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Abstract

A deterministic model of tuberculosis (TB) in sub-Saharan Africa
including undetected and lost-sight cases is presented and analyzed.
The model is shown to exhibit the phenomenon of backward bifurca-
tion, when a stable disease-free equilibrium co-exists with one or more
stable endemic equilibrium points when the associated basic reproduc-
tion number (R0) is less than unity. Analyzing the model obviously
reveals that exogenous reinfection plays a key role on the existence of
backward bifurcation. However, an analysis of the ranges of exogenous
reinfection suggested that backward bifurcation occurs only for very
high and unrealistic ranges of the exogeneous reinfection rate. Ran-
dom perturbation of reinfection rates was performed to gain insight
into the role of this latter on the stability of the disease free equilib-
rium.

Keywords : Nonlinear dynamical systems; Tuberculosis; Mathematical

models; Stability; Bifurcation.

1 Introduction

The global burden of tuberculosis (TB) has increased over the past two

decades, despite widespread implementation of control strategies including
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BCG (Bacillus Calmette-Guerrin) vaccination and the World Health Orga-

nization’s (WHO) DOTS strategy which focuses on case finding and short-

course chemotherapy cause of death. TB is the second largest cause of death

from an infectious agent after HIV/AIDS in developing countries [19]. In

the modern era, TB is recognized as a disease that preys upon social dis-

advantage [8, 7]. It remains a worldwide emergency mostly affecting poor

countries and to this old and persistent threat, the multidrug-resistant TB

is a emergency adding further challenges. Despite predictions of a decline in

global incidence, the number of new cases continues to grow, approaching

10 million in 2010 [20].

TB has a latent or incubation period during which the individual is

said to be infected but not infectious. This period was modeled either by

incorporating as a delay effect or by introducing an exposed class. Therefore,

second infection or reinfection occurs in an individual in both high and low-

incidence regions, which is already experiencing an infection with another

agent. This parameter plays an important role on TB dynamics.

Some authors proposed mathematical models of TB including reinfec-

tion and assumed that the rate of reinfection is a multiple of the rate of

first infection [45, 47, 48, 49, 52, 5, 22, 29]. Exposed individuals who have

been previously infected (in dormant stage) or recovered individuals may

acquire new infection from another infectious individual due to low immu-

nity of persons. Therefore, individuals in the latent stage of TB progress

into active stage due to exogenous reinfection and recovered individual may

progress to Latently infected class [45, 47, 48, 49, 52, 5, 22, 29]. Studies

confirmed that reinfection in areas with a low incidence of tuberculosis is

possible, although less common than in high-incidence geographical regions,

indicating that higher prevalence of M. tuberculosis represents the major

risk for tuberculosis reinfection.

The challenge of TB control in developing countries is due to the in-

crease of TB incidence by a high level of undiagnosed infectious population

and lost sight population with respect to diagnosed infectious cases. Un-

diagnosed infectious population means people who have not yet been to

a hospital for diagnosis or have not been detected, but have a pulmonary

TB [4, 51] when lost sight population are people who have been diagnosed

as having active TB, begun their treatment and quitted before the end.
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Lost-sight population are the most likely to develop multi-drug resitance

[50]. Compared to existing results [15, 9, 38, 3, 1, 18, 32, 43, 22] and ref-

erences therein, our work differs from these studies in that our model, in

addition to undiagnosed infectious and lost sight population, also considers

the aspects of exogenous reinfections, disease relapse as well as primary ac-

tive TB cases, natural recovery and traditional medicine or self-medication

(practiced in Sub-Saharan Africa). Also, it is recognized that undiagnosed

population, lost sight population and exogenous reinfections are important

components of TB transmission in Sub-Saharan Africa. For the new mathe-

matical model, the infective class is divided into three subgroups with differ-

ent properties: i) diagnosed infectious population, ii) undiagnosed infectious

population and iii) lost sight population. According to the National Com-

mittee of Fight against TB of Cameroon (NCFT) [40], about 8% of diagnosed

infectious that begin their therapy treatment never returned to the hospital

for the rest of sputum examinations and treatment, and then become lost

sight. This class of TB epidemiological models can be extended to many

classes of infective individuals and data for many other African countries.

For many epidemiological models, a threshold condition that indicates

whether an infection introduced into a population will be eliminated or be-

come endemic was defined [13]. The basic reproduction numberR0 is defined

as the average number of secondary infections produced by an infected indi-

vidual in a completely susceptible population [24]. In models with only two

steady states and a transcritical bifurcation, R0 > 1 implies that the en-

demic state is stable (e.g. the infection persists), andR0 ≤ 1 implies that the

uninfected state is stable (e.g. the infection will die out). The co-existence

of disease-free equilibrium and endemic equilibrium points when the basic

reproduction number (R0 < 1) is typically associated with the backward or

subcritical bifurcation. This phenomenon was found in many epidemiolog-

ical settings (see for instance, [21, 23, 30, 44] and references therein). The

epidemiological implication of is that the classical requirement of having the

associated reproduction number less than unity, while necessary is not a suf-

ficient condition for disease control. Results showed that a threshold level

of reinfection exists in all cases of the model. Beyond this threshold, the

dynamics of the model are described by a backward bifurcation. However,

uncertainty analysis of the parameters showed that this threshold is too
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high to be attained in a realistic epidemic [44]. In our previous works, we

analysed optimal control strategies for the model and estimated parameters

corresponding to data recorded in Cameroon [37, 35, 36]. Here, we intend

to discuss the role of exogenous reinfection on the existence of backward

bifurcation in the TB model. In this paper, we determine the basic repro-

duction ratio, and discuss the existence and the stability of the endemic

equilibrium and the disease free equilibrium (DFE). Some discussion about

the TB persistence condition was deduced.

2 The Proposed Model

2.1 The model formulation

A finite total population at time t denoted by N(t) was considered and

sub-divided into mutually exclusive sub-populations of

S susceptible: healthy people not yet exposed to TB,

E latently infected: exposed to TB but not infectious,

I diagnosed infectious: have active TB confirmed after a sputum exam-

ination in a hospital,

J undiagnosed infectious: have not yet been to a hospital for diagnosis

but are active for confirmation by a sputum examination,

L lost sight: people who have been diagnosed as having active TB, begun

their treatment and quitted before the end,

R recovered: people cured after treatment in the hospital.

In some countries, reliable TB tests are often missing or too expensive

[31]. Hence, TB diagnosis based on a single sputum examination can of-

ten only be classified as “probable” or “presumed”, and cannot detect cases

of less infectious forms of TB [50]. Therefore, the model is based on the

following assumptions, established from behaviors of people in different epi-

demiological classes.
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1. Mtb transmission from diagnosed infectious to susceptible population,

due to education on the infection is limited. It was therefore modeled

using a standard incidence or frequency-dependent force of infection.

2. Mtb transmission from undiagnosed infectious to susceptible popula-

tion, due to their level of education on the disease was modeled by a

density-dependent force of infection.

These arguments abide on the fact that diagnosed infectious people are

in most cases hospitalized for at least 2 months or are advised to lessen their

infectiousness in their residing neighborhood. Their distribution in the pop-

ulation is not necessarily homogeneous. Since undiagnosed infectious remain

inside the population, there is an unlimited possibility of contacts with the

susceptible population [4]. We therefore assume a density dependent force

of infection for hospital inmates [6].

