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ORIGINAL ARTICLE

Complex temporal climate signals drive the emergence of
human water-borne disease

Aaron Morris1,2, Rodolphe E Gozlan1,3, Hossein Hassani1, Demetra Andreou1, Pierre Couppié4

and Jean-François Guégan2

Predominantly occurring in developing parts of the world, Buruli ulcer is a severely disabling mycobacterium infection which often

leads to extensive necrosis of the skin. While the exact route of transmission remains uncertain, like many tropical diseases,

associations with climate have been previously observed and could help identify the causative agent’s ecological niche. In this paper,

links between changes in rainfall and outbreaks of Buruli ulcer in French Guiana, an ultraperipheral European territory in the northeast

of South America, were identified using a combination of statistical tests based on singular spectrum analysis, empirical mode

decomposition and cross-wavelet coherence analysis. From this, it was possible to postulate for the first time that outbreaks of Buruli

ulcer can be triggered by combinations of rainfall patterns occurring on a long (i.e., several years) and short (i.e., seasonal) temporal

scale, in addition to stochastic events driven by the El Niño-Southern Oscillation that may disrupt or interact with these patterns.

Long-term forecasting of rainfall trends further suggests the possibility of an upcoming outbreak of Buruli ulcer in French Guiana.
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INTRODUCTION

The identification of cohering patterns between climate and infectious

disease using time series analysis is an important component in under-

standing the ecological niche of disease causing agents and in predict-

ing future outbreaks. Such correlations can occur with both local and

large-scale climatic oscillations.1–9 The mechanisms behind these rela-

tionships often vary and have been attributed both to the direct and

indirect effects of changing climate, notably for vector-borne and

reservoir-borne diseases for which a component of their life-cycle

may be highly sensitive to any rainfall or temperature variation. For

example, decreases in precipitation can create pools of stagnant water

which are breeding grounds for vectors,4,10 flooding may cause con-

tamination of surface water and wells through overflow of sewage

systems and the failure of septic tanks,11 or the loss of crops or water

supplies may cause habitual changes or immunological deterioration

in the population.12 A key problem with time series analysis in long-

term datasets is the separation of signals and stochastic noise. Noise

can hide cohering patterns, while within a series, there may be a num-

ber of competing signals of varying strength. For example, rainfall

measures over time have a number of seasonal changes; over a long

period, an ecological process such as disease outbreaks may only be

linked to changes in one of these components.

Buruli ulcer (BU) is an emerging human skin disease caused by the

mycobacterium Mycobacterium ulcerans. Related to high-profile infec-

tions tuberculosis and leprosy, prevalence has been increasing in cer-

tain developing parts of the world and in some areas, it is more

common than its aforementioned relations.13 Despite this, knowledge

of the infection remains limited. Typically found in moist, tropical

areas, the disease can have a devastating impact on its host, causing

extensive necrosis of the skin and underlying tissue, often leading to

permanent disability if left untreated.14,15 While the route of infection

remains unclear, the bacillus is strongly associated with aquatic envir-

onments and incidences of the disease are significantly higher on

floodplains, or where people come into continual contact with rivers,

ponds, swamps and lakes.16–18 In addition, DNA and cultures of the

mycobacterium have been found on, or within numerous aquatic

species.13,19–22 This relationship with aquatic systems makes it an

interesting candidate to look for coherent patterns with envir-

onmental parameters like rainfall and changes in large climatic drivers

such as the El Niño-Southern Oscillation (ENSO).

MATERIALS AND METHODS

Environmental and disease data

The only accurate long-term (decadal) dataset for cases of BU is from

French Guiana in South America, with records going back to 1969.

