 2, 3, (50)

with eigenvectors φk, k ≥ 1, given in equation (49), and with eigenvalues λki,
k ≥ 1, i = 1, 2, 3, respectively defined by the following l1 sequences:

λk1 =

[
1

10

]k
, k ≥ 1,

λk2 =
1

1 + k4
, k ≥ 1,

λk3 =
1

1 + k6/5
, k ≥ 1, (51)

where we have considered different rates of convergence to zero to investigate
if they affect the relative efficiency of Bayes and classical estimators for finite
truncation order and for the finite sample sizes tested below. As commented, we
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have considered H = L2([0, T ]), with T = 200, and E[Xi] = θi ∈ L2([0, T ]) hav-
ing Fourier coefficients {θki, k ≥ 1}, i = 1, 2, 3, with respect to the eigenfunction
basis (49), given by

θk1 =

[
1

k

]3
, k ≥ 1,

θk2 =

[
1

k

]2
, k ≥ 1,

θk3 =

[
1

k

]3/4
, k ≥ 1, (52)

where again different rates of convergence to zero are tested. To ensure As-

sumption A1 holds, for i = 1, 2, 3, let the Gaussian prior on θi has covariance
operator Γi with eigenvalues γki, k ≥ 1, with respect to the eigenvectors (49),
given by

γki = Lλk,i, k ≥ 1. (53)

Here, any positive value of constant L ensures that Assumption A1 holds with
m = M = 1/L. In particular, we have considered L = 10. For i = 1, 2, 3, Γi is
then defined as

Γi =

∞∑

k=1

γkiφk ⊗ φk.

For i = 1, 2, 3, the Bayesian estimator of θi is computed from equation (24),
and compared with the classical estimateXni, in terms of their integrated empir-
ical mean square errors truncated at term M, respectively denoted as MSEMBi

and MSEMCi, for each model i = 1, 2, 3. That is, they are compared in terms
of the following empirical quantities

MSEMBi =
M∑

k=1

[
1

R

R∑

l=1

[θ̃lkn,i − θki]
2

]

MSEMCi =

M∑

k=1

[
1

R

R∑

l=1

[X
l

kn,i − θki]
2

]
, (54)

approximating the theoretical valuesE‖θ̃ni−θi‖2L2([0,T ]) andE‖Xni−θi‖2L2([0,T ]),

respectively. Here, for i = 1, 2, 3, θ̃lkn,i and X
l

kn,i denote the respective Bayes
and classical estimates of θki, based on the lth generation of a finite-dimensional
approximation of sample X l

1i, . . . , X
l
ni of size n of the Hilbert valued Gaussian

random variable Xi of Model i, for l = 1, . . . , R.
Bayesian and classical estimators of the functional mean display the same

efficiency in the three models studied for the sample sizes tested. That is, their
relative efficiency is almost one as it can be seen in Tables 3–4. The values
MSEMB1 and MSEMC1 are below the values of MSEMB2 and MSEMC2, and
MSEMB3 and MSEMC3 in all the sample sizes tested (see Tables 3–4 and
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Table 3

For i = 1, 2 MSEMCi and MSEMBi values in equation (54) are displayed for
n ∈ [1000, 10000], with DSS = 500, and for M = 75

