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Abstract In the framework of the European Hydrological Cycle in the Mediterranean Experiment project,
a field campaign devoted to the study of electrical activity during storms took place in the south of France
in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within
the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just
over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes,
were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz,
of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent
detections from the European Cooperation for Lightning Detection lightning location system were also
used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but
also from the horizontal discharges which occur inside the clouds. The huge amount of observation data
leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of
altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the
source on these distributions is established. The capacity of the acoustic method to describe precisely
the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not
effective, is also highlighted.

1. Introduction

Most of studies about thunder were performed from 1960 to 1985. Thunder can be audible from lightning
flashes at distances less than 25 km [Fleagle, 1949]. Rakov and Uman [2003] summarized the main character-
istics of thunder. The induced pressure variations range from 0.1 to 10 Pa when observed several kilometers
away from the lightning. The pressure wave is generally composed of several pulses, each lasting from 0.2 to
2 s, with a gap of duration 1 to 3 s between them. The overall duration of a single thunder event is several
tens of seconds. The spectral content of thunder is between 10 Hz and 200 Hz [Few, 1969; Holmes et al., 1971].
Holmes et al. [1971] showed that audible signal, with a frequency content from 50 Hz to 200 Hz, is first recorded
and is then followed by pulses of frequencies below 20 Hz. Different physical processes have been proposed
to explain thunder and its spectral content [e.g., Few, 1986]. There is still a debate on the mechanism explain-
ing infrasound from thunder which is beyond the purpose of the present paper; Pasko [2009] reviewed of
the published results on this subject. For the last 20 years, new studies about thunder have been published.
They benefited from the development of lightning location systems based on electromagnetic measurements
since the end of the 1980s. For instance, it was showed [Assink et al., 2008; Farges and Blanc, 2010] that thun-
der can be detected at distances beyond 50 km using an infrasound array and that thunderstorm cells can be
monitored in the vicinity of acoustic stations.

The first characterizations of the geometry of lightning channels were performed during the 1970s–1980s.
They were based on the analysis of thunder records over acoustic arrays. Using a 30 m side network, along
with a cross-correlation technique, Few [1968, 1970] succeeded in reconstructing the geometry of several
flashes. These studies showed that a flash (being either a cloud-to-ground (CG) or an intracloud (IC)) presents
an important horizontal extension (of several tens of kilometers) inside the thunderclouds. Results of acoustic
reconstructions of lightning were compared to photographies of the corresponding events captured by a
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Table 1. Previous Thunderstorm Studies

Authors Acoustic Data

Teer and Few [1974] 17 CG and 20 IC [Arizona storm, also studied in

MacGorman et al. 1981]

MacGorman et al. [1981] statistics on three storms: Arizona (26 + 11 flashes), Colorado

(35 flashes), and Florida (9 flashes)

Arechiga et al. [2011] two triggered lightning flashes

Johnson et al. [2011] at least 24 natural lightning flashes

Qiu et al. [2012] two natural lightning flashes

Bodhika et al. [2013] two natural lightning flashes, no comparison with LMA

Arechiga et al. [2014] two intracloud natural lightning flashes

Anderson et al. [2014] eight natural lightning flashes

camera [Few and Teer, 1974]. The authors found a good agreement between the acoustic reconstructions and
the pictures when the discharge is visible, being outside the storm cloud. When CGs are considered, the visible
vertical extension of the return strokes between the lower part of the thundercloud and the ground is only
about 2 km to 3 km high. Acoustic reconstruction showed that the CG channel is still present inside the cloud
but is invisible for optical devices. This limited the validation tests of any acoustic reconstruction method by
cross comparison to optical observations. The same study [Few and Teer, 1974] evaluated the accuracy of their
reconstruction method. They insisted on the importance of the knowledge of the local wind profile which is
taken into account by a ray tracing propagation program to calculate the 3-D location of the acoustic source.

The significant horizontal extension of flashes was confirmed through statistical studies of reconstructed
acoustic sources by Teer and Few [1974] and MacGorman et al. [1981]. This last work [MacGorman et al., 1981]
showed 3-D maps of acoustic sources from thunder and analyzed the statistical distribution of altitudes of the
reconstructed sources inside thunderclouds. They found that acoustic sources were distributed in either one
or two layers in the thunderstorms they analyzed. To explain this difference with the classical dipolar scheme
inside the thundercloud, different points have to be taken into account as for instance the propagation of the
acoustic wave, the acoustic radiation of the lightning channel, and its radiation pattern.

Presently, the acoustic reconstruction of lightning channels rekindled an interest. Acoustic method results
can be compared to reconstructed geometries of discharges provided by high resolution electromagnetic
detection networks such as a Lightning Mapping Array (LMA, see its description section 2.1). A great challenge
here is to be able to compare the data coming from different technologies because an acoustic source cannot
be necessarily directly associated to a VHF electromagnetic source.

Different authors [Arechiga et al., 2011; Johnson et al., 2011; Qiu et al., 2012; Bodhika et al., 2013] compared the
results of acoustic reconstructions of lightning channels to electromagnetic ones. It is to be noted that all these
papers focused on the comparison of reconstructions from acoustic records and VHF sources detected by a
LMA. Table 1 lists previous published flash studies. Except in Johnson et al. [2011], reconstruction technique
was adapted from the one developed by MacGorman et al. [1981]. Note that Johnson et al. [2011] described
the positions of reconstructed thunder sources through continuous spatial distributions representing the
coherency of the positions. These authors confirmed that the location of acoustic sources corresponded with
the location of VHF sources.

The determination of uncertainties associated to acoustic reconstructions is an active research field: Arechiga
et al. [2014] and Anderson et al. [2014] discussed the impact of meteorological profiles on localization.

The objective of this paper is to investigate acoustic reconstruction of a large number of natural thunder
sources in the frequency range from 1 Hz to 40 Hz, covering both infrasound and low audible spectrum. Data
are obtained from a 2 months observation period in southern France, with special emphasis here on a single
day (26 October 2012). The storm lasted more than 4 h, with significant meteorological changes which made it
impossible to obtain meteorology and especially wind profiles with sufficient precision over the observation
period. Therefore, a very simple assumption of straight-line acoustic propagation is made.

The reconstructions present enough data to establish quantitative statistics of the spatial distribution of
thunder sources, which are compared to those obtained by MacGorman et al. [1981].

GALLIN ET AL. ACOUSTIC CHARACTERIZATION OF LIGHTNING 2
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The field campaign for the study of atmospheric electrical activity, during which natural thunder events were
observed, is detailed along with the instrumentation in section 2. The method for acoustic reconstruction of
natural lightning from thunder records is explained in section 3. Some examples of natural lightning (with
both CGs and ICs), reconstructed by the acoustic method, are then presented in section 4. Since acoustic
reconstruction is performed for more than 50 flashes, a statistical analysis of acoustic thunder sources
localizations is carried out in section 5.

The large impact of propagation distances on the statistical distribution of altitudes of reconstructed acoustic
sources is clearly demonstrated. Finally, the paper outlines the ability of the acoustic method to describe pre-
cisely the lower part of CGs when sufficiently close to the acoustic station. Since a lot of acronyms are used in
the paper, a glossary lists them in Appendix A.

2. Description of the Measurement Campaign

The European HyMeX project [Drobinski et al., 2014; Ducrocq et al., 2014] aims at enhancing the understanding
and the description of the water cycle and its changes in the Mediterranean region. From 2010 to 2020, it
involves both field observation campaigns and numerical simulations from existing meteorological models.
The observational data and the outputs corresponding to the numerical simulations are available online on
the HyMeX database (http://mistrals.sedoo.fr/HyMeX/).

