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Analysis of a tuberculosis model with undetected and lost-sight cases

Introduction

The global burden of tuberculosis (TB) has increased over the past two decades, despite widespread implementation of control strategies including

A C C E P T E D M

A N U S C R I P T BCG (Bacillus Calmette-Guerrin) vaccination and the World Health Organization's (WHO) DOTS strategy which focuses on case finding and shortcourse chemotherapy cause of death. TB is the second largest cause of death from an infectious agent after HIV/AIDS in developing countries [START_REF] Dye | For the who global surveillance and monitoring project. global burden of tuberculosis estimated incidence and prevalence and mortality by country[END_REF]. In the modern era, TB is recognized as a disease that preys upon social disadvantage [START_REF] Benatar | Global health challenges: The need for an expanded discourse on bioethics[END_REF][START_REF] Benatar | Facing ethical challenges in rolling out antiretroviral treatment in resource-poor countries: Comment on "they call it 'patient selection' in khayelitsha[END_REF]. It remains a worldwide emergency mostly affecting poor countries and to this old and persistent threat, the multidrug-resistant TB is a emergency adding further challenges. Despite predictions of a decline in global incidence, the number of new cases continues to grow, approaching 10 million in 2010 [START_REF] Dye | The population dynamics and control of tuberculosis[END_REF].

TB has a latent or incubation period during which the individual is said to be infected but not infectious. This period was modeled either by incorporating as a delay effect or by introducing an exposed class. Therefore, second infection or reinfection occurs in an individual in both high and lowincidence regions, which is already experiencing an infection with another agent. This parameter plays an important role on TB dynamics. Some authors proposed mathematical models of TB including reinfection and assumed that the rate of reinfection is a multiple of the rate of first infection [START_REF] Uys | Tuberculosis reinfection rate as a proportion of total infection rate correlates with the logarithm of the incidence rate: a mathematical model[END_REF][START_REF] Van Rie | Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment[END_REF][START_REF] Verver | Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis[END_REF][START_REF] Wang | Backward bifurcation of an epidemic model with treatment[END_REF][START_REF] Yang | The effects of re-infection in directly transmitted infections modeled with vaccination[END_REF][START_REF] Bandera | Molecular epidemiology study of exogenous reinfection in an area with a low incidence of tuberculosis[END_REF][START_REF] Feng | A model for tuberculosis with exogenous reinfection[END_REF][START_REF] Kar | Global dynamics of a tuberculosis epidemic model and the influence of backward bifurcation[END_REF]. Exposed individuals who have been previously infected (in dormant stage) or recovered individuals may acquire new infection from another infectious individual due to low immunity of persons. Therefore, individuals in the latent stage of TB progress into active stage due to exogenous reinfection and recovered individual may progress to Latently infected class [START_REF] Uys | Tuberculosis reinfection rate as a proportion of total infection rate correlates with the logarithm of the incidence rate: a mathematical model[END_REF][START_REF] Van Rie | Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment[END_REF][START_REF] Verver | Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis[END_REF][START_REF] Wang | Backward bifurcation of an epidemic model with treatment[END_REF][START_REF] Yang | The effects of re-infection in directly transmitted infections modeled with vaccination[END_REF][START_REF] Bandera | Molecular epidemiology study of exogenous reinfection in an area with a low incidence of tuberculosis[END_REF][START_REF] Feng | A model for tuberculosis with exogenous reinfection[END_REF][START_REF] Kar | Global dynamics of a tuberculosis epidemic model and the influence of backward bifurcation[END_REF]. Studies confirmed that reinfection in areas with a low incidence of tuberculosis is possible, although less common than in high-incidence geographical regions, indicating that higher prevalence of M. tuberculosis represents the major risk for tuberculosis reinfection.

The challenge of TB control in developing countries is due to the increase of TB incidence by a high level of undiagnosed infectious population and lost sight population with respect to diagnosed infectious cases. Undiagnosed infectious population means people who have not yet been to a hospital for diagnosis or have not been detected, but have a pulmonary TB [START_REF] Balabanova | Analysis of undiagnosed tuberculosis-related deaths identified at post-mortem among hiv-infected patients in russia: a descriptive study[END_REF][START_REF] Wood | Undiagnosed tuberculosis in a community with high hiv prevalence: implications for tuberculosis control[END_REF] when lost sight population are people who have been diagnosed as having active TB, begun their treatment and quitted before the end.