All recruitment is into the susceptible class and occurs at an average

scale Λ. The fixed survey for non-disease related death is µ, thus 1/µ is the

average lifetime. Diagnosed infectious, undiagnosed infectious and lost sight

population have additional constant death rates due to the disease, defined

by d1, d2 and d3, respectively. Transmission of Mtb occurs due to adequate

contacts among susceptible and an active TB case. Thus, susceptible indi-

viduals acquire Mtb infection from individuals with active TB and lost sight

at a rate ν(I, J, L) given by

ν(I, J, L) = β1
I

N
+ β2

L

N
+ β3J, (1)

where βi, i = 1, 2, 3, are the effective contact rates with diagnosed, lost

sight and undiagnosed infectious population sufficient to transmit infection

to susceptible people. The effective contact rates βi in a given population for

tuberculosis are measured in effective contacts per unit time. This may be

expressed as the product of the total contact rate per unit time (ηi) by the

risk of infection (φi) given contact between an infectious and a susceptible

individual,

βi = ηiφi.

This risk is called the transmission risk.

A proportion p of the latently-infected individuals develop fast active

TB and the remainder (1− p) develop latent TB and enter the latent class
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E. Among latently-infected individuals developing active TB, a fraction f

is assumed to undergo a fast progression directly to the diagnosed infectious

class I, while the remainder (1− f) enters the undiagnosed infectious class

J . We set p1 = pf and p2 = p(1− f). Once latently infected with Mtb, an

individual will remain so for life unless reactivation occurs. Latently infected

individuals are assumed to acquire some immunity as a result of infection,

which reduces the risk of subsequent infection but does not fully prevent it.

Due to endogenous reactivation, a fraction 1 − r1 of latently infected

individuals who did not receive effective chemoprophylaxis become infec-

tious with a constant rate k, and get re-infected after effective contact with

individuals in the active TB classes or lost sight at a rate

λe = σ1ν(I, J, L), (2)

where σ1 is the factor reducing the risk of infection as a result of acquiring

immunity for latently infected individuals. Among latently infected individ-

uals who become infectious, the fraction h is diagnosed and treated under

the ”Stop TB” program, while the remaining 1−h is not diagnosed and be-

comes undiagnosed infectious J . We assume that after some time suffering

from TB, some undiagnosed infectious decide to go to hospital with a rate

θ. Also, we assume that among diagnosed infectious who had begun their

treatment therapy, a fraction r2 of I has taken all the dose and has made all

the sputum examinations and will be declared cured from the disease. Some

diagnosed infectious who have not finished their dose of drugs and sputum

examinations or whose treatment was unsuccessful, will not return to the

hospital for the rest of sputum examinations and check-up. They will enter

the class of lost sight L at a constant rate α. Lost sight can return to the

hospital at a constant rate δ.

As suggested by Murray et al. [39], recovered individuals can only have

partial immunity. Hence, they can undergo a TB reactivation or relapse

with a constant rate γ. The remainder can be reinfected (exogenously) after

an effective contact with individuals in the active TB classes and lost sight

at a rate

λr = σ2ν(I, J, L), (3)

where σ2 is the factor reducing the risk of infection as a result of acquiring

partial immunity for recovered individuals. Due to their own immunity, tra-
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ditional medicine, natural recovery and drugs bought in the street (practiced

in sub-Saharan Africa), a fraction of lost sight and undiagnosed infectious

can spontaneously recover at constant rates ρ and ω, respectively and enter

the latent class E and recovered class R respectively.

The transfer diagram of the model is shown in Fig. 1.

Figure 1: Transfer diagram of the TB model.

A description of the parameters is summarized in Table 1.

Keeping in view the above facts, the mathematical model is formulated

as follows:




Ṡ = Λ− ν(I, J, L)S − µS,
Ė = (1− p1 − p2)ν(I, J, L)S + ρJ + σ2ν(I, J, L)R

−σ1(1− r1)ν(I, J, L)E −A1E,

İ = p1ν(I, J, L)S + δL+ θJ + γR+ h(1− r1)(k + σ1ν(I, J, L))E
−A2I,

J̇ = p2ν(I, J, L)S + (1− h)(1− r1)(k + σ1ν(I, J, L))E −A3J,

L̇ = αI −A4L,

Ṙ = r2I + ωL− σ2ν(I, J, L)R−A5R,
(4)

where

A1 = µ+ k(1− r1), A2 = µ+ d1 + r2 + α,
A3 = µ+ d2 + θ + ρ, A4 = µ+ d3 + δ + ω and A5 = γ + µ.

The parameter values of model (4) are given in Table 1.
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Parameters Symbol Estimate /yr Source

Recruitment rate of susceptible Λ 679685 [37, 41]
Transmission rate β1, β2 1, 4 [37, 11]
Transmission rate β3 6.05681 · 10−06 [37]
Fast route to infectious class p1 9.36432 · 10−04 [37]
Fast route to undiagnosed p2 2.43736 · 10−02 [37]
infectious class
Reinfection parameter of latently σ1 2.38390 · 10−04 [37]
infected individuals
Reinfection parameter σ2 0.7 · (p1 + p2) [37, 3]
of recovered individuals
Slow route to active TB k 3.31390 · 10−04 [37]
Natural mortality µ 1/53.6 [37, 11, 41]
TB mortality of diagnosed infectious d1 0.139 [37, 11]
TB mortality of undiagnosed infectious d2 0.413 [37]
TB mortality of lost sight d3 0.20 [37]
Chemoprophylaxis of latently r1 0 [37, 42]
infected individuals
Detection rate of active TB h 0.828248 [37]
Recovery rate of diagnosed infectious r2 0.758821 [37, 42]
Recovery rate of lost sight ω 0.5 [37]
Recovery rate of undiagnosed infectious ρ 0.131140 [37]
Relapse of recovered individuals γ 8.51257 · 10−02 [37]
Diagnosed infectious route α 0.216682 [37]
to the lost sight class
Lost sight route δ 0.39 [37]
to the diagnosed infectious class
Diagnosed rate θ 0.495896 [37]

Table 1: Numerical values of the parameters of the TB model (4)

2.2 Basic properties

Since model (4) monitors a human population, all its associated param-

eters and state variables should be non-negative and bounded for all t ≥ 0.

It is shown in this section that the model is mathematically well-posed and

epidemiologically reasonable [24].

The following result shows that state variables are non-negative and

dissipative.

Lemma 2.1. Let the initial values be S(0) > 0, E(0) ≥ 0, I(0) ≥ 0,
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J(0) ≥ 0, L(0) ≥ 0 and R(0) ≥ 0. Then, solutions (S,E, I, J, L,R) of model

(4) are non-negative for all t > 0. Furthermore,

lim sup
t−→∞

N(t) ≤ Λ

µ
,

with N(t) = S(t) + E(t) + I(t) + J(t) + L(t) +R(t).

The proof of this Lemma follows from an obvious adjustment of the

result in [33, 34]. The following steps establish the positive invariance of the

set

Ωε =

{
(S,E, I, J, L,R) ∈ R6

+, N(t) ≤ Λ

µ
+ ε

}
, ε > 0, (5)

i.e. solutions remain in Ωε for all t ≥ 0. This implies that the trajectories

of model (4) are bounded. On the other hand, integrating the differential

inequality Ṅ ≤ Λ− µN yields

N(t) ≤ N(0)e−µt +
Λ

µ
(1− e−µt).

