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NETWORK SHARING BY TWO MOBILE OPERATORS:

BEYOND COMPETITION, COOPERATION

Alexandre Blogowskia,b, Philippe Chrétiennea, Fanny
Pascuala 1

Abstract. In this paper, we study the sharing of a radio access net-
work infrastructure by two mobile operators. Knowing the possible
locations of the base stations, each operator chooses to invest or not on
a base station, and its aim is to maximize its profit. We characterize
the existence of Nash equilibria in such a game and we measure their
quality with respect to the maximization of the overall profit (with the
price of anarchy/stability). We then show how to obtain a solution in
which each operator earns at least as much as it would have earned in
any Nash equilibrium. Finally we conduct experiments on randomly
generated instances and on real data.

Introduction

The mobile phone plays a crucial role in making many services available to
the population. In developing countries, there remains much to be done to cover
rural areas. The whole problem stems from the high cost of network infrastruc-
ture, resulting in high prices charged by the operators, who seek to recoup their
investments. Infrastructure sharing for mobile services is a solution that allows to
reduce this cost. Many countries already share mobile infrastructure. For exam-
ple, Orange and Vodafone have an agreement in the UK and Spain, and there are
cooperation in countries such as Brazil, Jordan, Canada, India and Malaysia.
There are two broad categories of infrastructure sharing in mobile services: active
sharing and passive sharing. The active sharing implies sharing elements of the
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ange Labs, France Télécom, 38 rue du Général Leclerc, 92130 Issy-les-Moulineaux, France;
alexandre.blogowski@orange.com, {philippe.chretienne, fanny.pascual}@lip6.fr

c© EDP Sciences 2001



2 TITLE WILL BE SET BY THE PUBLISHER

active layer of mobile networks, such as elements of the core network, and also
includes mobile roaming, which allows an operator to use the network of another
operator where it does not have an antenna. The passive sharing is related to the
sharing of physical spaces, such as buildings, sites and towers, while the networks
remain separate. We focus in this paper on this second case.

We study the network sharing of an infrastructure known by two operators in
competition. Knowing the existing network infrastructure, namely the possible
locations of the base stations (also called sites), the aim of each operator is to
determine its optimal deployment strategy in order to maximize its profit. Its profit
is usually equal to the revenue gained by the operator thanks to the subscriptions
of clients covered by the sites where it invests, minus the costs of investment. The
profit earned on a given site may be different for each operator, and the profit
of a given operator on a given site may also be different if it is the only one to
invest on the site or if the other operator also invests on the same site (when both
operators co-invest, the number of clients may decrease for each operator, but the
cost of investment will also probably decrease). We consider in this paper a general
setting where the profits of the operators on each site, when an operator invests
alone or when it co-invests, are arbitrary values.
We consider the game in which two operators invest - or not - on a set of sites.
Our aim is twofold. From one part, our aim is to analyze the loss of profit due
to the competition between the two operators. From another part, our aim is to
propose to the operators a solution in which each operator earns as much as it
would earn in a competition setting (in a Nash equilibrium). This solution should
be as good as possible with respect to the global profit.

Model. The game that we study is the following one. We consider two
mobile operators A and B (also called agents), and n sites (base stations). Agent
j ∈ {A,B} has for each site i two possible strategies:

• either it invests, and
– if the other agent does not invest on site i, then the profit of Agent j

is a fixed profit sji (where s stands for “single”).
– if the other agent also invests on site i, then the profit of Agent j is

a fixed profit tji (where t stands for “together”).
• or it does not invest, and then it has a profit equal to 0.

We note xj
i = 1 if Agent j invests on site i, 0 otherwise. We have xj

i = 1 − xj
i .

The profit of Agent A (resp. B), denoted by ProfA (resp. ProfB), is the sum of
the profits it gains at each site:

ProfA =
n∑

i=1

(
xA
i x

B
i s

A
i + xA

i x
B
i t

A
i

)
(resp. ProfB =

n∑

i=1

(
xA
i x

B
i s

B
i + xA

i x
B
i t

B
i

)
)

The aim of each agent is to maximize its profit. The social cost that we consider
is the maximization of the overall profit (i.e. ProfA + ProfB). We denote this
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objective function by MaxSP (where SP stands for “sum of profits”). As each
site i is independent, maximizing the overall profit may be obtained by taking the
maximum locally on each site i and then summing up these values. Thus, the
social cost function is:

maximize

n∑

i=1

(
xA
i x

B
i s

A
i + xA

i x
B
i s

B
i + xA

i x
B
i (t

A
i + tBi )

)

In a realistic context, an additional constraint of population coverage must be
taken into account. This constraint is imposed by the regulations of the country:
each agent j must cover at least a given fraction Cj of the population1. We denote
by ni the number of persons (subscribers or not) present in the scope of the site
i. Each agent which invests on the site i will cover these ni persons. We denote
by MaxSP(cov) the problem MaxSP in which each Agent j has to cover at least a

given fraction Cj of the population (i.e.
∑n

i=1
x
j
ini∑

n
i=1

ni
has to be larger than or equal

to Cj).