A C C E P T E D M A N U S C R I P T

Lost-sight population are the most likely to develop multi-drug resitance [START_REF] Who | Global tuberculosis control: surveillance, planning, financing[END_REF]. Compared to existing results [START_REF] Castillo-Chavez | To treat or not to treat: the case of tuberculosis[END_REF][START_REF] Bhunu | Tuberculosis transmission model with chemoprophylaxis and treatment[END_REF][START_REF] Murphy | On the treatment of tuberculosis in hetergeneous populations[END_REF][START_REF] Bacaër | Modeling the joint epidemics of TB and HIV in a South African township[END_REF][START_REF] Aparicio | Markers of disease evolution: the case of tuberculosis[END_REF][START_REF] Chintu | An african perspective of tuberculosis and hiv/aids[END_REF][START_REF] Moualeu | Global properties of a tuberculosis model with n latents classes[END_REF][START_REF] Okuonghae | Dynamics of tuberculosis: The effect of direct observation therapy strategy (dots) in nigeria[END_REF][START_REF] Feng | A model for tuberculosis with exogenous reinfection[END_REF] and references therein, our work differs from these studies in that our model, in addition to undiagnosed infectious and lost sight population, also considers the aspects of exogenous reinfections, disease relapse as well as primary active TB cases, natural recovery and traditional medicine or self-medication (practiced in Sub-Saharan Africa). Also, it is recognized that undiagnosed population, lost sight population and exogenous reinfections are important components of TB transmission in Sub-Saharan Africa. For the new mathematical model, the infective class is divided into three subgroups with different properties: i) diagnosed infectious population, ii) undiagnosed infectious population and iii) lost sight population. According to the National Committee of Fight against TB of Cameroon (NCFT) [START_REF] Ncft | Guide de personnel de la santé[END_REF], about 8% of diagnosed infectious that begin their therapy treatment never returned to the hospital for the rest of sputum examinations and treatment, and then become lost sight. This class of TB epidemiological models can be extended to many classes of infective individuals and data for many other African countries.

For many epidemiological models, a threshold condition that indicates whether an infection introduced into a population will be eliminated or become endemic was defined [START_REF] Brauer | Mathematical Models in Population Biology and Epidemiology[END_REF]. The basic reproduction number R 0 is defined as the average number of secondary infections produced by an infected individual in a completely susceptible population [START_REF] Hethcote | The mathematics of infectious diseases[END_REF]. In models with only two steady states and a transcritical bifurcation, R 0 > 1 implies that the endemic state is stable (e.g. the infection persists), and R 0 ≤ 1 implies that the uninfected state is stable (e.g. the infection will die out). The co-existence of disease-free equilibrium and endemic equilibrium points when the basic reproduction number (R 0 < 1) is typically associated with the backward or subcritical bifurcation. This phenomenon was found in many epidemiological settings (see for instance, [START_REF] Elbasha | Theoretical assesssment of public health impact of imperfect prophylatics hiv-1 vaccines with therapeutic benefits[END_REF][START_REF] Hadeler | Backward bifurcation in epidemic control[END_REF][START_REF] Kribs-Zaleta | A simple vaccination model with multiple endemic states[END_REF][START_REF] Singer | Influence of backward bifurcation on interpretation of r0 in a model of epidemic tuberculosis with reinfection[END_REF] and references therein). The epidemiological implication of is that the classical requirement of having the associated reproduction number less than unity, while necessary is not a sufficient condition for disease control. Results showed that a threshold level of reinfection exists in all cases of the model. Beyond this threshold, the dynamics of the model are described by a backward bifurcation. However, uncertainty analysis of the parameters showed that this threshold is too
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high to be attained in a realistic epidemic [START_REF] Singer | Influence of backward bifurcation on interpretation of r0 in a model of epidemic tuberculosis with reinfection[END_REF]. In our previous works, we analysed optimal control strategies for the model and estimated parameters corresponding to data recorded in Cameroon [START_REF] Moualeu-Ngangue | Parameter identification in a tuberculosis model for cameroon[END_REF][START_REF] Moualeu | Optimal control for a tuberculosis model with undetected cases in cameroon[END_REF][START_REF] Moualeu-Ngangue | A Mathematical Tuberculosis Model in Cameroon[END_REF]. Here, we intend to discuss the role of exogenous reinfection on the existence of backward bifurcation in the TB model. In this paper, we determine the basic reproduction ratio, and discuss the existence and the stability of the endemic equilibrium and the disease free equilibrium (DFE). Some discussion about the TB persistence condition was deduced. In some countries, reliable TB tests are often missing or too expensive [START_REF] Kumar | Basic Pathology[END_REF]. Hence, TB diagnosis based on a single sputum examination can often only be classified as "probable" or "presumed", and cannot detect cases of less infectious forms of TB [START_REF] Who | Global tuberculosis control: surveillance, planning, financing[END_REF]. Therefore, the model is based on the following assumptions, established from behaviors of people in different epidemiological classes.