In particular N(t) ≤ Λ

µ
if N(0) ≤ Λ

µ
. On the other hand, if N(0) ≥ Λ

µ
, then

Λ− µN(0) ≤ 0, and

Ṅ(0) ≤ Λ− µN(0) ≤ 0,

i.e. the total population N(t) will decrease until

N(t) ≤ Λ

µ
.

Thus, the region Ωε is a compact forward invariant set for model system (4),

and for ε > 0 this set is absorbing. So, we limit our study to this region for

ε > 0. The prevalent existence, uniqueness and continuation results hold for

model system (4) in Ωε.

2.3 The basic reproduction number

The global behavior of the TB model crucially depends on the basic

reproduction number, i.e., an average number of secondary cases produced

by a single infective individual, who is introduced into an entirely susceptible

population. Model system (4) has an evident equilibrium Q0 = (x0, 0) with

x0 = Λ/µ when there is no disease in the population. This equilibrium point

is the disease-free equilibrium, obtained by setting the right hand sides of
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equations in model (4) to zero. We calculate the basic reproduction number

R0, using the next generation method developed in [46]. To this end, let us

write system (4) in the form





ẋ = ϕ(x)− ν(I, J, L)x,

ẏ = F(x, y)− V(x, y),
(6)

where F(x, y) = ν(I, J, L)B1x, V(x, y) = ν(I, J, L)[B2〈e1 | y〉 + B3〈e5 |
y〉] +Ay, 〈. | .〉 is the usual scalar product and A is the constant matrix

A =




−A1 0 ρ 0 0
kh(1− r1) −A2 θ δ γ

k(1− h)(1− r1) 0 −A3 0 0
0 α 0 −A4 0
0 r2 0 ω −A5



,

with A1, A2, A3, A4 and A5 defined as above in Eq. (4).

The Jacobian matrices of F(x, y) and V(x, y) at the DFE of are

F =
∂F
∂y

(Q0) = B1

(
e1 +

Λ

µ
e2

)
and V =

∂V
∂y

(Q0) = −A,

where

e1 = (0, β1, β2, 0, 0), e2 = (0, 0, 0, β3, 0), e3 = (1, 0, 0, 0, 0),

e4 = (0, 0, 0, 0, 1), B1 = (1− p1 − p2, p1, p2, 0, 0)T ,

B2 = (−σ1(1− r1), hσ1(1− r1), σ1(1− h)(1− r1), 0, 0)T and

B3 = (−σ2(1− γ), 0, 0, 0, σ2(1− γ))T .

Thus, using the matrix transformation of [28, 25, 26, 27], the basic repro-

duction number is the spectral radius of FV −1:

R0 =

〈
e1 +

Λ

µ
e2 | (−A−1)B1

〉
. (7)

We use the expression (−A−1) to emphasize that (−A−1) ≥ 0 because the

matrix A is Metzler stable.

The following result is established (from [46]):

Lemma 2.2. : The disease-free equilibrium Q0 of model (4) is locally

asymptotically stable whenever R0 < 1, and instable if R0 > 1.
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From a biological point of view, Lemma 2.2 implies that TB can be

eliminated from the community (when R0 ≤ 1) if the initial sizes of the

population are in the basin of attraction of Q0. But if R0 > 1 the infection

will be able to spread in a population. Generally, the larger the value of R0,

the harder it is to control the epidemic.

3 Bifurcation analysis

Herein, the number of equilibrium solutions of model (4) is investigated.

Let Q∗ = (x∗, y∗) be any arbitrary equilibrium of model (4). To find exis-

tence conditions for an endemic equilibrium of tuberculosis in the population

(steady state with y∗ non zero), the equations in model(4) are set to zero,

i.e., 



ϕ(x∗)− x∗ν∗ = 0,

ν∗[x∗B1 + 〈e3 | y∗〉B2 + 〈e4 | y∗〉B3] +Ay∗ = 0,
(8)

with

ν∗ =
〈e1 | y∗〉
N∗

+ 〈e2 | y∗〉, (9)

is the force of infection at the steady state.

Multiplying the second equation of (8) by −A−1, one obtains

y∗ = ν∗[x∗(−A−1)B1 + 〈e3 | y∗〉(−A−1)B2 + 〈e4 | y∗〉(−A−1)B3]. (10)

Then, one can deduce that

〈e1 | y∗〉 = ν∗[x∗R01 + a1〈e3 | y∗〉+ a2〈e4 | y∗〉],
〈e2 | y∗〉 = ν∗[x∗R02 + a3〈e3 | y∗〉+ a4〈e4 | y∗〉],
〈e3 | y∗〉 = ν∗[x∗a5 + a6〈e3 | y∗〉+ a7〈e4 | y∗〉],
〈e4 | y∗〉 = ν∗[x∗a8 + a9〈e3 | y∗〉+ a10〈e4 | y∗〉],

(11)

where

R01 = 〈e1 | (−A−1)B1〉, R02 = 〈e2 | (−A−1)B1〉, a1 = 〈e1 | (−A−1)B2〉,
a2 = 〈e1 | (−A−1)B3〉, a3 = 〈e2 | (−A−1)B2〉, a4 = 〈e2 | (−A−1)B3〉,
a5 = 〈e3 | (−A−1)B1〉, a6 = 〈e3 | (−A−1)B2〉, a7 = 〈e3 | (−A−1)B3〉,

a8 = 〈e4 | (−A−1)B1〉, a9 = 〈e4 | (−A−1)B2〉 and a10 = 〈e4 | (−A−1)B3〉.
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Using the last two equation of (11), one can deduce that

〈e3 | y∗〉 =
ν∗x∗[a5 + (a7a8 − a5a10)ν∗]

−a7a9(ν∗)2 + (1− a6ν(I, J, L)∗)(1− a10ν∗)
,

〈e4 | y∗〉 =
ν∗x∗[a8 + (a5a9 − a6a8)ν∗]

−a7a9(ν∗)2 + (1− a6ν∗)(1− a10ν∗)
.

(12)

From the first equation of (8), one has

x∗ =
Λ

µ+ ν∗
(13)

Combining equations (9), (11), (12) and (13), one can deduce that the total

population size at the steady state is given by

N∗ =
Λ
(
F2(ν

∗)2 + F1ν
∗ +R01

)

H3(ν∗)3 − (µH3 − ΛC2 − (a6 + a10))(ν∗)2 + (1− µ(a6 + a10)− ΛC1)ν∗ + µ− µR02
,

(14)

where

F2 = R01(a10a6 − a7a9) + a1(a7a8 − a5a10) + a2(a5a9 − a8a6),
F1 = −R01(a6 + a10) + a1a5 + a2a8,
C2 = R02(a10a6 − a7a9) + a3(a7a8 − a5a10) + a4(a5a9 − a8a6),
C1 = R02(a6 + a10) + a3a5 + a4a8,
H3 = (a6a10 − a7a9).

Let w1 = (0, 1, 0, 0, 0)T , w2 = (0, 0, 1, 0, 0)T and w3 = (0, 0, 0, 1, 0)T .