In an environment where each agent knows its own profit according to the
decisions of all agents, a (pure) Nash equilibrium is a combination of (determin-
istic) choices, one for each agent, in which no agent can improve its own profit
by unilaterally changing its strategy [9]2. In our game, a solution is thus a Nash
equilibrium if each agent cannot increase its profit by investing on one or several
sites in which it does not invest, or by stopping to invest on one or several sites in
which it invests. In order to measure the quality of Nash equilibria, we will study
the price of anarchy [8] and the price of stability [1, 15]. The price of anarchy
(resp. price of stability) is the maximum ratio, over all the instances, between the
value of the social cost in an optimal solution and the value of the social cost in
the worst (resp. best) Nash equilibrium. The price of anarchy is interpreted as
the loss of profit due to the lack of cooperation, whereas the price of stability can
be interpreted as the lost of profit due to the fact that the agents optimize their
own objective functions rather than the social cost. It is expected that the loss in
efficiency due to game-theoretical constraints is somewhere between the price of
anarchy and the price of stability.

We will study the price of stability and the price of anarchy with respect to the
social cost functions MaxSP and MaxSP(cov), in the case where the profits are
either strictly positive or arbitrary, and in these three different cases:

- General case: the profits sAi , s
B
i , t

A
i and tBi are arbitrary values in Z.

1In France, the regulatory authority for electronic communications and postal services (AR-
CEP in french) verifies operators’ compliance with coverage obligations. In July 2012, ARCEP
carried out checks on the 3G coverage achieved by France’s four 3G mobile operators: Free
Mobile, Orange France, SFR and Bouygues Telecom. http://www.arcep.fr/index.php?id=8161

2We are interested in this paper only by pure Nash equilibria. In the sequel, we will omit the
adjective pure.
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- Case R (where R stands for “realistic”): for any site i ∈ {1, . . . , n}, it is
not possible to have the configuration (sAi > 0, sBi > 0, tAi ≤ 0 and tBi ≤ 0).
In this case, it is not possible that both operators have a positive profit
when they invest alone on a site i whereas, when both operators co-invest
on this same site, they both have a negative (or zero) profit.

- Case IC (where IC stands for “interest to co-invest”): for any site
i ∈ {1, . . . , n}, (tAi + tBi ) ≥ max(sAi , s

B
i ). In this case, the total profit

obtained when both operators co-invest is larger than or equal to the
maximum profit of an operator alone on the same site (this case happens
when the cost of investment decreases when both operators co-invest while
the number of clients and their subscriptions do not decrease).

Moreover, we define the best Nash equilibrium of an agent j ∈ {A,B} as the Nash
equilibrium in which the profit of j is maximized.

Our contribution. In Section 1 we give complexity results concerning the
problems MaxSP and MaxSP(cov), and we study the existence and the quality
of Nash equilibria for these problems. In Section 2, we introduce the problem
MaxSP(pmin), where the global profit has to be maximized under the constraint
that each agent earns at least as much as it would have received in its best Nash
equilibrium. We show that there is always such a solution in the case R; we show
that this problem is NP-hard, and we use dynamic programming to solve it. In
Section 3, we show simulations results obtained for real data and for randomly
generated instances in order to analyze in practice the price of stability/anarchy
and the quality of the solutions returned by MaxSP(pmin). We conclude the paper
in Section 4.

Related work. Numerous technical analysis of the gain obtained when several
operators share their resources have been done. Bartlett and Jackson [2] measure
the total infrastructure and operational cost savings due to a sharing scenario
(site sharing, diverse equipment sharing, core network sharing) by comparison
to a “non shared” reference network. The indicative savings are based on the
assumption that the operators share the costs equally. They conclude that the case
of site sharing is the best. More recently, the consulting firm Analysys Mason [10]
studies the cost savings when two mobile telecommunication operators build a
new network together, and they show that the operators can save up almost half
of their development and maintenance costs.