The Proposed Model

A C C E P T E D M

A N U S C R I P T 1. Mtb transmission from diagnosed infectious to susceptible population, due to education on the infection is limited. It was therefore modeled using a standard incidence or frequency-dependent force of infection.

2. Mtb transmission from undiagnosed infectious to susceptible population, due to their level of education on the disease was modeled by a density-dependent force of infection.

These arguments abide on the fact that diagnosed infectious people are in most cases hospitalized for at least 2 months or are advised to lessen their infectiousness in their residing neighborhood. Their distribution in the population is not necessarily homogeneous. Since undiagnosed infectious remain inside the population, there is an unlimited possibility of contacts with the susceptible population [START_REF] Balabanova | Analysis of undiagnosed tuberculosis-related deaths identified at post-mortem among hiv-infected patients in russia: a descriptive study[END_REF]. We therefore assume a density dependent force of infection for hospital inmates [START_REF] Begon | A clarification of transmission terms in host-microparasite models : numbers, densities and areas[END_REF].

All recruitment is into the susceptible class and occurs at an average scale Λ. The fixed survey for non-disease related death is µ, thus 1/µ is the average lifetime. Diagnosed infectious, undiagnosed infectious and lost sight population have additional constant death rates due to the disease, defined by d 1 , d 2 and d 3 , respectively. Transmission of Mtb occurs due to adequate contacts among susceptible and an active TB case. Thus, susceptible individuals acquire Mtb infection from individuals with active TB and lost sight at a rate ν(I, J, L) given by

ν(I, J, L) = β 1 I N + β 2 L N + β 3 J, (1) 
where β i , i = 1, 2, 3, are the effective contact rates with diagnosed, lost sight and undiagnosed infectious population sufficient to transmit infection to susceptible people. The effective contact rates β i in a given population for tuberculosis are measured in effective contacts per unit time. This may be expressed as the product of the total contact rate per unit time (η i ) by the risk of infection (φ i ) given contact between an infectious and a susceptible individual,

β i = η i φ i .
This risk is called the transmission risk. 

λ e = σ 1 ν(I, J, L), (2) 
where σ 1 is the factor reducing the risk of infection as a result of acquiring immunity for latently infected individuals. Among latently infected individuals who become infectious, the fraction h is diagnosed and treated under the "Stop TB" program, while the remaining 1h is not diagnosed and becomes undiagnosed infectious J. We assume that after some time suffering from TB, some undiagnosed infectious decide to go to hospital with a rate θ. Also, we assume that among diagnosed infectious who had begun their treatment therapy, a fraction r 2 of I has taken all the dose and has made all the sputum examinations and will be declared cured from the disease. Some diagnosed infectious who have not finished their dose of drugs and sputum examinations or whose treatment was unsuccessful, will not return to the hospital for the rest of sputum examinations and check-up. They will enter the class of lost sight L at a constant rate α. Lost sight can return to the hospital at a constant rate δ.