S.S MSEMC1 MSEMB1 MSEMC2 MSEMB2

1000 0.7809e− 004 0.7809e− 004 0.1142e− 003 0.1141e− 003
1500 0.5263e− 004 0.5266e− 004 0.8121e− 004 0.8128e− 004
2000 0.4011e− 004 0.4012e− 004 0.5222e− 004 0.5219e− 004
2500 0.3583e− 004 0.3581e− 004 0.4522e− 004 0.4521e− 004
3000 0.2876e− 004 0.2878e− 004 0.3778e− 004 0.3774e− 004
3500 0.2313e− 004 0.2314e− 004 0.3300e− 004 0.3300e− 004
4000 0.2053e− 004 2.0534e− 004 0.3008e− 004 0.3006e− 004
4500 0.1832e− 004 0.1831e− 004 0.2758e− 004 0.2758e− 004
5000 0.1485e− 004 0.1485e− 004 0.2258e− 004 0.2258e− 004
5500 0.1547e− 004 0.1546e− 004 0.2061e− 004 0.2060e− 004
6000 0.1456e− 004 0.1456e− 004 0.1771e− 004 0.1771e− 004
6500 0.1242e− 004 0.1241e− 004 0.1600e− 004 0.1599e− 004
7000 0.1076e− 004 0.1076e− 004 0.1473e− 004 0.1473e− 004
7500 0.1134e− 004 0.1134e− 004 0.1489e− 004 0.1489e− 004
8000 0.1053e− 004 0.1052e− 004 0.1229e− 004 0.1229e− 004
8500 0.9763e− 005 0.9758e− 005 0.1309e− 004 0.1309e− 004
9000 0.9747e− 005 0.9742e− 005 0.1174e− 004 0.1173e− 004
9500 0.8877e− 005 0.8874e− 005 0.9766e− 005 0.9769e− 005
10000 0.8234e− 005 0.8232e− 005 0.1104e− 004 0.1105e− 004

Table 4

MSEMC3 and MSEMB3 values in equation (54) are displayed for n ∈ [1000, 10000], with
DSS = 500, and for M = 75

S.S MSEMC3 MSEMB3

1000 0.2681e− 002 0.2681e− 002
1500 0.1782e− 002 0.1782e− 002
2000 0.1348e− 002 0.1348e− 002
2500 0.1134e− 002 0.1134e− 002
3000 0.8825e− 003 0.8825e− 003
3500 0.7916e− 003 0.7915e− 003
4000 0.6959e− 003 0.6959e− 003
4500 0.5955e− 003 0.5955e− 003
5000 0.5454e− 003 0.5454e− 003
5500 0.4777e− 003 0.4777e− 003
6000 0.4519e− 003 0.4518e− 003
6500 0.4163e− 003 0.4162e− 003
7000 0.3824e− 003 0.3823e− 003
7500 0.3517e− 003 0.3517e− 003
8000 0.3316e− 003 0.3316e− 003
8500 0.3237e− 003 0.3237e− 003
9000 0.2955e− 003 0.2955e− 003
9500 0.2834e− 003 0.2834e− 003
10000 0.2629e− 003 0.2629e− 003

Figure 3). Moreover, the largest values of the integrated empirical mean square
errors correspond to Model 3 (see Table 4). The results obtained reflect the fact
that the functional mean-square errors of the Bayes and classical estimators,
computed in the proof of Theorem 3, are monotone increasing functions with
respect to the parameters λki, and θki, k ≥ 1, for each i = 1, 2, 3, when these
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Fig 3. MSEMBi and MSEMCi values (vertical axis), for i = 1, 2 at the top, and for i = 3
at the bottom, considering the sample size n ∈ [1000, 10000], with discretization step size
DSS = 500 (horizontal axis).

parameters are positive. Note that, in the models studied

0 < λk1 ≤ λk2 ≤ λk3, 0 < θk1 ≤ θk2 ≤ θk3, k ≥ 1. (55)

In addition, we also consider, for i = 1, 2, 3, the absolute distances AEMBi

and AEMCi of the respective integrated (truncated) empirical mean-square er-
rors, scaled by the sample size n, of the Bayes and classical estimators to the
limit quantity

∑M
k=1 λki derived in Theorem 3. Equivalently, for i = 1, 2, 3, let

us consider AEMBi and AEMCi respectively defined, for a given truncation
order M, as:

AEMBi =

∣∣∣∣∣n
M∑

k=1

[
1

R

R∑

l=1

[θ̃lkn,i − θki]
2

]
−

M∑

k=1

λki

∣∣∣∣∣

AEMCi =

∣∣∣∣∣n
M∑

k=1

[
1

R

R∑

l=1

[X
l

kn,i − θki]
2

]
−

M∑

k=1

λki

∣∣∣∣∣ (56)

where the values M = 75, R = 500, and n ∈ [1000, 10000], with discretization
step size DSS = 500, have been tested. The order of magnitude of AEMBi and
AEMCi is substantially smaller for i = 1, that is, for Model 1, which also displays
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Fig 4. AEMBi and AEMCi values (vertical axis), for i = 1, 2 at the top, and for i = 3 at the
bottom, considering the sample size n ∈ [1000, 10000], with discretization step size DSS = 500
(horizontal axis).