French Guiana also has a well-recorded history of rainfall during this

period making it highly suitable for this study. French Guiana is a

French ultraperipheral territory bordering the countries of Brazil to

the east and south and Suriname to the west. Although large at

83 534 km2, the population density is very low with almost all inha-

bitants located in a thin strip along the coastline. The rest of the

country is predominantly pristine primary tropical rain forest and

1Bournemouth University, Dorset BH12 5BB, UK; 2UMR MIVEGEC, IRD-CNRS-Universités de Montpellier 1 et 2, Centre IRD de Montpellier, 34394 Montpellier cedex 5, France;
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contains the 33 900 km2 Guiana Amazonian national park, as well as a

wealth of important ecosystems ranging from marshland to coastal

mangroves. The numbers of BU cases were obtained from Cayenne

Central hospital records dating back to 1969 till 2012, with identifica-

tion based on a combination of histopathological, microbiological,

clinical and genetic analysis. This dataset is the most accurate long-

term data on BU to our knowledge, which can be used for coherence

with climatic factors. A potential issue with lesion causing diseases is

the variation in time between appearance of symptoms and seeking of

medical attention, reflected in lesion size. As French Guiana is part of

the European Union and is a low-population French territory, case

reporting and assessment of lesions incurred a minimal delay; active

surveillance of the disease was being undertaken with health-care pro-

fessionals who are trained to recognize BU being present in all towns

and villages. Disease cases are distributed across the territory in line

with the distribution of the population and are present almost ubiqui-

tously where there are people. Rainfall data were obtained from Météo-

France and were recorded as the average rainfall in millimeters per

month from 17 weather stations (Figure 1) across the populated coastal

area of the territory from 1969 to 2012. Due to the restricted range of

inhabited areas, a small human population and therefore, a relatively

low number of cases in each locality, an average rainfall reading from

the stations along the coastal area was taken and compared to data on

all BU cases across French Guiana. ENSO data for the period were

taken from the American National Climatic Data Center and measured

as the sea surface temperature (SST) of the equatorial Pacific Ocean.

Ethical provisions

Written consent for participation to the study was obtained from

patients in all instances. BU cases received treatment appropriately

according to the French laws in public health, which are also under

application in this territory. The study protocol was authorized by

Cayenne General Hospital authorities according to French ethical

rules. The database was declared to the Commission National

Informatique et Libertés (CNIL NO 3X#02254258) following French

law requirements. The database did not include names or any variable

that could allow the identification of patients.

Singular spectrum analysis (SSA) decomposition and

reconstruction

Since the introduction of SSA by Broomhead and King,23,24 it has been

applied successfully to several economic, financial and industrial time

series 25–27 and has also been used previously in the analysis of coher-

ence between disease and climate.1,6–8,28 Consider the real-valued

non-zero time series YT5(c1, c2, ..., cT) of sufficient length T. The

main purpose of SSA is to decompose the original series into a sum

of series, so that each component in this sum can be identified as either

a trend, periodic or quasiperiodic component (perhaps, amplitude-

modulated), or noise. This is followed by a reconstruction of the

original series. Each corresponding stage involves two primary steps,

for decomposition; embedding and singular value decomposition and

for reconstruction; grouping and reconstruction. For a detailed

description of each stage, see Golyandina et al (2001).29 In short,

decomposition breaks the time series down into its constituent com-

ponents (in this instance, repeating seasonal and long-term patterns in

rainfall). Once isolated, it is possible to identify stochastic noise within

the leftover signal and remove it before reconstructing a new noise-

free time series.

Each seasonal component of the time series was first identified using

periodograms, graphical representations of the distribution of power

(or variance) among different frequencies. Independence of each sea-

sonal component was also tested. The main concept in studying SSA

component properties is ‘separability’, which characterizes how well

different components can be separated from each other. SSA decom-

position of the series YT can only be successful if the resulting additive

components of the series are approximately separable. A natural mea-

sure of dependence between two time series YT
(1) and YT

(2) is the

weighted correlation or ‘v-correlation’.29 To identify correlations

between all the components within the time series, a v-correlation

matrix was created. This shows the v-correlation for the components
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Figure 1 Map of French Guiana showing the location of 17 weather stations along the coast of French Guiana and the position of French Guiana within South America.
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in a 20-grade gray scale from white to black corresponding to the

absolute values of correlations from 0 to 1 (with 0 being no correlation

and 1 being absolute correlation).

The series was further analyzed using sequential SSA, which refers to

an analysis of the residuals.25 As a result of sequential SSA, it is possible

to identify signal components which were incorrectly classified as

noise through the earlier decomposition and then combine them

together in order to build a signal which is shown as total rainfall

residual. It is then possible to include the total signal extracted from

the residuals in to the earlier reconstruction and use the post-sequen-

tial SSA reconstruction for forecasting new data points.