As suggested by Murray et al. [START_REF] Murray | Tuberculosis in developing countries: burden, intervention, and cost[END_REF], recovered individuals can only have partial immunity. Hence, they can undergo a TB reactivation or relapse with a constant rate γ. The remainder can be reinfected (exogenously) after an effective contact with individuals in the active TB classes and lost sight at a rate

λ r = σ 2 ν(I, J, L), (3) 
where σ 2 is the factor reducing the risk of infection as a result of acquiring partial immunity for recovered individuals. Due to their own immunity, tra- A description of the parameters is summarized in Table 1.

Keeping in view the above facts, the mathematical model is formulated as follows:

                         Ṡ = Λ -ν(I, J, L)S -µS, Ė = (1 -p 1 -p 2 )ν(I, J, L)S + ρJ + σ 2 ν(I, J, L)R -σ 1 (1 -r 1 )ν(I, J, L)E -A 1 E, İ = p 1 ν(I, J, L)S + δL + θJ + γR + h(1 -r 1 )(k + σ 1 ν(I, J, L))E -A 2 I, J = p 2 ν(I, J, L)S + (1 -h)(1 -r 1 )(k + σ 1 ν(I, J, L))E -A 3 J, L = αI -A 4 L, Ṙ = r 2 I + ωL -σ 2 ν(I, J, L)R -A 5 R, (4) 
where

A 1 = µ + k(1 -r 1 ), A 2 = µ + d 1 + r 2 + α, A 3 = µ + d 2 + θ + ρ, A 4 = µ + d 3 + δ + ω and A 5 = γ + µ.
The parameter values of model ( 4) are given in Table 1. 
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Basic properties

Since model (4) monitors a human population, all its associated parameters and state variables should be non-negative and bounded for all t ≥ 0.

It is shown in this section that the model is mathematically well-posed and epidemiologically reasonable [START_REF] Hethcote | The mathematics of infectious diseases[END_REF].

The following result shows that state variables are non-negative and dissipative.

Lemma 2.1. Let the initial values be S(0) > 0, E(0) ≥ 0, I(0) ≥ 0,

A C C E P T E D M A N U S C R I P T J(0) ≥ 0, L(0) ≥ 0 and R(0) ≥ 0.
Then, solutions (S, E, I, J, L, R) of model ( 4) are non-negative for all t > 0. Furthermore,

lim sup t-→∞ N (t) ≤ Λ µ , with N (t) = S(t) + E(t) + I(t) + J(t) + L(t) + R(t).
The proof of this Lemma follows from an obvious adjustment of the result in [START_REF] Moualeu | Analysis of the impact of diabetes on the dynamics transmission of tuberculosis[END_REF][START_REF] Moualeu | Modeling and analysis of hiv and hepatitis c co-infections[END_REF]. The following steps establish the positive invariance of the set

Ω ε = (S, E, I, J, L, R) ∈ R 6 + , N (t) ≤ Λ µ + ε , ε > 0, (5) 
i.e. solutions remain in Ω ε for all t ≥ 0. This implies that the trajectories of model ( 4) are bounded. On the other hand, integrating the differential inequality Ṅ ≤ Λ -µN yields

N (t) ≤ N (0)e -µt + Λ µ (1 -e -µt ).
In particular

N (t) ≤ Λ µ if N (0) ≤ Λ µ . On the other hand, if N (0) ≥ Λ µ , then Λ -µN (0) ≤ 0, and Ṅ (0) ≤ Λ -µN (0) ≤ 0,
i.e. the total population N (t) will decrease until

N (t) ≤ Λ µ .
Thus, the region Ω ε is a compact forward invariant set for model system (4), and for ε > 0 this set is absorbing. So, we limit our study to this region for ε > 0. The prevalent existence, uniqueness and continuation results hold for model system (4) in Ω ε .