Correlations between lightning activity and precipitation rates during severe weather events being observed
[e.g., Pineda et al., 2007; Dietrich et al., 2011], different research groups provide to the HyMeX community obser-
vations and outputs of numerical models for the electrical atmospheric activity during thunderstorms [Defer
et al., 2015]. Either existing operational instruments or specially deployed ones are used. The main goal is to
characterize the electrical activity in the Mediterranean basin over several years.

A special observation campaign named SOP1 (Special Observation Period 1) took place within HyMeX in
autumn 2012 (from 5 September 2012 to 6 November 2012) in the southeast of France (Figure 1a). The
European Cooperation for Lightning Detection (EUCLID) operational lightning location network [Schulz et al.,
2014a, 2014b] provides detection data in the very low to low electromagnetic frequency range (VLF/LF) up
to 350 kHz. A very high frequency (60 MHz–66 MHz) detection network, or Lightning Mapping Array (LMA),
was installed for the first time in France, as described in section 2.1. It is here referred as “HyLMA.” A micro-
barometer array (MBA) and a microphone array (MPA) were installed in order to record acoustic signatures
associated to lightning flashes. They are described in section 2.2.1. Defer et al. [2015] detail more in depth the
instrumentation deployed for the campaign and the operational status of the different sensors during the
period. They summarize the first insights of the large amount of data recorded and identify the days where
interesting atmospheric events were observed.

2.1. HyLMA Network
The HyMeX Lightning Mapping Array (HyLMA) is a network of 12 antennas designed to record very high fre-
quency electromagnetic impulses (VHF, 60 MHz–66 MHz) generated by discharges inside a thundercloud
[Rison et al., 1999; Krehbiel et al., 2000]. The usual diameter of a deployed array is 60 km. For the one deployed
for the HyMeX-SOP1 campaign, the location of the antennas is given in Figure 1b inside a 100 km side
square zone.

Such a network can map the geometry of lightning channels created by discharges with high spatial and
temporal resolution. The antennas are equipped with GPS modules to guarantee the time reference. For each
antenna, power is supplied by solar panels, which ensures the complete autonomy of each network point.
"Time-of-arrival" technique is used to construct the geometry of the observed lightning discharges from the
records at each antenna. Koshak et al. [2004] and Thomas et al. [2004] present in detail the postprocessing
method used and the performances of the network. The authors show that the time error is about 50 ns. For
sources within the network, the localization error on the altitude varies between 20 m and 30 m and between
6 m and 12 m for horizontal position.

2.2. Acoustic Records
2.2.1. Acoustic Station
An acoustic station was deployed for the SOP1 campaign from 27 August 2012 to 21 November 2012 near
the airfield of Uzès (Gard, France, Figure 1a). It was located inside the HyLMA best resolution coverage zone
(Figure 1b). It was composed of a microbarometer array (MBA) and a microphone array (MPA). The selected
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Figure 1. (a) Location of the HyLMA network and acoustic station in south of France (green rectangle, noted (b)).
(b) Zoom around location of the 11 active HyLMA antennas (LMA antennas: blue diamonds and acoustic sensors: red
triangles) (green rectangle, noted (c)). (c) Zoom on the Commissariat à l’Energie Atomique et aux Energies Alternatives
(CEA) acoustic arrays, dashed lines: MBA, solid lines: MPA.

location corresponds to a flat terrain with a mean altitude of 260 m. Around the acoustic station, the vegeta-
tion efficiently filters the wind-induced noise. Noise due to human activity is limited in the neighboring area
with low traffic from nearby roads and small villages.

The MPA was composed of four microphones, organized as a triangle of 50 m side. The MBA was composed
four MB2005 microbarometers [Ponceau and Bosca, 2009], organized as a triangle of 500 m side centered
around the first one (see Figure 1c). The central microbarometer (MB1) and the central microphone (MP1)
were colocalized. GPS coordinates of each microbarometer and microphone are given in Table 2.

In this paper, only the records from the MPA are considered. Indeed, the MPA dimensions correspond to
wavelengths ranging from infrasounds to low audible contents (see Table 3), it is well adapted to cover
the selected 1 Hz–40 Hz frequency band. The MBA dimensions turn out to be too large to correctly detect
coherent wavefronts of the considered frequency contents. This statement is in agreement with the results
established by Farges and Blanc [2010]. Thus, thunder signatures recorded with the MBA are not explored in
this paper.

The microphones used are the MCB2006. A simplified “rosette pipe filter” [Hedlin et al., 2003; Alcoverro and
Le Pichon, 2005; Walker and Hedlin, 2009] was used to reduce local noise over a microphone. The accessible
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Table 2. GPS Coordinates of the MBA Sensors and the MPA Sensors

Point Longitude Latitude

MB1 4∘ 23’ 54.6”E 44∘ 4’ 55.5”N

MB2 4∘ 23’ 44.2”E 44∘ 5’ 01.3”N

MB3 4∘ 24’ 06.7”E 44∘ 4’ 59.3”N

MB4 4∘ 23’ 54.6”E 44∘ 4’ 46.4”N

MP1 4∘ 23’ 54.7”E 44∘ 4’ 55.6”N

MP2 4∘ 23’ 53.5”E 44∘ 4’ 56.0”N

MP3 4∘ 23’ 55.9”E 44∘ 4’ 55.8”N

MP4 4∘ 23’ 54.4”E 44∘ 4’ 54.5”N

frequency range of the microphone is from 10−1 Hz to 104 Hz in laboratory measurements. During the SOP1,
the sampling frequency was 500 Hz. Each measurement point was independent and was equipped with a
GPS module to insure absolute dating. The digitizing and the storage of the data were done locally. Each
measurement point of the array was powered from seven batteries.

Figure 2 shows the power spectral density of background noise for the four MPA measurement points. It clearly
shows microphones resonance between 20 and 150 Hz. In the field, a protection against humidity led to the
appearance of a broadband resonance from 80 Hz to 120 Hz with a maximum around 100 Hz. There also exist
very narrow peaks at 25, 40, 50, and 70 Hz. We thus choose here to work on a limited frequency band from 1 Hz
to 40 Hz. This choice enables the study of both near infrasounds and low audible frequencies. The lower limit
of 1 Hz filters out the effect of the swell from the Atlantic, and the upper limit avoids most of the resonances
from the measurement system.
2.2.2. Data Processing
The acoustic records are processed by the automatic progressive multichannel cross-correlation (PMCC) algo-
rithm [Cansi, 1995; Brachet et al., 2009]. It was initially developed to automatically detect seismic events. Cansi
and Le Pichon [2009] recall that when the wavelengths of the signals recorded by each point of an acoustic
array are approximately equal to the size of the array, the latter is referred as being a miniarray. In this case,
waveforms are expected to remain highly coherent while traveling across the array. Advantage can then be
taken from this to compute differences between times of arrival over pairs of sensors with signal processing
techniques based on the maximum of cross correlation. An overview of the postprocessing method can be
found in supporting information and the detailed algorithm is described by Caljé [2005]. In practice the com-
putation is done on small sliding time windows and by frequency bands. This defines an ensemble of time
frequency two-dimensional boxes. The duration of time windows is adapted to the corresponding frequency
band. For the present study, the chosen settings are presented in Table 4. The overlapping of the sliding
time windows was chosen equal to 50% for all frequency bands. Coherent transient signals over the array are

Table 3. Top: Infrasonic Frequencies Associated to Characteristics Lengths
(Side Length and Center-Apex Distance) of the MPA and the MBAa

MPA MBA

Side 50 m 500 m

Characteristic frequency 6.8 Hz 0.68 Hz

Center to apex distance 28 m 288 m

Characteristic frequency 12 Hz 1.2 Hz

Wind reducing pipe filter associated to each sensor

Shape four straight pipes four Y-shaped pipes

Length of pipes 40 cm 1 m each branch

Induced resonance frequency 200 Hz 30 Hz

Resonance amplitude +35 dB +14.5 dB
aFor a given length, the frequency is established by dividing the ground

sound speed c0 by this length. Bottom: wind pipe filters characteristics.
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Figure 2. Power spectral density of the background noise recorded during the night on the 26 October 2012 by the four
microphones of the MPA. The time duration is of 300 s (5 min).

searched in each of these two-dimensional boxes. When a box contains a coherent detection, the algorithm
outputs its time and frequency limits [Le Pichon et al., 2010], the azimuth and horizontal trace velocity of the
signal, the root-mean-square amplitude of the detection, its consistency and at last its correlation.