Empirical mode decomposition (EMD)

To explore relationships between seasonal components of the rainfall

time series and any corresponding seasonal changes in BU, repeating

intra- and inter-annual patterns in BU incidence were extracted using

EMD. EMD is a technique developed specifically to decompose non-

stationary and nonlinear time series and has been successfully applied to

a number of climatic and epidemiological datasets.1,30 The method is an

iterative process which builds a number of oscillatory signals called

intrinsic mode functions (IMFs), which are repeatedly subtracted from

the time series; each iteration results in an IMF with a longer periodic

component until just a trend signal is present. For a detailed description

of EMD, see Huang et al.31 A periodogram was created for each IMF to

assess the frequency of the repeating pattern through time.

Trend coherence analysis

To identify the relationship between the rainfall trend obtained via

SSA, SST and the number of human BU cases in French Guiana,

continuous wavelet transforms were used. Wavelets have been utilized

previously in various branches of ecological theory32–36 and to identify

relationships between disease and long-term climatic patterns.37 They

have the benefit of being unaffected by non-stationary time series,

which are often found in ecology.35 Cross-wavelet coherence analysis

was performed using the biwavelet R package 38 with the Morlet

mother wavelet and 2000 Monte Carlo randomizations. In order to

further characterize the association between the time series, phase

analysis was also undertaken to identify the phasing difference

between the two, for example, whether one precedes the other,39 this

is indicated by arrows on the wavelet plots. To further assess the

statistical significance of the patterns exhibited by the wavelet

approach, null models were tested. To create time series for the null

models, bootstrapping was used to construct from the observed time

series, control datasets, which share properties of the original series

under the following null hypothesis: the variability of the observed

time series or the association between two time series is not different to

that expected from outbreaks independent of the rainfall trend.

Seasonal coherence analysis

To identify correlations between seasonal components of the rainfall

time series extracted via SSA, SST and seasonal changes in BU cases

represented by the extracted IMF signals, cross-correlation functions

were used.40 These measure the similarity between two oscillating time

series as a function of a time lag applied to one of them and can be used

with stationary time series (i.e., series which statistical properties

including mean, variance and autocorrelation are consistent over time).

RESULTS

Singular spectrum analysis

Periodograms of the raw rainfall time series (Figure 2A) identified

seasonal components which oscillated yearly for 4-, 6- and 12-month

periods (repeating patterns occurring, tri-annually, bi-annually and once
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Figure 2 Monthly time series data showing the decomposition, reconstruction and forecasting of datapoints using SSA. (A) Original rainfall time series average for 17

weather stations along the coast of French Guiana, from 1969 to 2012. (B) Periodograms of the rainfall time series identifying significant repeating patterns once per

year, twice per year and three times per year. SSA extracted component corresponding to periodogram spike of (C) three times per year, 4-month component, (D) twice

per year, 6-month component and (E) once per year, 12-month component. (F) The extracted rainfall trend. (G) The reconstructed rainfall time series after the removal

of stochastic noise. (H) A second periodogram of the reconstructed rainfall series showing less stochastic noise around the three main repeating patterns. (I)

Forecasting of the rainfall trend to 2017 using sequential SSA.
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per year, Figure 2B) the signals of each repeating oscillation were isolated

along with the long-term trend of rainfall (Figures 2C–2F). Remaining

data were considered noise and the components were reconstructed into

a noise-free signal (Figure 2G), a second periodogram of the new recon-

structed signal shows the repeating patterns are intact, while stochastic

noise has been removed (Figure 2H). Figure 2I shows the resulting

output of forecasting from sequential SSA, with rainfall beginning to

decline as French Guiana enters a trough of dryer years after several years

of high rainfall. The 4-month component corresponds to two rainy

seasons, one long rainy season and one short, and also to the main

dry season from August to December (Figure 3A). The 6-month bi-

annual component corresponds to the two rainy seasons and is a

reflection of the strength of these two seasons (Figure 3B), while the

12-month component shows the overall rainfall level for the year

(Figure 3C). Separability of these components was confirmed with a

v-correlation matrix showing that these seasonal components did not

show high levels of correlation with other components (Figure 4).