Most papers concerning network sharing between selfish operators use cooper-
ative game theory [12], and consider that the utility of the agents is transferable.
Saad et al. [14] provide a comprehensive overview of coalitional game theory and
its usage in wireless and communications networks. Contrarily to these works,
in this paper we will consider that the utility of the agents is not transferable,
since the regulation of the countries often prohibit money transfers between the
operators (allowing money transfers would allow the operators to behave such as
they were a single operator in situation of monopoly).
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Our work is related to other works which consider selfish organizations, each
organization owning resources and clients willing to use these resources. Each or-
ganization has its own objective function that it wishes to optimizes. The aim is
to design an algorithm which assigns the resources of all the organizations to all
the clients, in such a way that each organization has a profit (with respect to its
own objective function) as least as good as the profit it would have obtained if it
had assigned its own clients to its own resources. This algorithm should maximize
a social cost function. Note that in this model the utilities are not transferable.
This setting has been introduced by Pascual et al. [13] for a scheduling problem
where the resources are the machines and the clients are the tasks (the aim of
each organization is to minimize the last completion time of its tasks), and has
been followed by several other papers [3–5, 11]. The authors give approximation
algorithms and experimental results for this problem. Gourvès et al. [7] study the
complexity and the approximation of a matching problem in which each organiza-
tion owns vertices of a weighted bipartite graph (resources, clients), and the profit
of one organization is a fraction of each edge which has an endpoint in the orga-
nization in the returned matching (the social cost is the weight of the matching).
We also consider a bipartite graph, but here the agents do not own the resources
(the sites), and we will look for a solution in which each agent earns at least what
it would have had in any Nash equilibrium, which is another way to make the
agents accept the solution.

1. Problem MaxSP without cooperation

The complexity of problems MaxSP and MaxSP(cov) is presented in Subsection
1.1. Subsection 1.2 is devoted to the existence and the quality of Nash equilibria.

1.1. Complexity

Problem MaxSP is easy. Indeed, since the sites are independent, the maximum
social profit is the sum

∑n
i=1

max{sAi , s
B
i , t

A
i + tBi , 0} of the n local maximum

profits. However, when the coverage constraint is considered, the corresponding
problem MaxSP(cov) is NP-hard:

Proposition 1. The decision version of problem MaxSP(cov) is NP-complete,
even if all the profits are non negative.

Proof. We show that the Partition problem polynomially reduces to our prob-
lem. We recall the Partition problem [6]:
Let E be a finite set of n elements, and c(e) ∈ N be the size of element e ∈ E. It
is assumed that

∑
e∈E c(e) = 2K. The question is: is there a subset E′ ⊆ E such

that
∑

e∈E′ c(e) =
∑

e∈E\E′ c(e)?

Let (E, c) be an instance of the Partition problem. The corresponding instance
of MaxSP(cov) is as follows: with each element e ∈ E is associated a site ê with
a population nê = c(ê). Moreover, we define for any site ê the following profits
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sAê = sBê = 1 and tAê = tBê = 0. We assume that each agent must cover at least K
clients and that the total profit must be at least n.
If (E, c) is a yes instance such that

∑
e∈E′ c(e) = K, then there is a solution of the

corresponding instance of the problem MaxSP(cov) where Agent A invests on the
sites of E′ and not on the other sites, and Agent B invests on the sites of E \ E′

and not on the other sites. Each agent covers exactly K clients and the profit
of the solution is n. Conversely, if the cost of the solution of the instance of the
problem MaxSP(cov) is n, then this means that each site is covered by exactly one
agent, and thus that each agent covers exactly K clients: so there is a solution to
the (E, c) instance of the Partition problem. �

Note that, in the case IC and if all the profits are non negative, problemMaxSP(cov)
is easy: the optimal solution is indeed obtained when both operators co-invest on
all the sites.

1.2. Existence and quality of Nash equilibria

For problems MaxSP and MaxSP(cov), when all the profits are strictly positive,
each agent has incentive to invest on each site. The solution where both agents
co-invest on each site is thus a Nash equilibrium. If some profits are negative, there
may be cases where there is no Nash equilibrium. Proposition 2 characterizes the
instances where a Nash equilibrium exists when the agents do not have to cover a
given fraction of the population.

Proposition 2. If the agents do not have a coverage constraint, for a given in-
stance, there is no Nash equilibrium if and only if there exists a site i such that

(
sAi < 0 < tAi and tBi < 0 < sBi

)
or

(
tAi < 0 < sAi and sBi < 0 < tBi

)

Proof. Since the sites are independent, there is no Nash equilibrium if and only if
there exists a site i such that there is no Nash equilibrium for the instance where
all the sites except i are removed. We will thus focus on a site i and show that
there is no Nash equilibrium for the site i alone if and only if

(
sAi < 0 < tAi and

tBi < 0 < sBi
)
or

(
tAi < 0 < sAi and sBi < 0 < tBi

)
.

Assume first that
(
sAi < 0 < tAi and tBi < 0 < sBi

)
or

(
tAi < 0 < sAi and

sBi < 0 < tBi
)
. As we can see on Figure 1.2, we have four possible cases. With the

configuration of the profits above, for each of these cases, at least one agent can
improve its profit by changing its strategy (the arrows in Figure 1.2 indicate a cy-
cle when

(
tAi < 0 < sAi and sBi < 0 < tBi

)
; when

(
sAi < 0 < tAi and tBi < 0 < sBi

)
,

the cycle is in the other direction – clockwise). Thus, there is no Nash equilibrium.