Then, from Eq. (10), one can deduce that

I∗ = 〈w1 | y∗〉 = ν∗[x∗〈w1 | (−A−1)B1〉+ 〈w1 | (−A−1)B2〉〈e3 | y∗〉
+ 〈w1 | (−A−1)B3〉〈e4 | y∗〉],

J∗ = 〈w2 | y∗〉 = ν∗[x∗〈w2 | (−A−1)B1〉+ 〈w2 | (−A−1)B2〉〈e3 | y∗〉
+ 〈w2 | (−A−1)B3〉〈e4 | y∗〉],

L∗ = 〈w3 | y∗〉 = ν∗[x∗〈w3 | (−A−1)B1〉+ 〈w3 | (−A−1)B2〉〈e3 | y∗〉
+ 〈w3 | (−A−1)B3〉〈e4 | y∗〉].

(15)

Now, using the total population dynamics at the steady state, one has

N∗ =
Λ

µ
− d1
µ
I∗ − d2

µ
J∗ − d3

µ
L∗. (16)

Combining Eqs. (12), (15) and (16) yields

N∗ =
Λ

µ

(ν∗)3(H3 −D2) + (ν∗)2(µH3 −D1 − (a6 + a10)) + ν∗(1− µ(a6 + a10)− g0) + µ

H3(ν∗)3 + (H3µ− (a6 + a10))(ν∗)2 + (1− µ(a6 + a10))ν∗ + µ
,

(17)
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where

g0 = d1〈w1 | (−A−1)B1〉+ d2〈w2 | (−A−1)B1〉+ d3〈w3 | (−A−1)B1〉,
g1 = d1〈w1 | (−A−1)B2〉+ d2〈w2 | (−A−1)B2〉+ d3〈w3 | (−A−1)B2〉,
g2 = d1〈w1 | (−A−1)B3〉+ d2〈w2 | (−A−1)B3〉+ d3〈w3 | (−A−1)B3〉,
D1 = −g0(a6 + a10) + a5g1 + a8g2,
D2 = g2(a9a5 − a6a8) + g1(a7a8 − a5a10) + g0(a6a10 − a7a9).

Equating Eqs. (14) and (17), it can be shown that the non-zero equilibria

of model (4) satisfies the following equation in term of ν∗:

E6(ν
∗)6 +E5(ν

∗)5 +E4(ν
∗)4 +E3(ν

∗)3 +E2(ν
∗)2 +E1(ν

∗) +E0 = 0, (18)

where

E6 = H3(H3 −D2),
E5 = H3(µH3 −D1 − (a6 + a10)) + (H3 −D2)(µH3 − (a6 + a10)− ΛC2)− µF2H3,
E4 = H3(1− µ(a6 + a10)− g0) + (µH3 − (a6 + a10)− ΛC2)(µH3 − (a6 + a10)−D1)

+ (H3 −D2)(1− (a6 + a10)− ΛC1)− µF2(µH3 − (a6 + a10)− ΛC2)− µF1H3,
E3 = µH3 + (1− µ(a6 + a10)− g0)(µH3 − (a6 + a10)− ΛC2) + (H3 −D2)(µ− ΛR02)

− µF2(1− µ(a6 + a10)− ΛC1)− µF1(µH3 − (a6 + a10)− ΛC2),
E2 = (1− (a6 + a10)− ΛC1)(1− µ(a6 + a10)− g0) + (µ− ΛR02)(µH3 − (a6 + a10)−D1)

− µ2F2 + µ(µH3 − (a6 + a10)− ΛC2)− µF1(1− (a6 + a10)− ΛC1)
− µR01(µH3 − (a6 + a10)− ΛC2),

E1 = µ(1− (a6 + a10)− ΛC1) + (µ− ΛR02)(1− µ(a6 + a10)− g0)− µ2F2

− (1− (a6 + a10)− ΛC1)µR01,
E0 = µ2(1−R0).

The positive endemic equilibrium point Q∗ are obtained by finding ν∗ from

the polynomial equation (18) and substituting the numerical results (positive

values of ν∗) into the expressions of the state variables at the steady state.

Clearly, the coefficient E0 of equation (18) is positive or negative whenever

R0 is less or greater than unity, respectively. Thus, the number of possible

real roots of the polynomial equation (18) depends on the signs of E6, E5,

E4, E3, E2, E1 and E0. This can be analyzed using the Descartes Rule of

Signs on the function:

f(ν∗) = E6(ν
∗)6+E5(ν(I, J, L)∗)5+E4(ν(I, J, L)∗)4+E3(ν(I, J, L)∗)3+E2(ν(I, J, L)∗)2+E1(ν

∗)+E0,

given in Eq. (18). We claim the following result.

Lemma 3.1. The TB model (4)

(i) could have a unique endemic equilibrium wherever R0 > 1;
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(ii) could have more than one endemic equilibrium wherever R0 > 1;

(iii) could have a unique endemic equilibrium wherever R0 < 1;

(iv) could have one or more endemic equilibria wherever R0 < 1.

The existence of multiple endemic equilibria when R0 < 1 suggests the

possibility of a backward bifurcation (see, [12, 2, 21] and references therein),

where a stable disease-free equilibrium co-exists with a stable endemic equi-

librium when the basic reproduction number is less than unity. This is

explored below via numerical simulations. The function roots of Matlab is

used to find the root of the polynomial (18).

(a)

(b)

Figure 2: Bifurcation diagram for model (4). (a) σ1 = 2.38390 · 10−4 and
(b) σ1 = 0.015. The notation EEP stands for endemic equilibrium point.

The bifurcations which occurs for different signs of σ1 are shown in Fig. 2.

The notation EE stands for endemic equilibrium point. Figures 2 (a) and

(b) show respectively, the force of the infection as a function of the basic

reproduction number R0 generating forward bifurcation when σ1 = 2.38390·
10−4 as well as multiple supercritical endemic equilibria when σ1 = 0.015

using the parameter values in Table 1 (except for β3, which vary). From
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Fig. 2 (b), it clearly appears that there are three equilibrium points in Ωε: a

locally asymptotically stable disease-free equilibrium point on the boundary

of the positive orthant of R6
+, and two endemic equilibrium points inside the

positive orthant. Linear stability analysis (through analysis of the jacobian

matrix at this point) shows that the “larger” endemic equilibrium point is

locally asymptotically stable, while the “smaller” point is unstable. Further

linear analysis with an increased value of β3, (with R0 > 1.155) shows that

the DFE is unstable, and there is one locally asymptotically stable endemic

equilibrium point.

The epidemiological significance of the phenomenon of backward bifur-

cation is that the classical requirement of R0 < 1 is, although necessary, no

longer sufficient for disease eradication. In such a scenario, disease elimina-

tion would depend on the initial sizes of the population (state variables) of

the model. The presence of backward bifurcation in TB transmission model

(4) suggests that the feasibility of controlling TB when R0 < 1 could be

dependent on the initial sizes of the population. Further, as a consequence,

it is instructive to try to determine the “cause” of the backward bifurcation

phenomenon in model (4). The role of reinfection on backward bifurcation

is investigated in the following section.

Now, let us investigate the role of exogenous reinfections. This corre-

sponds to the case where there is no exogenous reinfection in the population,

that is , σ1 = σ2 = 0, B2 = B3 = 0 . Then, model (4) becomes
{
ẋ = ϕ(x)− ν(I, J, L)x,
ẏ = ν(I, J, L)B1x+Ay,

(19)

where ϕ(x), B1, ν(I, J, L) and A are defined as in Eq. (4).