Empirical mode decomposition

Seven IMF series were produced by EMD of repeating patterns from the

BU case data (Figures 5A–5H); periodograms of these show that the first

IMF has high levels of variation across the spectrum and therefore, is

likely noise, the second is a bi-yearly repeating pattern and the third is a

measure of cases per year, the fourth over 2 years and the fifth over 4

years. Subsequent IMF series are long-term trends (Figures 5I–5O).

Trend coherence analysis

During the period 1969–2012, the series was dominated by four inter-

annual peaks in rainfall followed by three inter-annual periods of reces-

sions, with three corresponding peaks and recessions of BU disease

cases. The results of the wavelet coherence analyses showed a statistically

significant correlation between the two time series for 1979–2000, with

cohering peaks and troughs over periods of approximately 8 years

(Figure 6A). Phase analysis, indicated by the arrows pointing down-

wards suggests a preceding relationship of rainfall change occurring

before BU cases. In essence, after a peak in rainfall, during a dry period,

the number of BU cases increases. Null models showed no significant

relationships between rainfall and disease cases. The analysis between

cases and SST showed less coherence; however, there were two short

periods during the mid-1970s and early 1990s which weakly corre-

sponded (Figure 6B).

Seasonal coherence analysis

Cross-correlation functions between the IMF signals representing intra-

and inter-annual patterns in BU cases (first, second, third, fourth and

fifth IMFs) and both SST and the reconstructed rainfall pattern from

SSA analysis showed a number of corresponding signatures.

SST did not correlate with the SSA derived rainfall series

(Figure 7A), but did corresponded with rainfall before SSA was

applied (Figure 7B), suggesting that SST spikes cause higher levels of

unpredictable rainfall anomalies, which during SSA analysis were clas-

sified as ‘noise’ or stochastic events. SST also corresponded with the

first IMF of BU cases (Figure 7C), which was similarly classified as

noise. This may mean that SST creates rainfall anomalies, which cause

high levels of BU but do not follow any set seasonal or long-term

patterns (i.e., random one off events). SST fluctuations further

matched with inter-annual variation of BU cases with long lag periods,

suggesting that the total number of cases over these periods is increased

by the influence of SST-driven anomalies (Figures 7D–7G). In par-

ticular the fourth IMF, where a below average SST (La Niña) value
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produces a higher than average level of BU cases over 2 years after a lag

time of approximately 18 months (Figure 7F). Conversely, a peak in

SST (El Niño) creates a decline in the 4-year oscillation of BU cases

(Figure 7G).

The reconstructed rainfall series has a corresponding relationship

with both the second and third IMF (Figures 7I and 7J), suggesting

that an above average level of precipitation contributes to an above

average spike in bi-annual BU cases, and also the overall yearly number

of cases. By looking at the SSA-derived components of rainfall against

the IMF signatures of BU, it is possible to identify the exact rainfall

components which are driving these spikes. The SSA-derived 4-month

component correlated with no IMF signatures (Figures 8A–8C).

Figures 8D–8F show the correlations of the first, second and third

IMF signatures with the SSA-derived 6-month component (i.e., the

strength of both the two wet seasons); a significant correlation is

identified with the bi-annual BU cases (second IMF) with an approx-

imate 5-month lag; therefore, because of the average reported incuba-

tion periods of 3–5 months41 and the lag time of several weeks before

diagnosis, the two spikes in cases per year are most likely to be driven

by the strength of the two spikes in rainfall per year rather than the two

dry seasons. The 12-month component which is a measure of the total

rainfall per year did not correlate with any seasonal IMF signatures

(Figures 8G and 8H), but as expected correlated with the overall level

of BU per year (Figure 8I).