The basic reproduction number

The global behavior of the TB model crucially depends on the basic reproduction number, i.e., an average number of secondary cases produced by a single infective individual, who is introduced into an entirely susceptible population. Model system (4) has an evident equilibrium Q 0 = (x 0 , 0) with

x 0 = Λ/µ when there is no disease in the population. This equilibrium point is the disease-free equilibrium, obtained by setting the right hand sides of
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equations in model (4) to zero. We calculate the basic reproduction number R 0 , using the next generation method developed in [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF]. To this end, let us write system (4) in the form

   ẋ = ϕ(x) -ν(I, J, L)x, ẏ = F(x, y) -V(x, y), (6) 
where

F(x, y) = ν(I, J, L)B 1 x, V(x, y) = ν(I, J, L)[B 2 e 1 | y + B 3 e 5 | y ] + A y, .
| . is the usual scalar product and A is the constant matrix

A =       -A 1 0 ρ 0 0 kh(1 -r 1 ) -A 2 θ δ γ k(1 -h)(1 -r 1 ) 0 -A 3 0 0 0 α 0 -A 4 0 0 r 2 0 ω -A 5       ,
with A 1 , A 2 , A 3 , A 4 and A 5 defined as above in Eq. ( 4).

The Jacobian matrices of F(x, y) and V(x, y) at the DFE of are

F = ∂F ∂y (Q 0 ) = B 1 e 1 + Λ µ e 2 and V = ∂V ∂y (Q 0 ) = -A,
where e 1 = (0, β 1 , β 2 , 0, 0), e 2 = (0, 0, 0, β 3 , 0), e 3 = (1, 0, 0, 0, 0), e 4 = (0, 0, 0, 0, 1),

B 1 = (1 -p 1 -p 2 , p 1 , p 2 , 0, 0) T , B 2 = (-σ 1 (1 -r 1 ), hσ 1 (1 -r 1 ), σ 1 (1 -h)(1 -r 1 ), 0, 0) T and B 3 = (-σ 2 (1 -γ), 0, 0, 0, σ 2 (1 -γ)) T .
Thus, using the matrix transformation of [START_REF] Kamgang | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF][START_REF] Iggidr | Global analysis of new malaria intrahost models with a competitive exclusion principle[END_REF][START_REF] Iggidr | Stability analysis of within-host parasite models with delays[END_REF][START_REF] Iggidr | Multi-compartment models[END_REF], the basic reproduction number is the spectral radius of F V -1 :

R 0 = e 1 + Λ µ e 2 | (-A -1 )B 1 . (7) 
We use the expression (-A -1 ) to emphasize that (-A -1 ) ≥ 0 because the matrix A is Metzler stable.

The following result is established (from [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF]):

Lemma 2.2. : The disease-free equilibrium Q 0 of model ( 4) is locally asymptotically stable whenever R 0 < 1, and instable if R 0 > 1.

A C C E P T E D M A N U S C R I P T

From a biological point of view, Lemma 2.2 implies that TB can be eliminated from the community (when R 0 ≤ 1) if the initial sizes of the population are in the basin of attraction of Q 0 . But if R 0 > 1 the infection will be able to spread in a population. Generally, the larger the value of R 0 , the harder it is to control the epidemic.

Bifurcation analysis

Herein, the number of equilibrium solutions of model ( 4) is investigated.

Let Q * = (x * , y * ) be any arbitrary equilibrium of model (4). To find existence conditions for an endemic equilibrium of tuberculosis in the population (steady state with y * non zero), the equations in model( 4) are set to zero,

i.e.,    ϕ(x * ) -x * ν * = 0, ν * [x * B 1 + e 3 | y * B 2 + e 4 | y * B 3 ] + A y * = 0, (8) 
with

ν * = e 1 | y * N * + e 2 | y * , (9) 
is the force of infection at the steady state.

Multiplying the second equation of ( 8) by -A -1 , one obtains 

y * = ν * [x * (-A -1 )B 1 + e 3 |
where

R 01 = e 1 | (-A -1 )B 1 , R 02 = e 2 | (-A -1 )B 1 , a 1 = e 1 | (-A -1 )B 2 , a 2 = e 1 | (-A -1 )B 3 , a 3 = e 2 | (-A -1 )B 2 , a 4 = e 2 | (-A -1 )B 3 , a 5 = e 3 | (-A -1 )B 1 , a 6 = e 3 | (-A -1 )B 2 , a 7 = e 3 | (-A -1 )B 3 , a 8 = e 4 | (-A -1 )B 1 , a 9 = e 4 | (-A -1
)B 2 and a 10 = e 4 | (-A -1 )B 3 .
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Using the last two equation of [START_REF] Blower | Control strategies for tuberculosis epidemics: new method for old problem[END_REF], one can deduce that