Assume now that there is no Nash equilibrium. The case (Agent A invests,
Agent B invests) in Figure 1.2 is thus not a Nash equilibrium. This implies that at
least one agent can improve its profit (tAi or tBi ) by changing its strategy. So either
Agent A or Agent B should stop investing. We show that the first case implies
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(tAi < 0 < sAi and sBi < 0 < tBi ), and that the second case implies
(
sAi < 0 < tAi

and tBi < 0 < sBi
)
. Consider the first case (indicated by the arrows on Figure 1.2).

If Agent A can improve its profit by changing its strategy, then Agent A does not
invest and perceives a null profit. This implies that tAi is a negative profit. Since
there is no Nash equilibrium, the configuration (Agent A does not invest, Agent B
invests) is also not a Nash equilibrium. Agent A cannot improve its profit because
tAi < 0, so Agent B must improve its profit by not investing on the site i. If it does
not invest on the site, Agent B perceives a null profit, and thus sBi is a negative
profit. �

A invests

B invests B does not invest

A does 
  not 
invest

(sAi , 0)

(0 , sBi )

(tAi , tBi )

(0 , 0)

Figure 1. The left hand side (resp.
right hand side) of the couple is the
profit of Agent A (resp. B). The arrows
indicate a cycle when (tAi < 0 < sAi and
sBi < 0 < tBi )

Likewise, the configuration (Agent A
does not invest, Agent B does not in-
vest) is not a Nash equilibrium: thus
Agent A improves its profit by invest-
ing on the site i. So sAi is a posi-
tive profit. Similarly, the configura-
tion (Agent A invests, Agent B does
not invest) is not a Nash equilibrium:
Agent B improves its profit by invest-
ing on the site i. So tBi is a posi-
tive profit. Therefore, in this first case
the configuration of the profits of both
agents is as follows:

(
tAi < 0 < sAi and

sBi < 0 < tBi
)
.

For the second case, where Agent B
has incentive to stop investing, start-
ing from the case (Agent A invests,
Agent B invests), the proof is similar.
This case leads to the following config-
uration of profits:

(
sAi < 0 < tAi and

tBi < 0 < sBi
)
.

In practice, to our knowledge and after studying some real data (see Section 3),
all the instances have a Nash equilibrium. So, in the sequel, we will consider
instances that do have a Nash equilibrium. We now study the quality of these
Nash equilibria.

Proposition 3. The price of stability for problems MaxSP and MaxSP(cov) is
unbounded, even in the case IC. Likewise the price of stability is unbounded, even
when all the profits are strictly positive.

Proof. Let M be an arbitrary large integer. We consider an instance with only one
site 1, and where the profits are sA1 = −1, tA1 = −1, sB1 = 1 and tB1 = M . These
profits verify the condition IC, and the only Nash equilibrium is when Agent B is
the only one that invests. The sum of profits is then 1. However, the optimal sum
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of the profits is M when both agents co-invest. The price of stability is then M .

Let us now consider the following instance where there is one site, and where the
(strictly positive) profits are: sA1 = M, tA1 = 1, sB1 = M and tB1 = 1. The only
Nash equilibrium is when Agents A and B co-invest. The sum of the profits is 2,
while the optimal sum of the profits is M when only one operator invests. The
price of stability is then M/2. These price of anarchy can be as large as wanted
when M gets large. �

As shown in the previous proposition, the quality of Nash equilibria can be very
bad if the condition IC is satisfied, or if the profits are strictly positive. We show
that if both conditions are fulfilled simultaneously, then the quality of a Nash
equilibrium is maximal.

Proposition 4. For strictly positive profits and in the case IC, the price of anarchy
for problems MaxSP and MaxSP(cov) is 1.

Proof. Assume that all the profits are strictly positive. Then, the only Nash
equilibrium is when all the agents co-invest on all the sites. For each site i, tAi +tBi ≥
max(sAi , s

B
i ), so the co-investment is the strategy with which the total profit is

maximum for each site: this corresponds to the optimal solution. The price of
anarchy and the price of stability are therefore equal to one. �

Arbitrary profits Strictly positive profits

- ∄ Nash equilibrium ⇐⇒ ∃ a site i s.t.
sAi < 0 < tAi and tBi < 0 < sBi (prop 2)

- Always a unique Nash equilibrium

General case
- Price of stability unbounded (prop 3) - Price of stability unbounded

(prop 3)
- ∄ Nash equilibrium ⇐⇒ ∃ a site i s.t.
sAi < 0 < tAi and tBi < 0 < sBi (prop 2)

- Always a unique Nash equilibrium

Case IC
- Price of stability unbounded (prop 3) - Price of stability equal to 1 (prop 4)

Table 1.Existence and quality of Nash equilibria when the agents do not have
a coverage constraint