DISCUSSION

The identification of more than one temporal correlation between

rainfall and BU disease, in addition to wet weather anomalies outside

of usual seasonal peaks in rainfall being driven by SST, highlights the

complexity of using environmental changes in predicting disease out-

breaks. The stochastic SST-driven incidences and the influence of

long-term rainfall in addition to seasonal drivers is a first for BU in

the world. While a similar long- and short-term climatic pattern has

already been linked to cholera outbreaks,28,42 the results of this paper

show that such patterns are likely to be more spread among aquatic

infectious pathogens such as with M. ulcerans and that SST relation-

ships may be driving stochastic cases.

While further study will be required to fully understand what niche

M. ulcerans occupies within French Guiana, in this paper, the iden-

tification of a relationship with rainfall provides important testable

insights into its disease ecology. It also exemplifies the importance of

using long-term datasets when trying to establish relationships

between the environment and infectious disease, and the use of tech-

niques such as wavelets, SSA and EMD to look deeper into time series.

By removing noise and decomposing the time series using SSA, it

was possible to look at the influence of each individual seasonal pat-

tern on BU and to identify a cause of important rainfall anomalies,

which occur outside the regular seasonal patterns. By further extract-

ing a long-term trend and relating this to cases, the effects of several

components of rainfall become apparent, something which would

perhaps be lost without decomposition.

During the analysis, EMD had some advantages and disadvantages

over SSA, which makes it suitable for differing time series, dependent

on the application. In this instance, the ability to successfully identify

noise and a seasonal component, in addition to a hierarchy of increas-

ing long-term periodic components in disease cases, was beneficial,

particularly when linking disease patterns to SST. SSA, however, pro-

vided a more accurate separation of seasonal components within the

rainfall data.

The increasing use of wavelets32–35,37 is an important development

for time series analysis in epidemiology; previously in this field, non-

stationarity presented a serious problem for relating ecological, epi-

demiological and climatic datasets.43–45 Wavelets provide the advantage

of being localized in both time and frequency, whereas the standard

Fourier transform, traditionally used in time series analysis, is only

localized in frequency,35 which, although useful for identifying con-

stant periodic components, is not able to account for changes in fre-

quency over time.

The results of the relationship between SST and BU cases broadly

agrees with similar observations in Australia where it was found that

periods of wet weather approximately 16–17 months prior to an out-

break, followed by a period of dry weather for 5 months to be the most

suitable for BU emergence.46 The results presented here suggest that

outbreaks of BU over a long period (at least 2 years, as represented by

the fourth IMF), correspond with a decline in SST (i.e., a La Niña

event) 17 months prior, while the opposite is true for El Niño, with the

effect causing a below average decrease in BU cases over the preceding

4 years. A La Niña event in the north of South America corresponds to

a marked increase in wet weather anomalies (as corroborated by the

significant cross-correlation function between the pre-SSA rainfall

and SST), while El-Niño signals an increase in dryer weather. As

SST also correlates with high rainfall events and BU cases classified

as stochastic, it is possible that SST driven rainfall anomalies create

random outbreaks in BU, independent of the usual seasonal cycles

over a 2-year period.

The long-term and seasonal relationships between rainfall and

cases, i.e., the long-term peaks in BU driven by a recession in rainfall

over several years, and the bi-annual peaks in cases driven by spikes in

F20

F19

F18

F17

F16

F15

F14

F13

F12

F11

F10

F9

F8

F7

F6

F5

F4

F3

F2

F1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17F18 F19 F20

Figure 4 v-correlation matrix, the F values represent oscillating components

within a year (i.e. F6 is the 6-month bi-annual component). The level of correla-

tion can be found by finding the component of interest along the X-axis and

looking up the Y-axis to see where it corresponds with other rainfall components.

Large values of v-correlation between reconstructed components indicate that

they should possibly be gathered into one group and correspond to the same

component in SSA decomposition. The matrix uses a 20-grade gray scale from

white to black corresponding to the absolute values of correlations from 0 to 1

(with 0 being no correlation and 1 being absolute correlation).