e 3 | y * = ν * x * [a 5 + (a 7 a 8 -a 5 a 10 )ν * ] -a 7 a 9 (ν * ) 2 + (1 -a 6 ν(I, J, L) * )(1 -a 10 ν * ) , e 4 | y * = ν * x * [a 8 + (a 5 a 9 -a 6 a 8 )ν * ] -a 7 a 9 (ν * ) 2 + (1 -a 6 ν * )(1 -a 10 ν * ) . (12) 
From the first equation of ( 8), one has

x * = Λ µ + ν * (13) 
Combining equations ( 9), ( 11), ( 12) and ( 13), one can deduce that the total population size at the steady state is given by

N * = Λ F 2 (ν * ) 2 + F 1 ν * + R 01 H 3 (ν * ) 3 -(µH 3 -ΛC 2 -(a 6 + a 10 ))(ν * ) 2 + (1 -µ(a 6 + a 10 ) -ΛC 1 )ν * + µ -µR 02 , (14) 
where

F 2 = R 01 (a 10 a 6 -a 7 a 9 ) + a 1 (a 7 a 8 -a 5 a 10 ) + a 2 (a 5 a 9 -a 8 a 6 ), F 1 = -R 01 (a 6 + a 10 ) + a 1 a 5 + a 2 a 8 , C 2 = R 02 (a 10 a 6 -a 7 a 9 ) + a 3 (a 7 a 8 -a 5 a 10 ) + a 4 (a 5 a 9 -a 8 a 6 ), C 1 = R 02 (a 6 + a 10 ) + a 3 a 5 + a 4 a 8 , H 3 
= (a 6 a 10a 7 a 9 ).

Let w 1 = (0, 1, 0, 0, 0) T , w 2 = (0, 0, 1, 0, 0) T and w 3 = (0, 0, 0, 1, 0) T .

Then, from Eq. ( 10), one can deduce that

I * = w 1 | y * = ν * [x * w 1 | (-A -1 )B 1 + w 1 | (-A -1 )B 2 e 3 | y * + w 1 | (-A -1 )B 3 e 4 | y * ], J * = w 2 | y * = ν * [x * w 2 | (-A -1 )B 1 + w 2 | (-A -1 )B 2 e 3 | y * + w 2 | (-A -1 )B 3 e 4 | y * ], L * = w 3 | y * = ν * [x * w 3 | (-A -1 )B 1 + w 3 | (-A -1 )B 2 e 3 | y * + w 3 | (-A -1 )B 3 e 4 | y * ]. (15) 
Now, using the total population dynamics at the steady state, one has

N * = Λ µ - d 1 µ I * - d 2 µ J * - d 3 µ L * . ( 16 
)
Combining Eqs. ( 12), ( 15) and ( 16) yields

N * = Λ µ (ν * ) 3 (H 3 -D 2 ) + (ν * ) 2 (µH 3 -D 1 -(a 6 + a 10 )) + ν * (1 -µ(a 6 + a 10 ) -g 0 ) + µ H 3 (ν * ) 3 + (H 3 µ -(a 6 + a 10 ))(ν * ) 2 + (1 -µ(a 6 + a 10 ))ν * + µ , (17) 
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where

g 0 = d 1 w 1 | (-A -1 )B 1 + d 2 w 2 | (-A -1 )B 1 + d 3 w 3 | (-A -1 )B 1 , g 1 = d 1 w 1 | (-A -1 )B 2 + d 2 w 2 | (-A -1 )B 2 + d 3 w 3 | (-A -1 )B 2 , g 2 = d 1 w 1 | (-A -1 )B 3 + d 2 w 2 | (-A -1 )B 3 + d 3 w 3 | (-A -1 )B 3 , D 1 
= -g 0 (a 6 + a 10 ) + a 5 g 1 + a 8 g 2 , D 2 = g 2 (a 9 a 5a 6 a 8 ) + g 1 (a 7 a 8a 5 a 10 ) + g 0 (a 6 a 10a 7 a 9 ).