2.3. Comparison of HyLMA and Acoustic Detections
During the 2 months observation period, systematic exploration of EUCLID observations showed that several
thunderstorms passed just over the station. The selected thunderstorms have to be close enough to the
MPA to optimize the observation conditions. Farges and Blanc [2010] showed that for acoustic sources farther
than 50 km, the acoustic detectability turns out to be very weak. Furthermore, stormy days which were not
too active have to be selected. Indeed, a flash with a horizontal extension of 20 km would correspond to an
acoustic time delay at the receiving array of about 58 s (assuming c0=340 m/s). This means that successive
flashes from which thunder signatures are recorded at the station must be separated from one another by at
least 1 min, so that different acoustic signatures do not overlap.

Figure 3 presents EUCLID observations up to 100 km around the acoustic station for 3 days during SOP1. On
24 September 2012, a very active storm moving from northwest to southeast, occurred from 0 UTC to 10 UTC
(13070 EUCLID observations). It moved toward the acoustic station from 0 UTC to 2 UTC. From 2 UTC to 6 UTC,
the storm was less than 20 km away from MPA. From 6 UTC to 10 UTC, the storm moved away eastward.
This day was studied by Defer et al. [2015] and some acoustic data were briefly analyzed. Electrical activity
from a weaker daily lightning rate on 25 September 2012 (790 EUCLID observations, from 9 UTC to 17 UTC) is
presented in Figure 3b. This event could have been selected for a detailed study, but it encompasses a narrow
range of azimuths (from southwest to northeast, Figure 3b). This case would prevent investigating acoustic
signals coming from a wide set of azimuths. The 26 October 2012 case was selected for thorough study in this

Table 4. PMCC Settings, Lengths of the Time Windows, and
Boundaries of the Frequency Bands

Time Windows, Length (s) Frequency Bands (Hz)

5.0 1–4.9

4.5556 4.9–8.8

4.1111 8.8–12.7

3.6667 12.7–16.6

3.2222 16.6–20.5

2.7778 20.5–24.4

2.3333 24.4–28.3

1.8889 28.3–32.2

1.4444 32.2–36.1

1.0 36.1–40

GALLIN ET AL. ACOUSTIC CHARACTERIZATION OF LIGHTNING 6
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Figure 3. Location of the EUCLID observations around the acoustic station. The colorbar represents the hour of the day (UTC) in a time window framing the
storm. (a) 24 September 2012, (b) 25 September 2012, and (c) 26 October 2012.

paper because this thunderstorm was close to the acoustic station (less than 20 km, Figure 3c) from 18 UTC
to 22 UTC. It was moderately active (1634 observations from EUCLID) and covered all the azimuths relative to
the MPA during this time period.

Along with the constructed set of acoustic detections from thunder waveforms, the electromagnetic detec-
tions of discharges are available both from the HyLMA and EUCLID networks. The assumption is made that
the detected lightning flashes represent possible acoustic sources. A simple hypothesis of homogeneous
propagation directly from these potential sources toward the MPA is then introduced. The homogeneous
speed of sound is considered to be the ground effective sound speed c0=340 m/s at the station (see
section B). This value is deduced from the analysis of temperature profiles around the acoustic station given
by the reanalysis of weather simulations computed by the AROME-WMED software (AROME West-
MEDiterranean region) [Fourrié et al., 2015]. It is a version of the operational weather forecast model AROME
from Météo-France [Seity et al., 2011], specifically adapted for HyMeX. Farges and Blanc [2010] showed that a

Figure 4. Exploratory views (left) from 20:10 UTC to 20:20 UTC and (right) from 20:30 UTC to 20:40 UTC. In red, acoustic (e.g., PMCC) detections. In gray, HyLMA
detections integrated in intervals of 5 s, 10∘ in azimuth, and 3∘ in elevation angle. Blue symbols: EUCLID observations (triangle symbol: negative CG, cross:
positive CG, diamond: negative IC, and star: positive IC). (a, e) Straight distance D between HyLMA detections and the MPA center. Each segment is the extension
(in distance from the MPA) of a discharge, the most remote parts of the discharge arriving the last at the station. (b, f ) Azimuths of the HyLMA, the acoustic, and
the EUCLID observations. (c, g) Elevation angles of the HyLMA and the acoustic detections. (d, h) Acoustic signal recorded at the central microphone (MP1).

GALLIN ET AL. ACOUSTIC CHARACTERIZATION OF LIGHTNING 7
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wind at ground level which is too strong affects the acoustic detectability (see Figure 13 of their paper). As it

will be shown, comparisons with flashes mapped by the HyLMA showed our acoustic reconstructions were

reasonably consistent with them, but we hope later to explore the effects of the wind around the station more

thoroughly. Following this, the spatial coordinates of electromagnetic detections are expressed in Cartesian

coordinates relative to the center of the acoustic station. Their azimuths are then computed. Since EUCLID

observations do not have any notion of altitude, elevation angles of the sources at the acoustic station are

computed for the HyLMA records only. Considering that electromagnetic detections are potential acoustical

sources, presumed time of arrival at the center of the acoustic station are established using the times of the

electromagnetic detections, the straight distances from the sources to the MPA and the sound speed value at

ground level c0.

Using the time at the acoustic station as a common reference axis, HyLMA, EUCLID, and acoustic detections are

plotted. Figure 4 shows an example of a such comparison for 26 October 2012 around 20 UTC. From 20:10 UTC

to 20:20 UTC, Figure 4b shows two flashes were produced south of the MPA and five flashes northwest of the

MPA. The electromagnetic sources of these seven flashes are less than 40 km away from the MPA (Figure 4a).

It is noted that for these events, the agreement between the azimuths of the electromagnetic detections and

the ones from MPA is excellent, similar to the agreement obtained in Farges and Blanc [2010]. Each gray region

corresponds to one or more EUCLID observations. Four other flashes were in the northeast azimuth, and one

was in the north azimuth. They are more distant (more than 40 km) and PMCC is not able to detect any acoustic

signal from these flashes (Figure 4a).

The elevation angles at the acoustic station of the HyLMA detections and the acoustic ones are plotted in

Figure 4c. The agreement on the elevation angles is good between HyLMA and PMCC detections. Since the

five HyLMA flashes at the northwest of the MPA and the two HyLMA flashes at the south of the MPA are about

20 km in distance, the elevation angles are small (between 5∘ and 30∘). In this plot, the two flashes arriving

at the acoustic station between the times 200 s and 240 s (Figure 4c) are not differentiable from one another

since they correspond to the same acoustic times. For the five most remote flashes, the elevation angles of

the corresponding HyLMA detections are close to the horizon (between 0∘ and 10∘) and the acoustic signal is

very weak (Figure 4d).

From 20:30 UTC to 20:40 UTC, the storm is just over the acoustic station (Figure 4e). A group of 14 flashes

is produced at less than 30 km away from the MPA. They are in the south azimuth and extend to the north

passing through the east (Figure 4f ). The HyLMA sources which are above the MPA present elevation angles

varying up to 90∘. Elevation angles for acoustic detections cover a smaller range (from 5∘ to 70∘). PMCC detects

few sources on the horizon and none at the vertical of the MPA. For elevation angles between 10∘ and 70∘,

the agreement between the HyLMA detections and the acoustic ones is excellent (Figure 4g). Finally, the

acoustic signal shows nine distinct impulsive signals (Figure 4h). This is less than the 14 flashes detected by

the HyLMA because acoustic signals emitted by these flashes can arrive at the same times on the acoustic

station and thus can superimpose. Among the signals from different superposing sources, PMCC constructs

detections only for the strongest and most coherent ones. This explains and justifies why we choose moder-

ately active thunderstorm to validate our method, so that there is reduced masking effect of one lightning

flash by another.