Complex climate signals drive water-borne disease
A Morris et al

5

Emerging Microbes and Infections



4
8

16
P

er
io

d 
of

 c
oh

er
en

ce
 (m

on
th

)

P
er

io
d 

of
 c

oh
er

en
ce

 (m
on

th
)

32
64

12
8

A B

19751970 1980 1985 1990 1995
Time (year)

2000 2005 2010 1970 1975 1980 1985 1990 1995
Time (year)

2000 2005 2010

0.2

0.4

0.6

0.8

4
8

16
32

64
12

8

C
oherence

Figure 6 Wavelet coherence between (A) Buruli ulcer incidences per 100 000 people and the rainfall trend obtained from SSA. (B) Buruli ulcer incidences per 100 000

people and ENSO. The colors are coded from dark blue to dark red with dark blue representing low coherence through to high coherence with dark red. The solid black

lines around areas of red show the a55% significance levels computed based on 2000 Monte Carlo randomizations. The dotted white lines represent the cone of

influence; outside this area, coherence is not considered as it may be influenced by edge effects. The black arrows represent the phase analysis and adhere to the

following pattern: arrows pointing to the right mean that rainfall and cases are in phase, arrows pointing to the left mean that they are in antiphase, arrows pointing up

mean that cases lead rainfall and arrows pointing down mean that rainfall leads cases.

5
4

3
2

1
0

1970 1980 1990 2000 2010

Time (year)

1970 1980 1990 2000 2010

Time (year)

1970 1980 1990 2000 2010

Time (year)

1970 1980 1990 2000 2010 0 1 2 3 4 5 6

Time (year) Oscillations per year
bandwidth=0.0706

0 1 2 3 4 5 6

Oscillations per year
bandwidth=0.111

0 1 2 3 4 5 6

Oscillations per year
bandwidth=0.111

0 1 2 3 4 5 6

Oscillations per year
bandwidth=0.111

0 1 2 3 4 5 6

Oscillations per year
bandwidth=0.111

0 1 2 3 4 5 6

Oscillations per year
bandwidth=0.111

0 1 2 3 4 5 6

Oscillations per year
bandwidth=0.111

1970 1980 1990 2000 2010

Time (year)

1970 1980 1990 2000 2010

Time (year)

1970 1980 1990 2000 2010

Time (year)

1970 1980 1990 2000 2010

Time (year)

0.
2

0.
0

-0
.2

-0
.4

0.
06

0.
05

0.
04

0.
03

0.
02

0.
01

0.
00

B
ur

ul
i u

lc
er

 c
as

es
 p

er
 1

00
 0

00
 p

eo
pl

e
IM

F5

IM
F1

IM
F6

S
pe

ct
ru

m

S
pe

ct
ru

m

S
pe

ct
ru

m

S
pe

ct
ru

m
S

pe
ct

ru
m

S
pe

ct
ru

m

0.
02

0
0.

01
5

0.
01

0
0.

00
5

0.
00

0

2
1

0
-1

-2
0.

4
0.

2
0.

0
-0

.2
0.

08
0.

06
0.

04
0.

02
0.

00
-0

.4

IM
F7

IM
F2

IM
F3

IM
F4

1.
0

0.
5

0.
0

-0
.5

0.
04

0.
03

0.
02

0.
01

0.
00

0.
10

0.
08

0.
06

0.
04

0.
02

0.
00

0.
5

0.
0

-0
.5

-1
.0

0.
12

0.
10

0.
08

0.
06

0.
04

0.
02

0.
10

0.
08

0.
06

0.
04

0.
02

0.
00

-0
.3

-0
.2

-0
.1

-1
0

1
2

0.
0

0.
1

0.
2

0.
3

S
pe

ct
ru

m

A B C D E

J

ON

IH

ML

GF

K
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the two rainy seasons, could be explained in several ways. While the

limited knowledge of BU disease transmission makes it only possible

to speculate, the analysis does present an opportunity to shed further

light on the ecological niche occupied by M. ulcerans and its envir-

onmental heterogeneity in space and time. Long periods of wet

weather followed by a decrease in rainfall may increase the number

of stagnant water bodies and swampland, flowing rivers may recede

into a series of isolated pools,47 while newly formed channels and

wetlands will be cut off. This could spark an outbreak of disease vec-

tors, host carriers and other aquatic species that have been identified to
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have a relationship with BU and which thrive in these condi-