Table 1.2 summarizes the results shown in this section. Generally the price of
stability is unbounded. To obtain a solution with a better social cost while being
accepted by both agents, we introduce a new problem called MaxSP(pmin) which
aims to maximize the total amount of profits while providing a minimal benefit to
each agent. We show in the following section that in the case R there exists always
a solution in which each agent earns at least as much as it would have received in
its best Nash equilibrium.
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2. When the agents cooperate

We introduce in this section the problems MaxSP(pmin) and MaxSPspec.
MaxSP(pmin) corresponds to the maximization of the overall profits such that
each agent earns a minimum value:

maximize
∑n

i=1

(
xA
i x

B
i s

A
i + xA

i x
B
i s

B
i + xA

i x
B
i

(
tAi + tBi

))

s.t. ProfA ≥ PA

ProfB ≥ PB

where ProfA =
∑n

i=1

(
xA
i x

B
i s

A
i + xA

i x
B
i t

A
i

)
(resp. ProfB =

∑n

i=1

(
xA
i x

B
i s

B
i + xA

i x
B
i t

B
i

)
)

is the profit obtained by Agent A (resp. B), and where PA (resp. PB) is the min-
imum profit that Agent A (resp. B) must obtain.

Problem MaxSPspec corresponds to the case where PA (resp. PB) is the max-
imum profit of agent A (resp. B) in a Nash equilibrium. Notice that neither
PA nor PB are data for an instance of MaxSPspec. However, PA may easily be
computed as follows: for any site i, the maximal profit of agent A on site i in a
Nash equilibrium, PA

i , is equal to max{0, sAi } if tBi < 0, is equal to max{0, tAi } if
tBi > 0, and is equal to max{0, sAi , t

A
i } if tBi = 0. Hence PA =

∑n
i=1

PA
i can be

computed in linear time (PB is computed in the same way).

We now show in Subsection 2.1 that there is always a solution of the problem
MaxSPspec in the case R. Subsection 2.2 studies the complexity of the problem
MaxSP(pmin) and shows a dynamic program which solves this problem in pseudo-
polynomial time.

2.1. Existence of solutions for MaxSPspec

Proposition 5. In the case R, there always exists a solution in which Agent A and
agent B both earn at least what they would have obtained in any Nash equilibrium.

Proof. Given an instance, we will construct a solution S in which each agent earns
on each site i at least as much as it would have earned on this site in its best
Nash equilibrium. Let us consider a site i. From Proposition 2, we know that
the two following configurations are forbidden when a Nash equilibrium exists:
(tAi < 0 < sAi and sBi < 0 < tBi ) and (sAi < 0 < tAi and tBi < 0 < sBi ).
In the cases where (tAi > 0 and tBi > 0), in a Nash equilibrium, either the two
agents co-invest or no agent invests on the site. When nobody invests, each agent
has a profit equal to 0. When the two agents co-invest, each agent has a positive
profit. In the solution S, both agents co-invest for these sites.
Among the other cases, the case where (sAi > 0, sBi > 0, tAi ≤ 0, tBi ≤ 0) is the
only one which leads to several Nash equilibria in which the best Nash equilibrium
for Agent A is different from the best Nash equilibrium for Agent B, and in which
the profits perceived by the two agents in their respective best Nash equilibrium
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are not null. In this case, the best Nash equilibrium for Agent j, j ∈ {A,B}, is to
invest alone on the site. This case is excluded by the definition of case R.
In the cases where (sAi ≥ 0, tAi ≥ 0, tBi = 0), or (sAi ≥ 0, sBi = 0, tAi ≤ 0, tBi ≤ 0),
or (sAi = 0, sBi < 0, tAi ≤ 0, tBi ≤ 0), or (sAi = 0, sBi ≤ 0, tAi > 0, tBi < 0), or
(sAi = 0, sBi < 0, tAi = 0, tBi > 0), or (sAi < 0, sBi < 0, tAi ≥ 0, tBi ≥ 0) (and the
symmetric cases by exchanging Agents A and B), there are several Nash equilibria,
but the best Nash equilibrium for Agent A and for Agent B correspond (excepted
for the case (sAi > 0, sBi > 0, tAi = 0, tBi = 0) excluded just above). In these
cases, at least one profit perceived by one of the two agents is null in every Nash
equilibria. So, in the solution S, the best Nash equilibrium for Agent j, j ∈ {A,B},
is chosen.
In the other cases, there is only one Nash equilibrium. In the solution S, the
assignment of the agents on the sites is the same than in the Nash equilibrium.
Therefore, S is a solution in which each agent earns at least what it would have
earn in its best Nash equilibrium. �

We have shown that in case R (which is a realistic case in practice) there is always
a solution of the problem MaxSP(pmin) in which the minimum profit of Agent A
(resp. B) is the maximum profit it may have in a Nash equilibrium. Let us now
show that, when the profits are positive, the problem MaxSP(pmin) is NP-hard
and can be solved in pseudo-polynomial time.