The above model has the same disease-free equilibrium Q0. Apart this

equilibrium state, the model can also have a unique positive endemic equi-

librium state. In the absence of exogenous reinfection σ1 = σ2 = 0 (i.e,

B2 = B3 = 0), the coefficients E0, E1, E2, E3, E4, E5 and E5 in equation

(18) reduce to

E6 = E5 = E4 = E3 = 0, E2 = 1− g0, E1 = µ+ (µ(1−R0)(1− g0),
E0 = µ2(1−R0).

In this case, the force of infection at the steady state satisfies the quadratic

equation

E2(ν
∗)2 + E1ν

∗ + E0 = 0. (20)
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It is worth noting that the coefficient E0 is positive if R0 < 0, and negative

if R0 > 1. Thus, the number of possible real roots of equation (21) depends

on the signs of E2, E1 and E0. This can be analyzed using the Descartes

Rule of Signs on the polynomial g(ν∗) = E2(ν
∗)2 + E1ν

∗ + E0.

From the equality ν(I, J, L) = β1
I

N
+ β2

L

N
+ β3J , one can deduce that

0 ≤ ν∗ ≤
(
β1 + β2 + β3

Λ

µ

)
.

In this case, the force of infection at the steady state satisfies the quadratic

equation

E2(ν
∗)2 + E1ν

∗ + E0 = 0. (21)

It is worth noting that the coefficient E0 is positive if R0 < 0, and negative

if R0 > 1. Thus, the number of possible real roots of equation (21) depends

on the signs of E2, E1 and E0. This can be analyzed using the Descartes

Rule of Signs on the polynomial g(ν∗) = E2(ν
∗)2 + E1ν

∗ + E0.

A simple calculation proves that g0 < R0 when d1 < β1, d2 < β2 and

d3 < β3Λ/µ. This means that the contact rate to get the infection is higher

than the mortality rate of the infection. Since this condition is fulfilled,

R0 ≤ 1 leads to the positivity of E0, E1 and E2. The previous equation

does not have a nonnegative solution if ν∗ > 0 from the Descartes Rule of

Sign.

If R0 > 1 > g0 or E1 < 0 (e.g. (1 − R0)(1 − g0) < 1), then, because

E0 < 0, and g0 < 1, the polynomial has one positive root by Descarte’s Rule

of Sign.

From the equality ν(I, J, L) = β1
I

N
+ β2

L

N
+ β3J , one can deduce that

0 ≤ ν∗ ≤
(
β1 + β2 + β3

Λ

µ

)
.

If R0 > g0 > 1, then E1 > 0, E0 < 0, and E2 < 0; by Descartes

rule of sign, there are two positive solutions. The solution in the interval[
0, β1 + β2 + β3

Λ

µ

]
is the suitable.

Hence, when σ1 = σ2 = 0, no endemic equilibrium exists whenever

R0 < 1. It follows then that, owing to the absence of multiple endemic

equilibria for model (4) with σ1 = σ2 = 0 and R0 < 1, a backward bifurca-

tion is unlikely to happen for model (4). The absence of multiple endemic
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equilibria suggests that the disease-free equilibrium of model (4) is globally

asymptotically stable when R0 < 1.

We claim the following result about the global stability of the DFE of

model (4) whenever σ1 = σ2 = 0.

Theorem 3.2. Consider model (4) with σ1 = σ2 = 0. Then, the DFE is

globally asymptotically stable in Ωε whenever R0 ≤ 1.

The proof of Theorem 3.2 is given in Appendix A.

Figure 3 shows the time series of of susceptible individuals (S), la-

tently infected individuals (E), diagnosed infectious (I), undiagnosed infec-

tious (J), lost sight (L) and recovered individuals (R) of model (4) when

β3 = 0.2605681 · 10−6 (so that R0 = 0.4424) using various initial conditions.

All other parameters are as in Table 1. It illustrates the convergence of the

trajectories of the model (4) without exogenous reinfection to the disease

free equilibrium when R0 ≤ 1. This means that after long time of decreas-

ing, TB will die out in the absence of exogenous reinfection. This figure

also shows that reaching a disease free equilibrium, will take more decades

than meet the endemic equilibrium point. This is certainly due to the fact

that some latently infected individuals might not develop the disease over

their life time. In fact, the high number of latent makes the class persis-

tent throughout the simulation and allows therefore longer time to reach the

DFE.

The local stability of the endemic equilibrium of the model (4) with-

out exogenous reinfection is stated in Theorem 3.3 below and proved in

Appendix B.

Theorem 3.3. The endemic equilibrium of model without exogenous rein-

fection (4) is locally asymptotically stable for R0 > 1 but close to 1.

The time evolution of the fraction of susceptible individuals (S), latently

infected individuals (E), diagnosed infectious (I), undiagnosed infectious (J),

lost sight (L) and recovered individuals (R) of system (4) using various initial

values when β3 = 1.26 · 10−06 and σ1 = σ2 = 0 (so that R0 = 1.6079) is

shown in Figure 4. Various initial states are used to see numerically the

impact of varying initial values on the stability of the endemic equilibrium.

The figure illustrates the convergence of the trajectories of model (4) without

exogenous reinfections to a local endemic equilibrium.
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Figure 3: Simulation results of model (4) showing the global asymptotic
stability of the DFE for the fraction of population in each class using various
initial conditions when β3 = 0.26·10−6 and σ1 = σ2 = 0 (so that R0 = 0.44).

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 100 200 300 400
Time (Year)

0.2

0.4

0.6

0.8

1

P
op

ul
at

io
n 

of
 s

us
ce

pt
ib

le
 in

di
vi

du
al

s

(a)
0 100 200 300 400

Time (Year)

0

0.2

0.4

0.6

0.8

P
op

ul
at

io
n 

of
 la

te
nt

ly
 in

fe
ct

ed
 in

di
vi

du
al

s

(b)

0 100 200 300 400
Time (Year)

0

2

4

6

8

P
op

ul
at

io
n 

of
 d

ia
gn

os
ed

 in
fe

ct
io

us

×10 -4

(c)
0 100 200 300 400

Time (Year)

0

1

2

3

4

P
op

ul
at

io
n 

of
 u

nd
ia

gn
os

ed
 in

fe
ct

io
us ×10 -4

(d)

0 100 200 300 400
Time (Year)

0

0.2

0.4

0.6

0.8

1

1.2

P
op

ul
at

io
n 

of
 lo

st
 s

ig
ht

×10 -4

(e)
0 100 200 300 400

Time (Year)

0

1

2

3

4

5

6

P
op

ul
at

io
n 

of
 r

ec
ov

er
ed

×10 -3

(f)

Figure 4: Time series of model (4) showing the local stability of the endemic
equilibrium of the fraction of population in each class for various initial
conditions when β3 = 1.26 · 10−06 and σ1 = σ2 = 0 (so that R0 = 1.6079).
All other parameters are defined as in Table 1.
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4 The model with stochasticity

We performed Monte-Carlos simulation on the reinfection rates σ1 and

σ2 to see how it affects the disease free equilibrium when R0 < 1 for a fixed

population size. Using parameter values as in Fig. 3, it comes out that for

random generation of σi, the disease could converge to an endemic equilib-

rium or a disease free equilibrium (Figure 5 ). It illustrates the existence of

backward bifurcation in the presence of exogenous reinfection.