a faster decreasing to zero of the integrated (truncated) empirical mean square
error. Regarding Models 2 and 3, again we have a faster decreasing to zero of the
absolute distances of the integrated empirical mean-square error for Model 2 to
the limit

∑M
k=1 λk2, derived in Theorem 3, than for Model 3. As commented, this

behavior is due to the relative magnitude of the covariance operator eigenvalues
and mean function projections in the three models analyzed, as reflected in
equation (55). A larger number of repetitions than R = 500 should be considered
in order to smoothing the results displayed in Figure 4. We have displayed the
case of 500 repetitions by memory and running time restrictions, which, on
the other hand, it is sufficient to show the equivalent behavior of Bayes and
classical estimators in relation to their efficiency for the large finite sample sizes
tested.

6.3. Asymptotic equivalence of Bayesian and classic covariance

operator estimators for H valued Gaussian random variables

To analyze, for finite samples sizes and a given truncation order, the influence
of the rate of convergence to zero of the eigenvalues of the covariance operator
on the equivalent behavior of Bayes and classical estimators, we consider the
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following models Ci of trace covariance operators for i = 1, . . . , 6:

Ci(h) =

∞∑

k=1

λki 〈φk, h〉H φk, ∀h ∈ H,

with H = L2([0, T ]), φk, k ≥ 1, are defined as in equation (49), and

λj1 =
1

(1 + j6/5)
, λj2 =

1

(1 + j2)
, λj3 = exp

(
−(1 + j2)

)
,

λj4 =

[
1

10

]j
, λj5 =

1

(1 + j3/2)
, λj6 =

1

(1 + j4/3)
, j ≥ 1. (57)

In order to ensure that the restrictions for the asymptotic equivalence of
Bayes and classical estimators required in Section 5 are satisfied by the parame-
ters of the Gamma priors for the eigenvalues of the covariance operator (see also
Assumption A3 and Remark 2, for i = 1, 2, 3, the following values of param-
eters gki and βki, characterizing the Gamma prior distributions on τki =

1
2λki

,

k ≥ 1, are selected (see also equation (43)):

gki = 2 + k/10, βki = [2(gki − 1) + 1]λki − 5/10 i = 1, 2, 3, 4

gki = 3 + k/100 βki = [2(gki − 1) + 1]λki − 5/10, i = 5, 6. (58)

For i = 1, . . . , 6, the Bayesian C̃i and classical Ci estimators of the covariance
operator are compared in terms of their integrated (truncated at term M) em-
pirical mean square errors, respectively denoted as MSEBi and MSECi. That
is, the following empirical quantities are computed for their comparison for the
finite sample sizes n ∈ [1000, 10000] tested:

MSEBi =

M∑

k=1

[
1

R

R∑

l=1

[λ̃l
kn,i − λki]

2

]
,

MSECi =

M∑

k=1

[
1

R

R∑

l=1

[λ
l

kn,i − λki]
2

]
(59)

approximating the theoretical ones

E‖C̃ni − Ci‖
2
L2([0,T ]),

E‖Cni − Ci‖
2
L2([0,T ]), (60)

where λ̃l
kn,i and λ

l

kn,i respectively denote the Bayes (36) and classical (37) es-

timates of λki, based on the lth generation of a sample Y l
1i, . . . , Y

l
ni of size n of

the Gaussian Hilbert valued random variable Yi of Model i, with l = 1, . . . , R.
Specifically, we have considered H = L2([0, T ]), with T = 200, and R = 500
to computing (59). In addition, for i = 1, . . . , 6, the absolute distances AEBi

and AECi to the limit 2
∑M

k=1 λ
2
ki, derived in Theorem 4, of the integrated
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(truncated at term M) empirical mean square errors of the Bayes and classical
estimators are respectively computed as follows:

AEBi =

∣∣∣∣∣n
M∑

k=1

[
1

R

R∑

l=1

[λ̃l
kn,i − λki]

2

]
− 2

M∑

k=1

λ2
ki

∣∣∣∣∣ , i = 1, . . . , 6

AECi =

∣∣∣∣∣n
M∑

k=1

[
1

R

R∑

l=1

[λ
l

kn,i − λki]
2

]
− 2

M∑

k=1

λ2
ki

∣∣∣∣∣ , i = 1, . . . , 6, (61)

which they provide an empirical finite-dimensional approximation of

∣∣∣∣∣nE‖C̃ni − Ci‖
2
L2([0,T ]) − 2

∞∑

k=1

λ2
ki

∣∣∣∣∣ , i = 1, . . . , 6

∣∣∣∣∣nE‖Cni − Ci‖
2
L2([0,T ]) − 2

∞∑

k=1

λ2
ki

∣∣∣∣∣ , i = 1, . . . , 6.

The behavior of the classical and Bayes estimators for the six covariance models
introduced in (57) is investigated, when truncation is achieved at levels M =
5, 10, 25, 50, 75, for the sample sizes n ∈ [1000, 10000], with discretization step
size DSS = 500. The evaluated empirical approximations MSEBi and MSECi,
i = 1, . . . , 6, of the functional mean-square errors of the Bayes and classical
estimators display a hyperbolic rate of convergence to zero, with respect to the
increasing sequence of sample sizes analyzed, in the six covariance models tested,
for all the truncation orders studied (see Figure 5). It can be seen that the rate
of convergence to zero of the eigenvalues of the covariance operator affects the
rate of decrease of the integrated (truncated) empirical mean square errors for
the finite sample sizes tested. Specifically, a slower rate of decrease to zero of the
eigenvalues of the covariance operator leads to a slower rate of decrease to zero
of MSEBi and MSECi, as observed for i = 1 and 6, that is, for Model 1 and 6
(see top-left and bottom-right graphs in Figure 5). The fastest rate of decrease
to zero of the eigenvalues of the covariance operator corresponds to Models
3 and 4, where the fastest decrease to zero is also observed for MSEBi and
MSECi, with i = 3, 4 (see center-left and center-right graphs in Figure 5). The
middle moderate case of decrease rate of the covariance operator eigenvalues
corresponds to Models 2 and 5, where the same behavior is observed in the
decrease rate of MSEBi and MSECi, with i = 2, 5 (see top-right and bottom-left
graphs in Figure 5). In all the models studied, the Bayes and classical estimators
of the covariance operator display an equivalent behavior, in the sense of the
rate of convergence to zero of their integrated empirical mean square errors, for
the truncation orders and finite sample sizes tested.

In Figure 6, for M = 5, 10, 25, 50, 75, the corresponding values of AEBi and
AECi, i = 1, 2, 3, 4, are displayed. In particular, AEBi, i = 1, 2, 3, 4, are repre-
sented with solid line, and AECi i = 1, 2, 3, 4, are given with dotted lines. We
observe that Models 1 and 2 display a similar behavior. For i = 1, 2 (see top-
panels in Figure 6), AEBi and AECi are very close for all the truncation orders
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Fig 5. For M = 5, 10, 25, 50, 75, the corresponding values of MSEB1 and MSEC1 are rep-
resented at the top-left, of MSEB2 and MSEC2 at the top-right, of MSEB3 and MSEC3 at
the center-left, of MSEB4 and MSEC4 at the center-right, of MSEB5 and MSEC5 at the
bottom-left and of MSEB6 and MSEC6 at the bottom-right.

tested. Thus, Bayesian and classical estimators have relative efficiency close to
one. For i = 3, 4 (see bottom-panels in Figure 6), AEBi and AECi are close, in-
creasing the distance between their values for the truncation orders M = 50, 75.
Note that, for these truncation orders, the classical estimator outperforms the
Bayesian estimator, specially, for the smallest sample sizes studied. The relative
efficiency of Bayes and classical estimators is farer from 1 in Model 5 and 6 than
in the previous referred models (see Figure 7). The values of AEBi and AECi,
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Fig 6. For M = 5, 10, 25, 50, 75, the corresponding values of AEB1 and AEC1 are represented
at the top-left, of AEB2 and AEC2 at the top-right, of AEB3 and AEC3 at the bottom-left,
and of AEB4 and AEC4 at the bottom-right.