2.2. Complexity and algorithm for MaxSP(pmin)

Proposition 6. The decision version of the problem MaxSP(pmin) is NP-complete,
even if all the profits are non negative.

Proof. We will show that the Partition problem [6] polynomially reduces to the
decision version of MaxSP(pmin). Let (E, c), where c : E → N and

∑
e∈E c(e) =

2K, be an instance of Partition problem. Let n = |E|. The corresponding
instance of MaxSP(pmin) is as follows: with each element e ∈ E is associated a
site ê. For each site ê, sAê = sBê = c(ê) and tAê = tBê = 0. Moreover, we assume
that Agent A and Agent B must earn at least K (PA = PB = K).
If (E, c) is a yes instance of the Partition problem such that

∑
e∈E′ c(e) = K,

then there is a solution of the corresponding instance of the problem MaxSP(pmin)
where Agent A (resp. B) invests alone on the sites corresponding to the elements
of E′ (resp. E \ E′). Each agent has a profit of exactly K. Conversely, if there is
a feasible solution of the instance of problem MaxSP(pmin), then in this solution
each site is assigned to exactly one agent, and the profit of each agent is exactly K
(since the sum of the profits is 2K): thus, there is a solution to the (E, c) instance
of the Partition problem. �

Problem MaxSP(pmin) is NP-hard even if all the profits are non negative. We
propose now a dynamic programming algorithm that solves the problem with arbi-
trary profits. We denote by P+

A =
∑n

i=1
max{0, sAi , t

A
i } (resp. P

−
A =

∑n

i=1
min{0, sAi , t

A
i })

the upper bound (resp. lower bound) on the total profit of Agent A. Similar defi-
nitions are given for the bounds P+

B and P−
B .
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Given i ∈ {1, · · · , n}, gA ∈ {P−
A , · · · , P+

A } and gB ∈ {P−
B , · · · , P+

B }, we denote by
W (i, gA, gB) the global maximal profit that can be obtained for the subproblem
associated with the sites {1, · · · , i} when the individual profit of Agent A (resp.
agent B) is exactly gA (resp. gB). According to these definitions, the value of the
optimal strategy is maxPA≤gA≤P

+

A ,PB≤gB≤P
+

B
W (n, gA, gB).

We naturally extend the definition of W (i, gA, gB) for i = 0 as follows:

W (0, gA, gB) =

{
0 if gA = gB = 0
−∞ otherwise

With these definitions, the recurrence formula followed by W (i, gA, gB) for 1 ≤
i ≤ n, gA ∈ {P−

A , · · · , P+

A } and gB ∈ {P−
B , · · · , P+

B } is the following:

W (i, gA, gB) = max





W (i− 1, gA, gB),
W (i− 1, gA − sAi , g

B) + sAi ,
W (i− 1, gA, gB − sBi ) + sBi ,
W (i− 1, gA − tAi , g

B − tBi ) + tAi + tBi .

The optimal strategy is got as usual by recording the optimal decision for each
state (i, gA, gB) and then by collecting these decisions going backward from an
optimal final state (n, gA∗ , g

B
∗ ) to the initial state (0, 0, 0). The complexity of this

algorithm is O(n(P+

A − P−
A )(P+

B − P−
B )).

3. Experiments

In this section, we carry out simulations to observe in practice the ratio between
the cost in a Nash equilibrium and the cost in an optimal solution, for the problem
MaxSP. In the sequel, “price of anarchy” (resp. “price of stability”) will denote
the average cost, on the instances generated, of the ratio between the cost in the
worst (resp. best) Nash equilibrium and the cost in an optimal solution. This is
a misnomer because the price of anarchy (resp. price of stability), as explained
before, is the maximum ratio, among all the instances, of the worst (resp. best)
Nash equilibrium over an optimal solution. Here, we wish to see the average ratio
between the cost in the worst (resp. best) Nash equilibrium of an instance and an
optimal solution of this instance.

We will also observe the quality of the solutions returned for the problem
MaxSPspec. Eventually, we will see to what extent it is possible to improve
the profit of each agent by multiplying the profit that each agent earns in its
best Nash equilibrium by a constant α, 1 ≤ α ≤ 1.5. We denote this problem
by MaxSPspec(α). These experiments are done on real data provided by Orange
Labs, concerning the sites in a developing country, and with randomly generated
instances. We first describe the protocol used for randomly generated instances,
and then we analyze the results of the simulations.
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3.1. Protocol

Profits. We separate the study into two cases: strictly positive profits and
arbitrary profits. For each case of profits, we generate several ranges of profits
with several types of generators on a number of sites ranging from 1 to 100 by
step of 1. The ranges of profits were [1; 5], [1; 100], [1; 200] and [300; 1000] for
strictly positive profits, and [-5; 10], [-50; 200], [-500; 4000] and [-500; 100] for
arbitrary profits. We launched 10 000 times the tests, and all the results given are
averages.