tions,19,22,48–50 or beneficially change the aquatic community struc-

ture. A second hypothesis, which assumes that the disease agent does

not necessarily require a true symbiotic relationship, would be that the

initial rainfall washes the agent into new territory, and once estab-

lished, the dry weather will again increase the number of preferential

water bodies, thereby increasing the number of cases. Both events have

the potential to cooccur over a long and short period of time and could

potentially be working at differing spatial scales, driven by either long-

or short-term rainfall patterns. Previous studies have shown how

community assemblages and system dynamics can be significantly

altered over varying periods of time at sites with differing sizes, hydro-

logies and landscape parameters.18,51–55 The majority of the BU cases

occur when both the long- and short-term temporal changes coincide,

suggesting weather conducive to providing an increase in infectious

habitats or human contact with these habitats during such a period.

Using the argument that the disease agent is most abundant in stag-

nant water, it is possible to hypothesize that large bodies of water

created after several years of high rainfall may recede slowly, stagnate

and undergo significant changes in biotic community over several dry

years. Nested within this period, high peaks in rainy seasons as sug-

gested by an increase in the biannual component, or SST-driven rain-

fall anomalies, will cause these stagnating areas to swell, potentially

flooding or seeping onto pathways where human contact is increased.

In addition, periods of high rainfall during periods of long-term dryer

climates could also be conducive to the occurrence of potential inver-

tebrate vectors. Previous work on mosquito populations, for example,

which have been linked to BU,48 shows that they are at their highest

during periods of high short-term climatic variability, cited as the

amount of short-term fluctuations around a mean climate state on a

fine time scale.3,56–58 This may add weight to the idea of mosquito-

based vectors, although it is possible that several less studied aquatic

species exhibit similar responses. It must also be considered that the

relationship could be influenced more by human behavior, for

example, dryer years will often induce an increase in recreational use

of local water bodies, notably for fishing and hunting.

The results of the forecasting are of potential importance in pre-

dicting future disease emergence. The most recent highest rainfall in

French Guiana has occurred in 2009 and it is being followed by a 5-

year period of dry weather (Figure 2I). Based on the analysis and the

identification of a relationship with rainfall, it is possible to predict

that this should also be followed by an increase in BU cases in the

region.

Caution must be expressed when using time series data, particularly

over long periods, as changes in diagnostic capabilities (for example,

the introduction of polymerase chain reaction techniques allowing

accurate genetic ifentification of the bacteria, knowledge of the disease

and improvements in equipment and recording) and the accuracy in

weather data collection will cause significant temporal discrepancies.

These factors are difficult to address and are inherent to all such

studies. It is also important to note that unpredictable external factors

such as socioeconomical changes can also be having an unknown

influence. The use of long-term weather data also presents the problem

of how to include landscape parameters, as these also have an influence

on a disease, but are often not available or poorly recorded early on in

time. In this instance, however, it seems unlikely that a cyclical pattern

is related to a steady change in population and landscape. The robust

analysis shows that French Guiana time series for BU cases reveals

interesting non-random patterns, which are vital for understanding

the ecological niche of this aquatic microbial agent.
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pour le Développement and the Centre National de la Recherche Scientifique.

This work has benefited from a PhD studentship awarded to Aaron Morris

from the Bournemouth University.

1 Chaves LF, Satake A, Hashizume M, Minakawa N. Indian ocean dipole and rainfall
drive a moran effect in East Africa malaria transmission. J Infect Dis 2012; 205:
1885–1891.

2 Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K. Shifting patterns: malaria
dynamics and rainfall variability in an African highland. Proc Biol Sci 2008; 275:
123–132.

3 Zhou G, Minakawa N, Githeko AK, Yan G. Association between climate variability and
malaria epidemics in the East African highlands. Proc Natl Acad Sci USA 2004; 101:
2375–2380.

4 Gagnon AS, Bush AB, Smoyer-Tomic KE. Dengue epidemics and the El Niño Southern
Oscillation. Clim Res 2001 2001; 19: 35–43.

5 Hanf M, Adenis A, Nacher M, Carme B. The role of El Nino Southern Oscillation
(ENSO) on variations of monthly Plasmodium falciparum malaria cases at the
cayenne general hospital, 1996–2009, French Guiana. Malar J 2011; 10: 100.
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