Analysis of the model with data from Cameroon, as estimated in [37],

did not reveal any backward bifurcation. Considering exogenous reinfection

as a random phenomena with changes every years due to different reasons,

Figure 6 presents result of 50 times numerical simulations of the model.

Here, we considered the exogenous reinfection as random perturbation in

the system at each time steps. The stop criterium was the positivity of the

system. It appears that TB dies out in all run after relatively long run. This

result supports that for various exogenous reinfection and when R0 < 1, the

disease might still die out.

5 Discussion and conclusion

In this paper, we presented a comprehensive, continuous and realistic

deterministic model for the transmission dynamics of tuberculosis in sub-

Saharan Africa whose object is to determine the role of TB diagnosis, treat-

ment and lack information about the epidemiological status of certain pa-

tients. In contrast to many TB models in the literature, the model includes

three infective classes emanating from diagnosed and undiagnosed infectious

and lost sight. The undiagnosed and lost sight subclasses are of particular

importance in modeling TB in developing countries since it reflects better

the social reality. In particular the proportion of individuals that are diag-

nosed is very important factor for intervention strategies. The parameter

can be used can be used to measure successes of educational campaigns that

encourage individuals to go for TB screening. It can also be a measure of

the level of awareness of the implications of not having TB diagnosis.

The model was rigorously analyzed to gain insight into its qualitative

dynamics. It was mainly found that the model exhibits the phenomenon

of backward bifurcation, where the stable disease-free equilibrium co-exists
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Figure 5: Monte-Carlos simulation of model (4) showing the instability of
the DFE for various random values of σ1 and σ2 when β3 = 0.26 · 10−06

(R0 = 0.44).
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Figure 6: Monte-Carlos simulation of model (4) showing stability of the
DFE for various random values of σ1 and σ2 when β3 = 0.26 · 10−06 (R0 =
0.4424).
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with a stable endemic equilibrium, when the basic reproduction ratio is

less than unity. However, backward bifurcation dynamics feature is caused

by the re-infection of latently infected and recovered individuals had mainly

occur for values that over ten times than estimations from Cameroon’s data.

Numerical analysis allowed us to observe that to reach a disease free

equilibrium, it will take more decades than reaching endemic equilibrium

point, because the latently infected population will take more time to reach

zero due to the high number and the slow flow to other classes. For high

values, potentially unrealistic of the reinfection rate, backward bifurcation

was effective and lead to a convergence to a disease endemic equilibrium.

However, for random values of the reinfection rate at each computation

state, the disease dies out. This means that backward bifurcation only

occurs for constant and high values of reinfection rates. Since the effect of

drug resistance is an important aspect on TB propagation, this study might

be extended to account drug resistances and specific HIV/AIDS coinfection

classes.
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Appendix A: Proof of Theorem 3.2

The local stability of Q0 is classic by the result of van den Driessche and

Watmough [46]. Since we are interested in the global asymptotic behavior

of model (4), we will show that there exists T > 0 such that, if R0 < 1,

the solutions of model system (4) without exogenous reinfections tend to

the DFE Q0 = (S0, 0, 0, 0, 0) when t → ∞, ∀t > T . Indeed, from the first

equation of model (4) without exogenous reinfections, one has

Ṡ ≤ Λ− µS. (22)

This suggests the linear comparison system:

Ṡ = Λ− µS. (23)

The linear comparison system (23) has a unique positive equilibrium S0

which is globally asymptotically stable. By the comparison theorem for

cooperative systems, one has that

lim sup
t→∞

S(t) ≤ lim
t→∞

S(t) = S0. (24)

Thus, for any σ > 0, there exists a sufficiently large T > 0 such that

S(t) ≤ S0 + σ, for all t > T .

Since R0 depend of S0, we set F = F (S0), S
σ
0 = S0 + σ and Fσ =

F (Sσ0 ) = F (S0 + σ) = [F1 + (S0 + σ)F2]B. Since the spectral radius of

FσV
−1 is a continuous function of σ, we can choose σ as small as possible

such that if ρ(FV −1) < 1, so ρ(FσV
−1) < 1.

Now, since S(t) ≤ S0 + σ for all t > T and
S(t)

N(t)
≤ 1, replacing S(t) by

S0 + σ in model (4) without exogenous reinfections, we have the following

comparison linear system in E, I, J , L and R :




Ė = (1− p1 − p2)(β1I + β2L+ β3J(S0 + σ)) + ρJ −A1E,

İ = p1(β1I + β2L+ β3J(S0 + σ)) + δL+ θJ + γR+ h(1− r1)k −A2I,

J̇ = p2(β1I + β2L+ β3J(S0 + σ)) + (1− h)(1− r1)k −A3J,

L̇ = αI −A4L,

Ṙ = r2I + ωL−A5R,

(25)

Model system (25) can be written in the following compact form:

ẏ = (Fσ − V ) y, (26)
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where y is defined as in model (6). Note that y = (0, 0, 0, 0, 0) is the unique

equilibrium of the linear comparison system (26) which is globally asymptot-

ically stable, since it is well known that if s(Fσ−V ) is the stability modulus

of the matrix (Fσ − V ) defined as the maximal real part of the eigenvalues

of (Fσ − V ), then from [46], s(Fσ − V ) < 0 is equivalent to ρ(FσV
−1) < 1.

Therefore, all solutions of the linear comparison system (26) converge to the

trivial solution y = (0, 0, 0, 0, 0) when t → ∞, with t > T . It is obvious to

see that Fσ−V as the Jacobian of model (26) is a M-matrix and irreducible.

Thus, by the comparison theorem for monotone dynamical systems [10], we

can conclude that the E, I, J,R components of model (4) also converge to

zero when t → ∞, with t > T . Putting this last zero solution into the

first equation of model (4) without exogenous reinfections gives the linear

system (23) which admits a unique positive equilibrium S0 which is globally

asymptotically stable. Finally, by the asymptotically autonomous systems

theory [17], we can conclude that the S-component of the solution of sys-

tem (4) without exogenous reinfections converges to S0. This proves the

global asymptotic stability of the DFE Q0 = (S0, 0, 0, 0, 0, 0) when R0 < 1,

and this completes the proof. �

Appendix B: Proof of Theorem 3.3

In order to analyze the stability of the endemic equilibrium point, we

make use of the Centre Manifold theory as described by Theorem 4.1 of [16],

stated below (Theorem 5.1 for convenience), to establish the local asymp-

totic stability of the TB endemic equilibrium in the absence of reinfection.

Theorem 5.1. [16]: Consider the following general system of ordinary dif-

ferential equations with a parameter φ:

dz

dt
= f(z, φ), f : Rn × R→ R and f ∈ C2(Rn,R), (27)

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ)

and assume

1. A = Dzf(0, 0) =

(
∂fi
∂zj

(0, 0)

)
is the linearization matrix of system

(27) around the equilibrium 0 with φ evaluated at 0. Zero is a simple

eigenvalue of A and other eigenvalues of A have negative real parts;

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2. Matrix A has a right eigen-vector u and a left eigen-vector v (each

corresponding to the zero eigenvalue).

Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkuiuj
∂2fk
∂zi∂zj

(0, 0),

b =
n∑

k,i=1

vkui
∂2fk
∂zi∂φ

(0, 0),

then, the local dynamics of the system around the equilibrium point 0 is

totally determined by the signs of a and b.