After studying these different ranges of data with different generators described
below, we noticed that the results with strictly positive profits were almost similar.
This is the same for arbitrary profits. We have thus retained for further study the
range of profits [1; 5] for strictly positive profits, and the range of profits [-5; 10]
for arbitrary profits.

Generators. Four types of profits generators were used:

- Generator 0: there is no restriction on the profits.
- Generator N: this is Generator 0 in which we do not generate the two
cases where there is no Nash equilibrium, i.e. there is no site i such that(
sAi < 0 < tAi and tBi < 0 < sBi

)
or

(
tAi < 0 < sAi and sBi < 0 < tBi

)
.

- Generator IC: this is Generator N in which we add the constraint IC, i.e.
for any site i ∈ {1, . . . , n}, (tAi + tBi ) ≥ max(sAi , s

B
i ).

- Generator R: this is Generator N in which we add the constraint R, i.e.
for any site i ∈ {1, . . . , n}, it is not possible to have sAi > 0, sBi > 0, tAi ≤ 0
and tBi ≤ 0.

As said in the introduction, the generators N, IC and R were created to correspond
to real cases. Moreover, the generator R has also the particularity that it always
provides a solution to the problem MaxSPspec, as shown in Proposition 5.

In order to match the real data provided by Orange Labs (cf. the end of this
section), the number of persons (subscribers or not) present in the perimeter of
each site is generated as a random number between the values 8 000 and 30 000.

Computing the solutions. The solution of problem MaxSPspec is computed
with the solver ibm ilog cplex. The price of anarchy and the price of stability
are easy to compute for the social cost MaxSP, or for MaxSP(cov) with strictly
positive profits. Indeed, from one part the optimal solution of problem MaxSP can
be computed inO(n), as shown in Section 1.1, and from a another part the best and
the worst Nash equilibrium can also be computed in time O(n) (when the profits
are strictly positive, the only Nash equilibrium is when both operators always co-
invest; when the profits are arbitrary and when there is no cover constraint, it is
possible to consider each site independently, and to see for each site which Nash
equilibrium is the best or the worst for the sum of the profits).
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3.2. Results

Quality of Nash equilibria. For problem MaxSP, we have seen that the price
of anarchy and the price of stability are unbounded (see Proposition 3). However,
in practice, the price of anarchy is much better since it is less than 1.8, and the
price of stability is less than 1.4, and even lower when there are more sites (see
Figure 3.2).
For problem MaxSP(cov), when all the profits are strictly positive, the solution
where the two agents co-invest on each site is the only Nash equilibrium. As shown
in Figures 3.2 and 3.2, the price of stability with the cover constraint is similar
to the price of stability without the cover constraint when this latter is smaller
than 0.85 (i.e. each agent must cover at most 85% of the population), and then
it decreases when the cover increases (the Nash equilibrium corresponds indeed to
the best solution when the cover constraint is 1).

Figure 2. For strictly positive profits on the left, and arbitrary profits generated
with Generator N on the right: the lower curve (“Gap”) represents the ratio
between the sum of the profits in an optimal solution of MaxSP and the sum of
the profits in an optimal solution of MaxSPspec. The other curves are the price
of stability (POS) and the price of anarchy (POA).

Problem MaxSPspec. For strictly positive profits and arbitrary profits gener-
ated with Generator R, there is always a solution to the problem MaxSPspec, as
seen in Proposition 5. For arbitrary profits generated with the generator N, there
are some cases where there is no solution where Agents A and B both obtain what
they would obtain in their best Nash equilibrium (see Figure 3.2). This is the
case in about 27% of the instances when there are 7 sites, but this is less often
the case with less sites (because instances where there exists a site i ∈ {1, . . . , n},
such that sAi > 0, sBi > 0, tAi ≤ 0 and tBi ≤ 0 are less common), and with more
sites (because with many sites it is easier to compensate the loss of one agent on
one site with the gain of this agent on another site: for example, the configuration
where sAi > 0, tAi > 0 and sBi > tBi > 0, and where only Agent B is chosen to
invest, enables Agent B to compensate a loss of profit on another site).
In the cases where there is a feasible solution of problem MaxSPspec, Figure 3.2
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Figure 3. Price of stability for strictly
positive profits and with a cover con-
straint.

Figure 4. Percentage of times where
there is a feasible solution to the prob-
lem MaxSPspec.

shows the ratio (noted “Gap”) between the value of an optimal solution of problem
MaxSP and the value of an optimal solution of problem MaxSPspec. The value of
the variable “Gap” is always smaller than the price of stability and is almost equal
to 1 when there are more than 10 sites. This highlight the interest of MaxSP-
spec: even if the solution of this problem is not necessarily a Nash equilibrium,
the profit of each agent is larger than or equal to the profit it would have in any
Nash equilibrium, and the overall profit is also larger.