i = 5, 6, for the truncation orders M = 5, 10, are displayed at the left-hand
side of Figure 7, and for M = 25, 50, 75, at the right-hand side of such a figure.
For Models 5 and 6, the relative efficiency of Bayes and classical estimators is
close to one for the truncation orders M = 5, 10, i.e., AEBi and AECi values
for M = 5, 10 are close when i = 5, 6. The classical estimator outperforms the
Bayesian estimator for the truncation orders M = 25, 50, 75, when Model 5 and
6 are analyzed. Summarizing, the rate of convergence to zero of the eigenvalues
of the covariance operators studied affects the relative efficiency of their Bayes
and classical estimators for the highest truncation orders tested.

The theoretical results derived in Sections 3–5 provide sufficient conditions
for the asymptotic equivalence of Bayes and classical estimators of the infinite-
dimensional parameters, characterizing the l2 valued Poisson process and the
Hilbert valued Gaussian models studied. In practice, for large finite sample sizes,
the numerical results obtained in Section 6, in terms of the integrated (trun-
cated) empirical mean square error, support the theoretical asymptotic results
previously derived. In addition, for finite sample sizes, the rate of convergence
to zero of the components of the infinite-dimensional parameters affects the rate
of decrease of the integrated empirical mean square errors of their Bayes and
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Fig 7. For M = 5, 10, the corresponding values of AEB5 and AEC5 are represented at the
top-left, and of AEB6 and AEC6 at the bottom-left. For M = 25, 50, 75, the corresponding
values of AEB5 and AEC5 are represented at the top-right, and of AEB6 and AEC6 at the
bottom-right.

classical estimators. The absolute distance, to the theoretical limits derived in
Theorems 1, 3 and 4, of the scaled, by the sample size, integrated empirical
mean square errors of Bayes and classical estimators of the infinite-dimensional
parameters considered constitutes a more unstable statistics, which requires a
large number of repetitions to be run for its smoothing. In addition, it can be
substantially affected by the truncation order in the case of the estimation of
the covariance operator eigenvalues.

7. Final comments

The componentwise Bayesian and classical parameter estimators proposed for
the infinite-dimensional vector of intensities, in the l2 valued Poisson process
case, as well as for the functional mean, in the Hilbert valued Gaussian random
variable context, are asymptotically equivalent under the conditions assumed.
Under the same setting of conditions, for a given truncation order, they present
an equivalent behavior in relation to their finite-sample-size efficiency. Note
that the components of these estimators are linear functionals of the empirical
projections of the data. However, the situation is different for the non-linear
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componentwise Bayesian and classical covariance operator estimators. Although
the asymptotic equivalence of both estimators is theoretically proved under
suitable conditions, their relative efficiency for finite sample sizes, and for a
given truncation order also depends on the rate of convergence to zero of the
eigenvalues of the covariance operator.

In the case of correlated functional data, for example, in the case of obser-
vation of the functional values of an autoregressive Hilbertian process of order
one (ARH(1) process), the problem becomes more complex. In the Bayesian
autocorrelation operator estimation two priors can be considered related to the
Gaussian and Beta families. In the last case, the conjugate Beta prior for the
Gaussian likelihood leads to the definition of two possible Bayes estimators of the
autocorrelation operator. Sufficient conditions can be derived to ensure a better
asymptotic performance of the componentwise Bayesian estimator against the
classical one in both cases. The rate of convergence to zero of the eigenvalues
of the autocorrelation operator also affects the finite-sample size comparison of
these estimators for a given truncation order in the two referred cases. That is, it
affects the rate of decrease of the corresponding integrated (truncated) empirical
mean square errors of the Bayes and classical estimators of the autocorrelation
operator, but this subject will be addressed in a subsequent paper.
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