Equating Eqs. ( 14) and ( 17), it can be shown that the non-zero equilibria of model ( 4) satisfies the following equation in term of ν * :

E 6 (ν * ) 6 + E 5 (ν * ) 5 + E 4 (ν * ) 4 + E 3 (ν * ) 3 + E 2 (ν * ) 2 + E 1 (ν * ) + E 0 = 0, ( 18 
)
where

E 6 = H 3 (H 3 -D 2 ), E 5 = H 3 (µH 3 -D 1 -(a 6 + a 10 )) + (H 3 -D 2 )(µH 3 -(a 6 + a 10 ) -ΛC 2 ) -µF 2 H 3 , E 4 = H 3 (1 -µ(a 6 + a 10 ) -g 0 ) + (µH 3 -(a 6 + a 10 ) -ΛC 2 )(µH 3 -(a 6 + a 10 ) -D 1 ) + (H 3 -D 2 )(1 -(a 6 + a 10 ) -ΛC 1 ) -µF 2 (µH 3 -(a 6 + a 10 ) -ΛC 2 ) -µF 1 H 3 , E 3 = µH 3 + (1 -µ(a 6 + a 10 ) -g 0 )(µH 3 -(a 6 + a 10 ) -ΛC 2 ) + (H 3 -D 2 )(µ -ΛR 02 ) -µF 2 (1 -µ(a 6 + a 10 ) -ΛC 1 ) -µF 1 (µH 3 -(a 6 + a 10 ) -ΛC 2 ), E 2 = (1 -(a 6 + a 10 ) -ΛC 1 )(1 -µ(a 6 + a 10 ) -g 0 ) + (µ -ΛR 02 )(µH 3 -(a 6 + a 10 ) -D 1 ) -µ 2 F 2 + µ(µH 3 -(a 6 + a 10 ) -ΛC 2 ) -µF 1 (1 -(a 6 + a 10 ) -ΛC 1 ) -µR 01 (µH 3 -(a 6 + a 10 ) -ΛC 2 ), E 1 = µ(1 -(a 6 + a 10 ) -ΛC 1 ) + (µ -ΛR 02 )(1 -µ(a 6 + a 10 ) -g 0 ) -µ 2 F 2 -(1 -(a 6 + a 10 ) -ΛC 1 )µR 01 , E 0 = µ 2 (1 -R 0 ).
The positive endemic equilibrium point Q * are obtained by finding ν * from the polynomial equation [START_REF] Chintu | An african perspective of tuberculosis and hiv/aids[END_REF] and substituting the numerical results (positive values of ν * ) into the expressions of the state variables at the steady state.

Clearly, the coefficient E 0 of equation ( 18) is positive or negative whenever R 0 is less or greater than unity, respectively. Thus, the number of possible real roots of the polynomial equation ( 18) depends on the signs of E 6 , E 5 , E 4 , E 3 , E 2 , E 1 and E 0 . This can be analyzed using the Descartes Rule of Signs on the function:

f (ν * ) = E 6 (ν * ) 6 +E 5 (ν(I, J, L) * ) 5 +E 4 (ν(I, J, L) * ) 4 +E 3 (ν(I, J, L) * ) 3 +E 2 (ν(I, J, L) * ) 2 +E 1 (ν * )+E 0 ,
given in Eq. [START_REF] Chintu | An african perspective of tuberculosis and hiv/aids[END_REF]. We claim the following result. 
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(ii) could have more than one endemic equilibrium wherever R 0 > 1;

(iii) could have a unique endemic equilibrium wherever R 0 < 1;

(iv) could have one or more endemic equilibria wherever R 0 < 1.

The existence of multiple endemic equilibria when R 0 < 1 suggests the possibility of a backward bifurcation (see, [START_REF] Brauer | Backward bifurcation in simple vaccination models[END_REF][START_REF] Arino | Global result for an epidemic model with vaccination that exihibits backward bifurcation[END_REF][START_REF] Elbasha | Theoretical assesssment of public health impact of imperfect prophylatics hiv-1 vaccines with therapeutic benefits[END_REF] and references therein), where a stable disease-free equilibrium co-exists with a stable endemic equilibrium when the basic reproduction number is less than unity. This is explored below via numerical simulations. The function roots of Matlab is used to find the root of the polynomial ( 18). The notation EE stands for endemic equilibrium point. Figures 2 (a + , and two endemic equilibrium points inside the positive orthant. Linear stability analysis (through analysis of the jacobian matrix at this point) shows that the "larger" endemic equilibrium point is locally asymptotically stable, while the "smaller" point is unstable. Further linear analysis with an increased value of β 3 , (with R 0 > 1.155) shows that the DFE is unstable, and there is one locally asymptotically stable endemic equilibrium point.