From this study, it is demonstrated and validated (against comparison to HyLMA detections) that the MPA

along with PMCC used as postprocessing can follow wide variations of elevation angles, up to about 70∘,

although there is no acoustic detection below 5∘.

Using these systematic exploration graphics such as Figure 4, plotted for the whole thunderstorm duration

from 18:00 UTC to 22:00 UTC, a set of 56 flashes detected by all three instruments (HyLMA, EUCLID, and MPA)

was selected during 26 October 2012. For these 56 events the correlation between the HyLMA and acoustic

detections is visually excellent in azimuth and time (in the MPA reference). Misfits for the elevation angles of

the acoustic detections can be present. The determination of elevation angles is more sensitive to errors as

the angle becomes small. Propagation effects, especially those due to wind shear, can be also large at small

elevation angles.

GALLIN ET AL. ACOUSTIC CHARACTERIZATION OF LIGHTNING 8
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Figure 5. Absolute error (in degrees) between reconstructed and true elevation angles, versus true angle (in degrees),
for a horizontal trace velocity overestimated (solid line) or underestimated (dashed line) by 1%. Overestimating
(resp. underestimating) horizontal trace velocity is equivalent to underestimate (resp. overestimate) local sound speed.

3. Acoustic Reconstruction of Lightning Flashes

The flashes detected by the HyLMA network can be considered to be produced instantaneously compared
to the characteristic acoustic propagation times. For one flash, characteristic durations of thunder records
are typically about 1 min long (see Figures 4d and 4h). These long duration signals recorded at the MPA are
due to the important spatial extension of the flashes (approximately 20 km horizontally and about 5 km to
8 km vertically), with the farthest sources contributing to the tail of the acoustic signal. The electromagnetic
detection of the flash is chosen as the time of the event. More precisely, we chose here as time origin the time
(noted tLMA0

) of the first electromagnetic detection for a given flash. As the lightning rate is relatively low for
the selected thunderstorm, there is no ambiguity in identifying all HyLMA sources that belong to a given flash.
The elapsed time from the HyLMA detection to the time the corresponding acoustic detection was found by
PMCC (denoted tPMCC) determines both the propagation time Δt and the straight-line distance DS from the
source S of the acoustic signal to the station.

Δt = tPMCC − tLMA0

DS = c0 Δt.
(1)

If a direct propagation is assumed, the azimuth 𝜃 of the PMCC detection (see equation (8) in the supporting
information) is the azimuth 𝜃S of the source S. The elevation angle 𝜙S of the source is calculated using the
following equation:

cos𝜙S =
c0

Vh
, (2)

where Vh is referred as being the apparent horizontal velocity or horizontal trace velocity.

Having obtained the value DS and knowing 𝜃S and 𝜙S, one can construct the Cartesian coordinates XS, YS, ZS

of the acoustic source S relatively to the acoustic station:

⎧
⎪
⎨
⎪
⎩

XS = c0 Δt cos𝜙S sin 𝜃S

YS = c0 Δt cos𝜙S cos 𝜃S

ZS = c0 Δt sin𝜙S.

(3)

The elevation angle 𝜙S is very sensitive to errors or uncertainties for low-elevation angles as the horizontal
trace velocity gets close to sound speed. This is illustrated by Figure 5 showing the absolute error between the
reconstructed and the true elevation angle. For establishing the plot, a ±1% error is assumed in equation (2),
either for the measured horizontal trace velocity Vh or for the measured sound speed c0, relative to true val-
ues. For true elevation angles above 20∘, the error remains small, less than 2∘. However, for smaller angles, this
error sharply increases up to several degrees. In case of underestimated horizontal trace velocity or overesti-
mated sound speed, the reconstruction process breaks down for true angles below approximately 8∘, as the
erroneous ratio c0∕Vh then gets larger than one. In case of overestimated horizontal trace velocity or under-
estimated sound speed, the reconstruction process cannot predict angles below approximately 8∘. This value
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Figure 6. Acoustic reconstruction of the flash occurred on 26 October 2012 at 20:35:00 UTC. Grey dots: HyLMA detections, red squares: reconstructed acoustic
detections, and blue symbols: EUCLID strokes from raw detections (with same symbols as in Figure 4). (a) Locations of HyLMA detections, EUCLID observations,
and reconstructed MPA detections in longitude-altitude plane. (b) In longitude-latitude plane (MPA is at the origin). (c) In altitude-latitude plane. (d) Altitude of
HyLMA and MPA detections versus time. (e) Azimuth of HyLMA, EUCLID, and MPA detections versus time. (f ) Elevation angles of the HyLMA and MPA detections
versus time. (g) Spectrogram of thunder signature at MP1. (h) Corresponding thunder signature at MP1 versus time.

of 8∘ is of course increasing with error made on measuring c0 or Vh. This may explain, why, as noticed before
when examining (Figure 4g), very few acoustic signals gave elevation angles lower than 10∘, while many more
HyLMA detections were found with those elevation angles.

The direct propagation model neglects the variations of the effective speed of the sound (the combination
of the sound speed and the wind velocity) with the altitude. On the contrary, a ray tracing approach takes
into account simultaneously the variations of sound speed and of wind velocity with altitude. The trajec-
tories of the retropropagated acoustic rays would then expected to be more precise than those calculated
with a direct reconstruction. Note however that ray theory is a high-frequency approximation whose applica-
tion at low frequencies is questionable. For the frequency bandwidth (1–100 Hz) and the propagation range
(a few kilometers) over the ground here considered for thunder, numerical comparison between ray theory
and simulations of nonlinear wave theory [Gallin et al., 2014, see their Figure 12] showed a good agreement for
highest frequencies (50 or 100 Hz), while the typical features of ray theory such as formation of shadow zones
or waveguides get largely blurred at lower frequencies (10 Hz). Moreover, ray tracing requires an accurate
description of the meteorological profiles at the time when thunder is recorded by MPA. For this campaign,
we benefited from meteorological profiles provided by the AROME-WMED software (sound speed and wind
over and around the MPA) with a spatial resolution of 2.5km × 2.5km horizontally and from ground level to
16 km in altitude using isobaric pressure levels (resolution of 50 hPa near the ground) and a temporal resolu-
tion of 1 h. As shown in the Appendix B, acoustic reconstruction has also been carried out using the ray tracing
method. Results show that for sources nearby the MPA (distant from less than 10 km), the ray tracing approach
does not provide any significant enhancement in terms of source localization compared to direct propaga-
tion assumption. For more distant sources (from 10 km to 30 km), a significant number of rays turn out to
be strongly deviated upward. Also numerous sources are localized by ray tracing erroneously at ground level
because of waveguide formation, while they would be expected within the thundercloud. This inadequacy
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of ray theory in the present thunder study is likely due to two possible reasons: (1) errors in the temperature
and wind along the ray path and (2) the acoustic frequency being too low to be treated well by ray tracing.
Especially, the temporal variations of the meteorological profiles are likely to be locally significant over times
scales much shorter than 1 h in case of stormy weather. Consequently, we decided to rely the present study
on the direct reconstruction method, which turns out here more robust than the ray tracing one. The need for
robustness is crucial in the frame of this paper because our main purpose is to establish statistics on acoustic
reconstruction of lightning flashes compared to HyLMA reconstruction.