1. a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically

stable and there exists a positive unstable equilibrium; when 0 < φ� 0,

0 is unstable and there exists a negative, locally asymptotically stable

equilibrium;

2. a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ� 1,

0 is locally asymptotically stable equilibrium, and there exists a positive

unstable equilibrium;

3. a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists

a locally asymptotically stable negative equilibrium; when 0 < φ � 1,

0 is stable, and a positive unstable equilibrium appears;

4. a < 0, b > 0. When φ changes from negative to positive, 0 changes its

stability from stable to unstable. Correspondingly a negative unstable

equilibrium becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

Let us first make the following simplification and change of variables.

Let x1 = S, x2 = E, x3 = I, x4 = J , x5 = L and x6 = R so that

N = x1 + x2 + x3 + x4 + x5 + x6. Further, by using vector notation x =

(x1, x2, x3, x4, x5, x6)
T , the TB model (4) without exogenous reinfections can

be written in the form ẋ = f(x), with f = (f1, f2, f3, f4, f5, f6)
T , as follows:





x′1 = f1 = Λ− (µ+ ν(I, J, L))x1,
x′2 = f2 = (1− p1 − p2)ν(I, J, L)x1 + ρJ −A1x2,
x′3 = f3 = p1ν(I, J, L)x1 + h(1− r1)kx2 + δx5 + γx6 −A2x3,
x′4 = f4 = p2ν(I, J, L)x1 + (1− h)(1− r1)kx2 −A3x4,
x′5 = f5 = αx3 −A4x5,
x′6 = r2x3 + ωx5 −A5x6,

(28)
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where ν(I, J, L) =
β1x3 + β2x5

x1 + x2 + x3 + x4 + x5 + x6
+β3x4, with A1, A2, A3, A4

and A5 defined as in model (4).
The Jacobian of the system (4), at the DFE Q0, for all β3 is given by

Jβ3
(Q0) =



−µ 0 −β1 −β̃3 −β2 0

0 −A1 β1(1− p1 − p2) (1− p1 − p2)β̃3 + ρ (1− p1 − p2)β2 0

0 hk(1− r1) p1β1 −A2 p1β̃3 + θ β2p1 + δ γ

0 (1− h)k(1− r1) p2β1 p2β̃3 −A3 β2p2 0
0 0 α 0 −A4 0
0 0 r2 0 ω −A5



.

with β̃3 = β3N0.
The reproduction number of the transformed (linearized) model (28) is

the same as that of the original model given by (7). Therefore, choosing
β3 as a bifurcation parameter and solving equation in β3 when R0 = 1, we
obtain

β3 = β∗3 =
1−

〈
e1 | (−A−1)B1

〉

〈N0e′2 | (−A−1)B1〉
.

where e′2 = (0, 0, 0, 1, 0). It follows that the Jacobian J(Q0) of system (28)
at the DFE Q0, with β3 = β∗3 , denoted by Jβ∗

3
has a simple zero eigenvalue

(with all other eigenvalues having negative real parts). Hence, the Centre
Manifold theory [14] can be used to analyse the dynamics of the model (28).
Now, the theorem 5.1 (cf. [16], can be used to show that the unique endemic
equilibrium of the model (28) (or, equivalently, (4)) is locally asymptotically
stable for R0 near 1.

Eigenvectors of Jβ∗
3
: For the case when R0 = 1, it can be shown that

the Jacobian of system (28) at β3 = β∗3 (denoted by Jβ∗
3
) has a right eigenvec-

tor (corresponding to the zero eigenvalue), given by U = (u1, u2, u3, u4, u5, u6)
T ,

where,

u1 = − 1

µ

((
β1 + β2

B4

C4

)
u3 + β̃3u4

)
< 0,

u2 =
1

A1

(
(1− p1 − p2)

(
β1 +

β2α

A4

)
+ (β̃3(1− p1 − p2) + ρ)

B4

C4

)
u3 > 0, u3 > 0,

u4 =
B4

C4
u3 > 0, u5 =

α

A4
u3 > 0, and u6 =

r2A4 + ωα

A4A5
u3 > 0

(29)

with B4 =

[
p2 + (1− p1 − p2)

(1− h)k(1− r1)
A1

](
β1 +

β2α

A4

)

and C4 = A3 −
(
β̃3p2 +

β̃3(1− p1 − p2) + ρ

A1
(1− h)(1− r1)k

)
.
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Similarly, the components of the left eigenvectors of Jβ∗ (corresponding
to the zero eigenvalue), denoted by V = (v1, v2, v3, v4, v5, v6)

T , are given by,

v1 = 0, v2 =
h(1− r1)k

A1
v3 +

(1− h)(1− r1)k
A1

v4, v3 = v3 > 0,

v4 =
(θ + β̃3p1)A1 + h(1− r1)k(ρ+ β̃3(1− p1 − p2))

β̃3((1− h)(1− r1)k((1− p1 − p2) + ρ) + p2A1) +A1A3

v3 > 0,

v5 =

(
(1− p1 − p2)

β2
A4

h(1− r1)k
A1

+
β2p1N0 + δ

A4

)
v3

+

(
β2(1− p1 − p2)

A4

(1− h)(1− r1)k
A1

+
β2p2
A4

)
v4 > 0,

and v6 =
γ

A5
v3 > 0

(30)
Computation of b: For the sign of b, it can be shown that the associated

non-vanishing partial derivatives of f are

∂2f1
∂x4∂β∗3

= −N0,
∂2f2
∂x4∂β∗3

= (1− p1 − p2)N0,
∂2f3
∂x4∂β∗3

= p1N0,
∂2f3
∂x4∂β∗3

= p2N0

Substituting the respective partial derivatives into the expression

b = v2

6∑

i=1

ui
∂2f2
∂xiβ∗

+ v3

6∑

i=1

ui
∂2f3
∂xiβ∗

+ v4

6∑

i=1

ui
∂2f4
∂xiβ∗

,

gives
b = u4N0(v2(1− p1 − p2) + v3p1 + v4p2) > 0. (31)

Computation of a: For model (28), the associated non-zero partial deriva-
tives of f (at the DFE Q0) are given by

∂2f1
∂x3∂x1

= − β1
N2

0

,
∂2f1
∂x4∂x1

= −β3,
∂2f1
∂x5∂x1

= − β2
N2

0

,

∂2f2
∂x3∂x2

= −(1− p1 − p2)
β1
N0

,
∂2f2
∂x5∂x2

= −(1− p1 − p2)
β2
N0

,

∂2f3
∂x2∂x3

= −p1
β1
N0

,
∂2f3
∂x23

= −2p1
β1
N2

0

,
∂2f3
∂x4∂x3

= −p1
β1
N0

,
∂2f3
∂x5∂x3

= −(β1 + β2)
p1
N0

,

∂2f3
∂x6∂x3

= −p1
β1
N0

,
∂2f4
∂x1∂x4

= β3p2,
∂2f4
∂x3∂x4

= −β1p2
1

N0
,

∂2f4
∂x5∂x4

= −β2p2
1

N0
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Then, it follows that

a = −2

(
v2u2(1− p1 − p2)

1

N0
(u3β1 + u5β2)

)

− 2

(
v3u3p1

1

N0

[
(u2 +

u3
N0

+ u4 + u5 + u6)β1 + β2u5

])

− 2v4u4p2 [−u1β3 + β1u3 + β2u5] ,

so that the bifurcation coefficient a < 0 since u1 < 0. Thus, we have a < 0
and b > 0. All conditions of Theorem 5.1 are satisfied and it should be
noted that we use β∗3 as the bifurcation parameter, in place of φ in Theorem
5.1). Thus, it follows that the endemic equilibrium is locally asymptotically
stable. This concludes the proof.