ProblemMaxSPspec(α). In problemMaxSPspec(α), the aim is to increase the
profit of each agent by multiplying the profit that each agent earns in its best Nash
equilibrium by a constant α, 1 ≤ α ≤ 1.5. When this value may be larger than or
equal to the maximum profit that the agent can have (i.e. for Agent j, α times the

profit of Agent j in its best Nash equilibrium is larger than
∑n

i=1
(max(0, sji , t

j
i ))),

we fix the minimum profit for the agent as
∑n

i=1
(max(0, sji , t

j
i )).

Figure 5. For arbitrary profits generated with Generator R, percentage of times
where there is a feasible solution to problem MaxSPspec(α).
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We study the percentage of times where there is a feasible solution to problem
MaxSPspec(α) with different values of α (see Figure 3.2). When α = 1, there
is always a solution, since we use Generator R. For α = 1.025 to α = 1.1 , the
higher the number of sites is, the higher there is a feasible solution (the analy-
sis is the same than in the paragraph concerning problem MaxSPspec). When
there is a solution to problem MaxSPspec(α), we computed the ratio between the
value of the optimal solution of MaxSP and the value of the optimal solution of
MaxSPspec(α). The results are similar to what we obtained without multiplying
the profit of each agent by α (these results were shown on Figure 3.2).

Real data. Real data from a developing country, provided by Orange Labs,
contain 28 sites and, for each site, the population covered and the number of
Orange’s subscribers. We fix a cost of investment, a cost of co-investment and
the price for phone subscription. These numbers are the same for each site and
each operator (agent). We simulate the number of clients of the second agent.
We consider four cases: this second agent has the same number of clients as
Orange, 30% less, 30% more, or the rest of the possible clients on each site (i.e.,
the population covered minus the number of Orange’s subscribers). The profit of
Agent j on site i corresponds to the number of clients that subscribe to Agent j
multiplied by the price of phone subscription, minus the cost of investment of site
i. Table 1 shows the price of anarchy, the price of stability, and the ratio (“Gap”)
between the value of the optimal solution of MaxSP and the value of the optimal
solution of MaxSPspec. As shown in this table, in practice, the price of anarchy
and the price of stability are very low, but are still larger than or equal to the
optimal solution of MaxSPspec.

Number of clients of the second agent Price of stability Price of anarchy Gap
The remaining clients 1.021 1.023 1.02

Same number as Orange 1 1.163 1
30% less than Orange 1.152 1.152 1.152
30% more than Orange 1.045 1.069 1.044

Table 1. Results on instances obtained from real data.

4. Conclusion

In this work, we have considered the problem of sites sharing by two selfish
telecommunication operators. We showed that there always exists a (pure) Nash
equilibrium, except if the profits follow a very unrealistic configuration. We in-
troduced problem MaxSP(pmin), which is NP-hard but which can be solved in
pseudo-polynomial time with a dynamic program. We showed that for realistic
configurations (case R) it is always possible to return a solution (the optimal so-
lution of MaxSPspec) in which each agent earns at least what it would earn in a
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Nash equilibrium. We believe that the agents should agree to accept such a so-
lution, proposed by a central entity. We conducted experiments which show that
the price of anarchy and the price of stability are in practice much better than in
the worst case (where it is generally unbounded), and that the ratio between the
social cost and the value of an optimal solution of MaxSP(pmin) is smaller than
the price of stability.

Several future work are possible: in the experimentations, we focus on situations
where Nash equilibria can be found easily, which represent all the cases except the
case where there is a cover constraint and when some of the profits are negative. In
this case it is NP-hard to find a Nash equilibrium, if such a Nash equilibrium exists,
since it is even NP-hard for an agent alone to choose where to invest. It would
nevertheless be interesting to study the conditions of existence of Nash equilibria
in this case, and to see whether introducing a problem such as MaxSPspec with
cover constraints could be useful. It would also be interesting to extend the model
to a constant number of agents. More generally, we believe that an algorithm
returning a solution of good quality for a social cost and in which each agent has
a profit larger than or equal to what it would have had in any Nash equilibrium
can be useful in other problems in which the utility is not transferable.

Eventually, this work is a first step towards the study of the advantages of
cooperation for site sharing between telecommunication operators. Additional
constraints could be added to get closer to real situations.
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price of stability for network design with fair cost allocation. In Symposium on Foundations
of Computer Science (FOCS), pages 295–304, 2004.

[2] A. Barlett and N. N. Jackson. Network planning considerations for network sharing in umts.
In Third International Conference on 3G Mobile Communication Technologies, pages 17–
21. Motorola UK, 2002.

[3] J. Cohen, D. Cordeiro, D. Trystram, and F. Wagner. Multi-organization scheduling approx-
imation algorithms. In Concurrency and Computation: Practice and Experience, volume
23(17), pages 2220–2234, 2011.
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