4. Observations and Case Study Analysis
4.1. Lightning Flashes Close to the Acoustic Station
To illustrate and validate the reconstruction method of natural lightning flashes, several case studies are pre-
sented. In Figure 6, a CG flash with one positive ground stroke and three negative ground strokes was recorded
at 20:35:00 UTC near the MPA (see Table 5). According to HyLMA records, the flash lasted for 500 ms and the
ground strokes occurred during the first 50 ms of the flash. Altitude of the VHF HyLMA sources did not exceed
6 km. The flash was distributed along the north-south direction. The connections to the ground are only 2 km
away from the station.

The 3-D positions of the reconstructed acoustic points show that PMCC correctly detected the upper positive
channels of the flash that were recorded during the second part of the flash life. It appears (Figures 6a and 6b)
that the acoustic method followed very precisely the tilted path of the return strokes from a low altitude of
500 m up to 5 km into the cloud. Note that this is not the case for the HyLMA below 2 km altitude, for which
very few detections are reconstructed. This point will be discussed further in section 5.2. There is an excellent
agreement between the position of the return stroke located by the acoustic method and the localizations of
EUCLID observations.

The MPA was not able to detect the horizontal layer at an altitude about 2 km: it has been masked by the detec-
tion of the more intense acoustic signal from the return stroke itself which arrives at the same acoustic times.
In contrast the acoustic method has correctly detected the horizontal part of the flash which extends toward
the south direction over a distance of 20 km, at an altitude of about 5 km (Figure 6b). Using the acoustic time
as x axis, the stacked plots in Figures 6d–6f show the altitude of the HyLMA detections and the reconstructed
acoustic detections. The flash occurred at 20:35:00 UTC and lasted less than 1 s, but the corresponding acoustic
signal is much longer with a duration of about 1 min.

In Figures 6d and 6f, it is clearly shown that the acoustic signal from 5 s to 15 s is associated with the vertical
part of the flash (assumed to be due to different return strokes). This corresponds to the burst in the thunder
waveform in Figure 6h. The starting of this burst (at time 5 s) corresponds to the time of arrival of an acous-
tic content which is likely to have been emitted by the strokes detected by EUCLID (Figure 6e). During the
time interval 5 s to 15 s, the acoustic method clearly followed the corresponding rapid increase of the eleva-
tion angles from about 15∘ up to 70∘. Then, from 15 s to the end of the acoustic signal, the elevation angle
decreases slowly as the flash extends horizontally from the acoustic station, in the south azimuth (Figure 6e).
The acoustic waveform associated to the return strokes contains consecutive broadband acoustic pulses that
cover the whole frequency band from infrasounds to audible frequencies with uniform energy (Figure 6g).

The return strokes being close to the MPA, propagation effects are negligible (this argument is illustrated by
Figure B2 of Appendix B). It is thus concluded that the return strokes emit an important infrasonic contents
below 20 Hz which has been recorded at the station. The spectrogram also shows that the return stroke is
associated to the most intense part of the measured acoustical signal. From 15 s to 25 s, the spectral content is
still broadband but with a smaller energy (about 60 dB less). Then from 25 s, the frequencies are driven toward
infrasonic content below 20 Hz with a decreasing energy as the flash goes away from the MPA.

A second flash occurred at 20:35:58 UTC. It is a bilevel intracloud flash (see Table 5). Since it occurred less than
1 min after the flash described previously, the meteorological conditions remained the same. Figure 7 shows
that the flash is organized in two horizontal layers (around altitudes 3 km and 8 km), linked by two vertical
channels (visible in Figure 7a).

Analysis of the HyLMA records suggests that the studied flash looked like a regular bilevel normal polar-
ity IC flash until the low-level positive reached the area of the second vertical channel where a new bilevel
normal polarity IC flash was initiated and propagated at both levels with horizontal extensions up to 20 km.
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Table 5. First Six Columns: Data From Raw EUCLID Detections for the Presented Flashes (26 October 2012)a

Time (UTC) Lat (deg) Lon (deg) C (kA) Type E (km) X (km) Y (km) 𝜃 (deg) Dh (km)

20:35:00.07 44.066 4.426 18.5 CG 0.3 2.237 −1.742 127.9 2.836

20:35:00.07 44.070 4.420 −127.6 CG 0.2 1.725 −1.342 127.9 2.186

20:35:00.10 44.073 4.420 −29.5 CG 0.2 1.765 −0.953 118.4 2.006

20:35:00.13 44.070 4.421 −13.2 CG 0.2 1.845 −1.264 124.4 2.237

20:35:58.85 44.132 4.385 9.9 IC 0.89 −1.037 5.640 349.5 5.732

20:42:45.56 44.072 4.438 −12.9 IC 2.09 3.203 −1.041 108.0 3.368

20:42:45.57 44.068 4.441 −67.4 CG 0.2 3.467 −1.553 114.1 3.799

20:42:45.59 44.082 4.418 −13.5 CG 0.2 1.589 0.025 89.1 1.588

20:42:45.66 44.052 4.427 −11.1 CG 0.2 2.317 −3.288 144.8 4.024

20:42:45.73 44.088 4.412 −14.5 CG 0.2 1.086 0.670 58.3 1.273

20:49:03.34 44.163 4.409 −44.3 CG 0.2 0.845 9.020 5.3 9.057

20:49:03.53 44.065 4.368 −15.2 CG 0.3 −2.388 −1.887 231.6 3.046

21:16:54.17 44.238 4.644 −32.2 CG 0.4 19.573 17.367 48.4 26.165

21:16:54.17 44.231 4.657 −161.1 CG 0.2 20.659 16.614 51.1 26.508

21:16:54.21 44.250 4.631 −13.0 CG 0.2 18.566 18.698 44.7 26.347

21:16:54.62 44.254 4.579 −17.4 CG 0.2 14.415 19.233 36.8 24.032

21:16:54.72 44.175 4.372 10.7 IC 3.20 −2.073 10.366 348.6 10.569

21:24:01.93 43.596 4.968 −11.4 IC 1.1 45.885 −53.790 139.5 70.703

21:24:01.93 43.599 4.972 −131.6 CG 0.2 46.189 −53.510 139.2 70.689

21:24:01.97 43.625 4.981 −17.4 CG 0.2 46.941 −50.613 137.1 69.032
aThe abbreviations “lat” and “lon” stand for “latitude” and “longitude,” respectively. Variable C designates the peak

current. The column named “type” differentiates cloud-to-ground strokes (letters “CG”) from intracloud ones (letters “IC”).
The variable “E” is the error associated to the detection. Last four columns: locations of EUCLID detections relatively to the
MPA center. Column labeled X : Cartesian coordinates of the detection relatively to the MPA, in the west to east direction.
Column Y : Cartesian coordinates of the detection relatively to the MPA, in the south to north direction. Column 𝜃: azimuth
of the detection. Column Dh : distance of the detection to the MPA center.

The acoustic method correctly detected the channels inside the cloud. In particular numerous acoustic detec-
tions are associated to the vertical elements of the flash. The two horizontal layers have also been detected
acoustically but with less detections. The flash covered all the region above the acoustic station: all the
azimuths were swept. The two horizontal layers of the flash are shown in Figures 7d and 7f. The HyLMA points
are organized in the acoustic time as two layers. It is noted that the MPA cannot detect acoustic sources in
both levels at the same time. Acoustic detections alternate between the upper or the lower layer of the flash.
Since the acoustic sources associated to each of the two layers of discharges arrive at the same times on the
acoustic network, they superpose in the recorded signal, but one dominates the MPA analysis. The end of the
burst is of extremely low amplitude. Nonetheless, PMCC is able to extract coherent acoustic detections from
the background noise. The availability of the HyLMA points clearly validates acoustic detections as being asso-
ciated to the part of the flash which is the most distant relative to the MPA. The burst in the thunder signal
from 10 s to 12 s (Figure 7h), corresponds to the observation by EUCLID of a positive IC (Figure 7e) in azimuth
350∘ at 11 s. The spectrogram (Figure 7g) is of much lower amplitude than in the previous case (30 dB less), but
the signal still appears to be broadband, especially between the times 5 s to 20 s. The most energetic spectral
peak is located in the infrasounds (below 10 Hz) at times between 8 s and 12 s. It corresponds to the time of
the EUCLID intracloud flash detection (see the abscissa of the star symbol in Figure 7e).