�
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[3] N. Bacaër, R. Ouifki, C. Pretorius, R. Wood, and B. Williams. Model-
ing the joint epidemics of TB and HIV in a South African township. J
Math Biol, 57(4):557–93, Oct. 2008.

[4] Y. Balabanova, V. Tchernyshev, I. Tsigankov, S. Maximova,
N. Mikheeva, L. Fedyukovitch, S. Kuznetsov, I. Fedorin, and F. Drob-
niewski. Analysis of undiagnosed tuberculosis-related deaths identified
at post-mortem among hiv-infected patients in russia: a descriptive
study. BMC Infectious Diseases, 11(1):276, 2011.

[5] A. Bandera, A. Gori, L. Catozzi, A. Esposti, G. Marchetti, C. Molteni,
G. Ferrario, L. Codecasa, V. Penati, A. Matteelli, and F. Franzetti.
Molecular epidemiology study of exogenous reinfection in an area with
a low incidence of tuberculosis. J. Clin. Microbiol., 39:2213–2218, 2001.

[6] M. Begon, M. Bennett, R. G. Bowers, N. P. French, S. M. Hazel, and
J. Turner. A clarification of transmission terms in host-microparasite
models : numbers, densities and areas. Epidemiol. Infect., 129:147–153,
2002.

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[7] S. R. Benatar. Facing ethical challenges in rolling out antiretroviral
treatment in resource-poor countries: Comment on ”they call it ’patient
selection’ in khayelitsha”. Cambridge Quarterly of Healthcare Ethics,
15:322–330, 2006.

[8] S. R. Benatar, A. S. Daar, and P. A. Singer. Global health challenges:
The need for an expanded discourse on bioethics. Public Library of
Science Medicine PLOS, 2(7):100–102, 2005.

[9] C. Bhunu, W. Garira, Z. Mukandavire, and M. Zimba. Tuberculosis
transmission model with chemoprophylaxis and treatment. Bulletin
of Mathematical Biology, 70(4):1163–1191, 2008. 10.1007/s11538-008-
9295-4.

[10] G. Birkhoff and G.-C. Rota. Ordinary Differential Equations. John
Wiley and Sons new York, 3rd edition, 1978.

[11] S. M. Blower, P. Small, and P. Hopewell. Control strategies for tuber-
culosis epidemics: new method for old problem. Science, 273:497–500,
1996.

[12] F. Brauer. Backward bifurcation in simple vaccination models. Journal
of Mathematical Analysis and Application, 298:418–431, 2004.

[13] F. Brauer and C. Castillo-Chavez. Mathematical Models in Population
Biology and Epidemiology. Springer-Verlag New York, Inc.,, 2001.

[14] J. Carr. Applications Centre Manifold theory. Springer-Verlag New
York, 1981.

[15] C. Castillo-Chavez and Z. Feng. To treat or not to treat: the case of
tuberculosis. J. Math. Biol., 35:629–635, 1997.

[16] C. Castillo-Chavez and B. Song. Dynamical models of tuberculosis and
their applications. Math. Biosci. Eng., 1:361–404, 2004.

[17] C. Castillo-Chavez and H. R. Thieme. Asymptotically autonomous epi-
demic models. In A. et al, editor, Mathematical Population Dynamics:
Analysis of heterogeneity Theory of epidemics, volume 1, pages 33–50.
Wuerz, Winnipeg, 1995.

[18] C. Chintu and A. Mwinga. An african perspective of tuberculosis and
hiv/aids. Lancet, 353:997–1005, 1999.

[19] C. Dye, S. Schele, P. Dolin, V. Pathania, and M. Raviglione. For the
who global surveillance and monitoring project. global burden of tuber-
culosis estimated incidence and prevalence and mortality by country.
JAMA, 282:677–686, 1999.

31



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[20] C. Dye and B. G. Williams. The population dynamics and control of
tuberculosis. Science, 328(5980):856–61, May 2010.

[21] E. H. Elbasha and A. Gumel. Theoretical assesssment of public health
impact of imperfect prophylatics hiv-1 vaccines with therapeutic bene-
fits. Bulletin of Mathematical Biology, 68:577–614, 2006.

[22] Z. Feng, C. Castillo-Chavez, and A. F. Capurro. A model for tubercu-
losis with exogenous reinfection. Theor Popul Biol, 57(3):235–47, May
2000.

[23] K. Hadeler and P. van den Driessche. Backward bifurcation in epidemic
control. Math. Biosci., 146:15–35, 1997.

[24] H. W. Hethcote. The mathematics of infectious diseases. SIAM Review,
42:599–653, 2000.

[25] A. Iggidr, J. C. Kamgang, G. Sallet, and J. J. Tewa. Global analysis of
new malaria intrahost models with a competitive exclusion principle.
SIAM J. App. Math., 1:260–278, 2007.

[26] A. Iggidr, J. Mbang, and G. Sallet. Stability analysis of within-host
parasite models with delays. Math. Biosci., 209:51–75, 2007.

[27] A. Iggidr, J. Mbang, G. Sallet, and J. J. Tewa. Multi-compartment
models. Discrete Contin. Dyn. Syst. Ser. B, 1:506–519, 2007.

[28] J. C. Kamgang and G. Sallet. Computation of threshold conditions for
epidemiological models and global stability of the disease-free equilib-
rium (DFE). Math Biosci, 213(1):1–12, May 2008.

[29] T. K. Kar and P. K. Mondal. Global dynamics of a tuberculosis epi-
demic model and the influence of backward bifurcation. J Math Model
Algor, 11:433–459, 2012.

[30] C. Kribs-Zaleta and J. Halesco-Hernandez. A simple vaccination model
with multiple endemic states. Math. Biosci., 164:183–201, 2000.

[31] V. Kumar, A. K. Abbas, N. Fausto, and R. N. Mitchell. Basic Pathology
(8th ed.), volume ISBN 978-1-4160-2973-1. Saunders Elsevier, 2007.

[32] D. Moualeu, S. Bowong, and Y. Emvudu. Global properties of a tuber-
culosis model with n latents classes. JAMI, 29(5-6):1097–116, 2011.

[33] D. P. Moualeu, S. Bowong, and Y. Emvudu. Analysis of the impact of
diabetes on the dynamics transmission of tuberculosis. Mathematical
modeling of natural phenomena, 7(03):117–146, 2012.

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[34] D. P. Moualeu, J. Mbang, R. Ndoundam, and S. Bowong. Modeling
and analysis of hiv and hepatitis c co-infections. Journal of Biological
Systems, 19(04):683–723, 2011.

[35] D. P. Moualeu, M. Weiser, R. Ehrig, and P. Deuflhard. Optimal control
for a tuberculosis model with undetected cases in cameroon. Commu-
nications in Nonlinear Science and Numerical Simulation, 20(3):986–
1003, 2015.

[36] D. P. Moualeu-Ngangue. A Mathematical Tuberculosis Model in
Cameroon. PhD thesis, FU Berlin, 2013.
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