Figure 8 is a synthetic view of the two presented flashes, where each reconstructed acoustic detection is
colored by its acoustic amplitude and its time which are PMCC results. It is clear that the multiple acoustic
detections, which are of large amplitude up to few tenths of Pascals (Figure 8a), correspond to vertically ori-
ented discharges, probably due to return strokes. The acoustic signal emitted by most distant parts of the flash
arrives at the end of the burst (Figure 8b). Its amplitude is very weak (few hundredths of Pascals, Figure 8a).
For the case of the IC, the acoustic detection is of weaker amplitude (Figure 8c).
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Figure 7. Acoustic reconstruction of the flash occurred on 26 October 2012 at 20:35:58 UTC. Same legend as in Figure 6.

4.2. Tracking Storm Cells
Figure 9 shows several synthetic views of the HyLMA, the EUCLID, and the MPA detections for different time
windows of 10 min duration during the storm. The active cells were passing above the station, moving from
southwest toward northeast. A cell was present in the northeast azimuth from the MPA, at about 25 km in
horizontal distance (Figure 9a), and acoustic detections are correctly associated to it. Then this cell moved
away in the same direction (Figures 9b–9d) but it was not detected acoustically anymore. In Figure 9d, again
the effect of masking by acoustic sources very close from the MPA explains this fact. But this interpretation
does not hold for the case presented in Figure 9b. On the contrary, a distant cell (between 50 km and 75 km

Figure 8. (a, b) Flash occurred on 26 October 2012 at 20:35:00 UTC in projection in the longitude-altitude plane. (b, d) flash occurred on 26 October 2012 at
20:35:58 UTC in projection in the latitude-altitude plane. Each reconstructed acoustic detection is colored with: amplitude (a, c) and elapsed time (b, d)
of the detection.
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Figure 9. For six windows of 10 min duration during the thunderstorm from 18 UTC to 22 UTC, on the 26 October 2012: map of the HyLMA detections
(gray regions) with the EUCLID observations (blue dots) and the reconstructed acoustic detections (red dots).

from the MPA, Figures 9e and 9f) was appearing in the southeast of the MPA at the end of the storm (around
21:30 UTC). Clearly it was acoustically detected (Figure 9f ).

5. Statistics on the HyLMA and MPA Detections
5.1. Statistics on the Azimuths and the Horizontal Distances
The 56 selected flashes present enough data to establish statistical comparisons between HyLMA spatial
points and reconstructed MPA detections. This comparison is illustrated in Figure 10.

At the end of the thunderstorm (from 21:30 UTC), a very active storm cell was building up at the southeast
of the MPA (azimuth 135∘) further than 50 km. The corresponding HyLMA detections are visible in Figure 10a
through the highly populated bins between 105∘ and 150∘ and in Figure 10b between 50 km and 80 km. Due
to the distance effect, few flashes in this active cell were detected by the MPA. Figures 10c and 10e prove
that all the azimuths were swept by the flashes and all the azimuths were correctly detected by the MPA (as
already pointed out before but on selected reconstruction cases). The shapes of the two distributions are very
similar, with approximately equal proportions for the populations of the bins. This illustrates the fact that the
efficiency of the acoustic method was uniform over the directions. One can conclude that when wind shears
do not cancel the detectability, the wind direction does not modify strongly the acoustic reconstruction over
the azimuths.
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Figure 10. Global statistics from 18:00 UTC to 22:00 UTC, on 26 October 2012. Grey: HyLMA detections. Red: acoustic
detections. (a, b) HyLMA detections for the complete ensemble of flashes detected by the HyLMA. (c, d) HyLMA
detections associated with the 56 flashes which were detected by the acoustic method. (e, f ) Reconstructed
MPA detections associated to the 56 selected flashes. (a, c, and e) Distribution of azimuths around the MPA. (b, d, and f )
distribution of horizontal distances from the MPA.

Figures 10d and 10f present histograms of the statistical distributions of the detections from the HyLMA and
the MPA, when horizontal distances to the MPA are considered. For the flashes of less than 25 km distant from
the MPA, the global shapes of the two distributions and the proportions of the populations in the bins are
similar. Further than 25 km, the number of MPA detections falls below 3% (Figure 10f ) and the bins proportions
do not correspond anymore to those from the HyLMA distribution (Figure 10d). Nonetheless, for the flashes
distant from 60 km to 80 km, there are some acoustic detections (less than 1%) which were correctly localized
in horizontal distance.

5.2. Statistics on the Altitudes of the HyLMA and MPA Detections
Figure 11 shows the statistical distributions of the altitudes from the HyLMA detections, compared to the
distribution of the reconstructed altitudes of the acoustic detections. Figures 11a and 11b compare the dis-
tributions from the complete set of HyLMA detections with the HyLMA detections from the selected flashes.
These two distributions are clearly the same. The usual two layers of electrical activity [Riousset et al., 2007] are

Figure 11. Global statistics from 18:00 UTC to 22:00 UTC, on 26 October 2012. Grey: HyLMA detections. Red: acoustic
detections. Distributions of the altitudes of the detections, (a) HyLMA detections for the complete ensemble of flashes
detected by the HyLMA. (b) HyLMA detections associated with the 56 flashes which were detected by the acoustic
method. (c) Statistics for the reconstructed acoustic detections associated to the 56 selected flashes.
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Figure 12. Global statistics from 18:00 UTC to 22:00 UTC, on 26 October 2012. Altitude of detections for different ranges
of horizontal distance from MPA center. Grey: HyLMA detections for the 56 selected flashes. Red: corresponding
reconstructed acoustic detections. (a) Range 0 km to 10 km. (b) Range 10 km to 20 km. (c) Range 20 km to 30 km.

visible, at about, respectively, 4 km and 9 km altitude. The distribution for reconstructed MPA detections is in
Figure 11c. The shape of the distribution seems to be unimodal with a peak around 4 km, but a smaller peak
could be present and partially masked at an altitude of 9 km. This distribution built from acoustic detections
clearly differs from the ones from the HyLMA.

Figures 12a–12d are the distributions of altitudes from HyLMA and MPA detections, computed for different
horizontal distance ranges from the MPA. In Figure 12a the distance range is from 0 km to up 10 km. In this case
the acoustic method is able to detect two layers of discharges that are also described by the HyLMA. Indeed,
the former is able to both resolve the layered intracloud activity and to clearly describe the lower part of the
cloud-to-ground return strokes. The bins proportions between HyLMA and MPA detections are approximately
the same, with neither having detections above 11 km.
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When more distant sources are analyzed (Figures 12b and 12c), the acoustic method is not able anymore to
differentiate the two layers of electrical activity. But these two layers are still present as showed by the HyLMA
distribution. In this case of two layered lightning, the shape of the acoustic distribution is due to the acoustic
detection method itself, which was affected by biases such as propagation effects.

The number of acoustic detections is 2031 for the ranges (0 km–10 km) with a density of 6.4 detections
per square kilometer. It is maximal for the ranges (10 km–20 km) with a similar density (5873 detections,
6.2 detections per square kilometer). Then it falls off for greater distances (1960 detections for the ranges
(20 km–30 km), 1.2 detections per square kilometer).

Propagation effects can have strong impact on the detectability. One effect, which does not depend on
azimuth, is that the typical decrease in temperature with height causes acoustic rays to curve upward
[Fleagle, 1949], so rays from channel segments at low-elevation angles curve upward over the observer.
A second effect depends on wind shear; it depends on azimuth relative to the wind and can have a much
greater effect than the effect of the temperature gradient—it can be large enough to prevent one from hear-
ing thunder from a flash only a few kilometers away. The attenuation by the atmosphere also affects the
thunder that is heard. It tends to be greater for higher frequencies, thereby contributing to the decrease in
amplitude and peak frequency of thunder signals. The authors’ choice of an operating frequency range in the
infrasonic to the lower part of the audible spectrum mitigates this effect of attenuation by the atmosphere
itself. It can be concluded that the efficiency of the acoustic method is the highest for distances smaller than
20 km.

To our knowledge only MacGorman et al. [1981] presented such statistical study of reconstructed altitudes
from acoustic detection of lightning. Figures 6 and 11 of their paper present a vertical distribution similar to
the one presented in Figure 11c. MacGorman et al. [1981] also present Figures 7 and 13 where the distribution
of altitudes appears to contain two peaks. At last, Figure 14 from their paper is based on data from another
storm and also contains two peaks. The authors discussed that the challenge of explaining such differences
between explored cases would be a difficult question. Electromagnetic localization tools like the HyLMA or
EUCLID were not accessible at this time to MacGorman et al. [1981]. Therefore, they could not compare their
results with data obtained from electromagnetic methods. Based on the compared electromagnetic-acoustic
distributions from the present paper, one would be tempted to interpret that flashes reconstructed by
MacGorman et al. [1981] from acoustic records presented a classic two-layer structure: the number of peaks
in the distributions of altitudes being due to acoustic propagation (either using direct or ray tracing propaga-
tion, see the synthetic statistical distribution in Figure B4). Although being compatible with our observations,
this explanation is debatable on several points. Data from Teer and Few [1974] show that the flashes studied
by MacGorman et al. [1981] were comparably close to the microphone array, so the effect of propagation does
not seem to explain simply the differences in vertical distribution of acoustic sources. Bruning et al. [2007]
show a storm in which the vertical distribution of sources from an LMA has a single lower peak during part of
its lifetime. At last histograms presented by MacGorman et al. [1981] are not sorted by horizontal distances,
comparison of both studies is thus difficult. In our opinion it remains risky to compare and explain differences
between our statistical studies and the ones from MacGorman et al. [1981].

The presented study will have to be performed on other cases selected in the 3 months observation period,
to find out if the observed statistical distributions are general or were only specific to the studied case. This
would allow one to explore storm to storm and time to time variations in the statistical distributions. More
deeply, variations in the property lightning mapping systems detect (radar, acoustic, infrasound, VHF and VLF
radiations, etc.) can affect the vertical distribution a system sees (e.g., the comparison of radar and acoustic
detections by Holmes et al. in the late 1970s or early 1980s). So the fundamental challenge is in determining
how the measured vertical distribution of lightning depends on the characteristics of the storm itself (the
ultimate goal) and how it is affected by the system being used to measure it.

5.3. Acoustic Description of the Lower Parts of the CG Flashes
It is pointed out that a lot of acoustic detections are reconstructed below 2 km in altitude (Figure 12a). But this
is not the case for the HyLMA detections as already noted in section 4.1: there are very few HyLMA detections
below 1 km altitude (Figures 11a, 11b, and 12a–12d). In this section the attention is focused on the ability of
the acoustic method to describe lower parts of CGs near the MPA, below 2 km height. For these altitudes, the
performance of the HyLMA strongly decreases.
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Figure 13. Comparison of the detection capabilities of the HyLMA (gray points) and the reconstructed acoustic sources
(red squares) for lower altitudes (under 5 km height). The blue symbols are the EUCLID observations (same symbols as in
Figure 4). Each line: cases of the CGs which occurred at 20:35:00 UTC, 20:42:45 UTC, and 20:49:02 UTC. The MPA is at the
origin. (left column) Projections in the west to east direction. (right column) Projections in the south to north direction.

An LMA needs line of sight to the source of the VHF radiation in order to be able to locate it. Because of the
mountainous terrain of the HyMeX area, the lower parts of the CG channels were not seen by the required
minimum of six HyLMA stations to be located. This is why the HyLMA did not locate the near-ground channels,
while the MPA was able to locate them. Figure 13 illustrates this with the case of three flashes where CGs were
present within 10 km from the station. The characteristics of the associated EUCLID observations are in Table 5.

The case of the flash of 20:35:00 UTC has already been presented. Here the zoom on the lower altitudes clearly
shows that the acoustic method was able to correctly detect the parts of the return strokes below 1 km. There
are few HyLMA detections for these altitudes, they are much more diffuse and they are not clearly associated
to the EUCLID observations (contrary to the acoustic detections).

For the flash which occurred at 20:42:45, the south to north projection shows that the acoustic detections fol-
lowed the part of the discharge from 5 km altitude to 1 km (it appears vertical in this projection). The acoustic
method did not describe the lower horizontal layer around 2 km altitude, but no thunder was detected from
much of the horizontal structure around 2 km altitude, possibly because the amplitude of thunder from that
horizontal structure was less than the amplitude from more vertical channels. On the west to east view, the
lightning channel was tilted. The acoustic detections are distributed over the EUCLID ones.
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Figure 14. Among the 56 flashes which were detected both by the HyLMA and the acoustic network, 50 of them
present at least one EUCLID observation with connection to the ground. (left) Distribution between 0 km and 2 km in
altitude of the HyLMA detections associated for these 50 CGs. (right) Altitudes of the reconstructed acoustic detections
for these same 50 CGs.

At last, the example of the flash of 20:49:02 shows that the acoustic detections are separated into two groups,
each one being associated to an EUCLID negative CG. There is no MPA nor HyLMA detection below 500 m
altitude. The parts of the return strokes below 500 m are about 2 km and 10 km from the MPA; thus, (following
Fleagle [1949] results) the associated acoustic sources are likely to be in the shadow zone.

Figure 14 presents a global statistic for the altitudes below 2 km, for the 50 reconstructed lightning flashes
which presented at least one connection to the ground. The ratio of detections is about 3.5 (2408 HyLMA
detections against 681 MPA detections). It is clear that the detection capabilities of the HyLMA decreases
exponentially as the altitude decreases. There are less than 2% of HyLMA detections below 1 km height.
On the contrary, the number of acoustic detections decreases approximately linearly as the altitude goes
down. The complementarity of an acoustic detection system along with an electromagnetic one, especially
to reconstruct lower parts of nearby CGs below 2 km height, is thus demonstrated.

6. Conclusions

This article investigates the acoustical detection and reconstruction of natural lighting, using a 2 months long
recording period by an acoustic station of four microphones (MPA) located in south of France during fall 2012.
This observation program took place within the European project HyMeX. Given the large number of record-
ings, the study permits a statistical analysis beyond the reconstruction of individual flashes. The acoustical
analysis is compared to very high frequency electromagnetic detection by a Lighting Mapping Array (HyLMA)
of 12 antennas installed during the same period of time. These data are supplemented by those from the
low-frequency lightning location system EUCLID. Our study focused on a storm that passed over the acoustic
station at 18:00–22:00 UTC on 26 October 2012. This storm was chosen because it produced a sufficient num-
ber of flashes distributed at all azimuths from the acoustic station but had a small enough flash rate that the
thunder produced by sequential flashes did not usually overlap. The postprocessing of acoustical data in the
frequency range 1 to 40 Hz using PMCC turned out successfully, even though PMCC is most routinely used for
lower frequency, infrasonic signals. Using (1) the azimuth and elevation from which an acoustic signal arrived
at the MPA, (2) the time of propagation given by the difference between the time a flash was detected by
the HyLMA and the time the acoustic signal arrived at the MPA, (3) a simple assumption of acoustic propaga-
tion in straight line with uniform speed of sound of 340 m/s; tridimensional geometrical reconstructions of
56 lightning discharges were carried out.

The correlation between acoustic and electromagnetic HyLMA reconstructions turns out very satisfactory in
azimuth, elevation angle, and horizontal distance for discharges less than 25 km away from the acoustic sta-
tion. For larger distances, the acoustic array can detect some of the remote flashes, up to 75 km in this study.
The correlations between acoustic and electromagnetic data show that the number of acoustic detections
and the resolution of the acoustic reconstructions deteriorate as the distance from the MPA increases, still
with good correlation in azimuth and horizontal distances.

GALLIN ET AL. ACOUSTIC CHARACTERIZATION OF LIGHTNING 19



Journal of Geophysical Research: Atmospheres 10.1002/2015JD023745

For lightning strokes at less than 10 km away from the MPA, there is a good agreement for the altitude between
reconstructed acoustic sources and HyLMA ones. At such small distances, the acoustic method has been
shown to be able to differentiate the two levels of discharges inside the clouds, in addition to cloud-to-ground
strokes (CGs). It seems that MPA was more sensitive to vertical IC discharges. Note, however, that if acoustic
signals from two sources arrive at the MPA at the same time, only the source of the most intense signal can be
reconstructed (if a source can be determined at all), and this can create gaps in the reconstructed lightning
structure. For more remote lightning flashes, altitudes of the reconstructed acoustic sources are overestimated
as the distance increases.

Moreover, the ability of the acoustic method to describe in detail the lower part of nearby CGs, below 2 km
altitude is demonstrated, while HyLMA is not efficient under these conditions. The ground connection of the
acoustically reconstructed channels matches very well with the localization of EUCLID observations.

For nearby flashes, the use of meteorological profiles therefore does not appear necessary to correctly recon-
struct the geometries of the discharges. For more distant flashes, influence of meteorological situation (wind
and temperature gradient) on the performances of the altitude localization process remains to be further
investigated in a statistical way. Characterization of lightning as acoustical sources in terms of frequency,
pressure amplitude, and energy will also be further explored using the present HyMeX data.

Appendix A: Naming and Plotting Conventions

A1. List of Acronyms Used in the Paper
AROME: operational weather forecast model from Météo-France [Seity et al., 2011].
AROME-WMED: AROME West-MEDiterranean region [Fourrié et al., 2015], version of AROME specifically
adapted for HyMeX.
CG: cloud-to-ground discharge.
EUCLID: European Cooperation for Lightning Detection [Schulz et al., 2014a, 2014b]. Operational lightning
location network providing detection data in the very low to low electromagnetic frequency range up to
350 kHz.
HyMeX: Hydrological Cycle in the Mediterranean Experiment [Drobinski et al., 2014]. European project
aiming at enhancing the understanding and description of the water cycle and its variabilities in the
Mediterranean region.
HyLMA: HyMeX Lightning Mapping Array installed for the SOP1 campaign. See section 2.1 and Figure 1.
IC: intracloud discharge.
LMA: Lightning Mapping Array, very high frequency (60 MHz–66 MHz) lightning detection network.
MBA: microbarometer array. Four microbarometers organized as a triangle of 500 m side. See section 2.1 and
Figure 1.
MPA: microphone array. Four microphones organized as a triangle of 50 m side centered around the MPA.
See section 2.1 and Figure 1.
SOP1: Special Observation Period 1. Observation campaign that took place within HyMeX in autumn 2012
(from September 5 2012 to November 6 2012) in the southeast of France.

A2. List of Symbols Used in the Figures
Acoustic detections: represented with red square symbols.
EUCLID detections: presented with the following blue symbols, triangle symbol: negative CG, cross: positive
CG, diamond: negative IC, star: positive IC.
HyLMA detections: plotted using circles filled with grey.

Appendix B: Reconstruction of Lightning Flashes With a Ray Tracing Method

We use in this paper a direct reconstruction method. Each acoustic source, detected by PMCC, has its time of
occurrence, tPMCC, azimuth 𝜃S, and elevation angle 𝜙S (via the trace velocity measurement). We calculate the
time of propagation Δt as the difference of tPMCC and the time of the first discharge of a flash measured by
HyLMA. In this appendix, we reconstruct the localization of the acoustic sources using a ray tracing method.
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Figure B1. Outputs of the AROME-WMED software for 26 October 2012 at 20:00 UTC. Profiles of the effective sound
speed seen by a wavefront propagating from a source at different azimuths and distances from the MPA toward the MPA.
The profiles over the station are presented on the right column.
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Figure B2. Acoustic reconstruction of the flash occurred the 26 October 2012 at 20:35:00 UTC. Comparison between
(a–c) reconstruction with direct propagation and (d–f ) reconstruction with ray tracing through AROME-WMED meteo
profile (with temperature and wind). (a, d) Locations of HyLMA detections, EUCLID observations, and reconstructed MPA
detections in longitude-altitude plane. (b, e) In longitude-latitude plane (MPA is at the origin). (c, f ) In altitude-
latitude plane.

The inputs of this calculation are the parameters of each acoustic source Δt, 𝜃S, and 𝜙S (the same used in
the direct propagation method) and the meteorological profiles which are the outputs of the AROME-WMED
software (Figure B1).

But in severe weather environments with strong updrafts, downdrafts, and outflow boundaries, vertical wind
and temperature profiles cannot be typically obtained with enough spatial or temporal resolution to initial-
ize ray tracing computations. In addition, recent measurements of the wind during a thunderstorm, using
Doppler sounder [Thobois and Soderholm, 2015], showed spatial and temporal structures which are absolutely
not resolved by the AROME-WMED software. Figures B2 and B3 show the acoustic reconstruction for two
flashes which occurred on 26 October 2012 at 20:35:00 UTC and 21:16:54 UTC using ray tracing method and
direct propagation method. One can see that when the flash is close to MPA (about 2 km for the return strokes

Figure B3. Acoustic reconstruction of the flashes occurred on 26 October 2012 at 21:16:54 UTC. Comparison between
(a–c) reconstruction with direct propagation and (d–f ) reconstruction with ray tracing through AROME-WMED meteo
profile (with temperature and wind). Same legend as in Figure B2.
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Figure B4. Global statistics from 18:00 UTC to 22:00 UTC, on 26 October 2012. (left column) HyLMA detections. (middle column) Acoustic detections
reconstructed with direct propagation (corresponding to Figure 12). (right column) Acoustic detections reconstructed using ray tracing with wind and
temperature gradients. (a) Range 0 km to 10 km. (b) Range 10 km to 20 km. (c) Range 20 km to 30 km.

at 20:35:00 UTC, see Table 5), results from the two reconstruction methods are quite close. But, when the flash
is farther (about 26 km for the return strokes at 21:16:54 UTC, see Table 5), one can see that numerous acoustic
sources coming northward are located at ground level with the ray tracing method, while they are reason-
ably localized in the thundercloud by the direct propagation method. The presence of a small wave guide
observed in that direction below 2 km height (Figure B1, lower right plot) could be the reason of this bad result
from the ray tracing method. Figure B4 (third column) shows the distributions of altitudes from the 56 MPA
detections, computed for different horizontal distance ranges from the MPA using the ray tracing method. By
comparison with the Figure 12 (that corresponds to Figure B4 (second column)) which was obtained using
the direct propagation method, one can see that for distances lower than 10 km, both distributions are quite
close. This comparison for distributions of altitudes of acoustic discharges for lightning flashes located from
10 km to 20 km (Figure B4b) or from 20 km to 30 km (Figure B4c) let appear a large proportion of acoustic
sources at ground level for the ray tracing method which are absolutely not present in Figures 12b and 12c.
For distances from 20 km to 30 km, the distribution peak for the statistics from ray tracing is shifted toward
higher altitudes and is broadened when compared to the distribution from straight-line reconstruction.
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