The epidemiological significance of the phenomenon of backward bifurcation is that the classical requirement of R 0 < 1 is, although necessary, no longer sufficient for disease eradication. In such a scenario, disease elimination would depend on the initial sizes of the population (state variables) of the model. The presence of backward bifurcation in TB transmission model [START_REF] Balabanova | Analysis of undiagnosed tuberculosis-related deaths identified at post-mortem among hiv-infected patients in russia: a descriptive study[END_REF] suggests that the feasibility of controlling TB when R 0 < 1 could be dependent on the initial sizes of the population. Further, as a consequence, it is instructive to try to determine the "cause" of the backward bifurcation phenomenon in model ( 4). The role of reinfection on backward bifurcation is investigated in the following section. Now, let us investigate the role of exogenous reinfections. This corresponds to the case where there is no exogenous reinfection in the population, that is ,

σ 1 = σ 2 = 0, B 2 = B 3 = 0 . Then, model (4) becomes ẋ = ϕ(x) -ν(I, J, L)x, ẏ = ν(I, J, L)B 1 x + A y, (19) 
where ϕ(x), B 1 , ν(I, J, L) and A are defined as in Eq. ( 4).

The above model has the same disease-free equilibrium Q 0 . Apart this equilibrium state, the model can also have a unique positive endemic equilibrium state. In the absence of exogenous reinfection σ 1 = σ 2 = 0 (i.e, E 5 and E 5 in equation [START_REF] Chintu | An african perspective of tuberculosis and hiv/aids[END_REF] reduce to

B 2 = B 3 = 0), the coefficients E 0 , E 1 , E 2 , E 3 , E 4 ,
E 6 = E 5 = E 4 = E 3 = 0, E 2 = 1 -g 0 , E 1 = µ + (µ(1 -R 0 )(1 -g 0 ), E 0 = µ 2 (1 -R 0 ).
In this case, the force of infection at the steady state satisfies the quadratic equation

E 2 (ν * ) 2 + E 1 ν * + E 0 = 0. ( 20 
)
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It is worth noting that the coefficient E 0 is positive if R 0 < 0, and negative if R 0 > 1. Thus, the number of possible real roots of equation ( 21) depends on the signs of E 2 , E 1 and E 0 . This can be analyzed using the Descartes Rule of Signs on the polynomial g(ν

* ) = E 2 (ν * ) 2 + E 1 ν * + E 0 .
From the equality ν(I, J, L) =

β 1 I N + β 2 L N + β 3 J, one can deduce that 0 ≤ ν * ≤ β 1 + β 2 + β 3 Λ µ .
In this case, the force of infection at the steady state satisfies the quadratic equation

E 2 (ν * ) 2 + E 1 ν * + E 0 = 0. ( 21 
)
It is worth noting that the coefficient E 0 is positive if R 0 < 0, and negative if R 0 > 1. Thus, the number of possible real roots of equation ( 21) depends on the signs of E 2 , E 1 and E 0 . This can be analyzed using the Descartes Rule of Signs on the polynomial g(ν

* ) = E 2 (ν * ) 2 + E 1 ν * + E 0 .
A simple calculation proves that g 0 < R 0 when d 1 < β 1 , d 2 < β 2 and

d 3 < β 3 Λ/µ.
This means that the contact rate to get the infection is higher than the mortality rate of the infection. Since this condition is fulfilled, R 0 ≤ 1 leads to the positivity of E 0 , E 1 and E 2 . The previous equation does not have a nonnegative solution if ν * > 0 from the Descartes Rule of Sign.

If R 0 > 1 > g 0 or E 1 < 0 (e.g. (1 -R 0 )(1g 0 ) < 1), then, because E 0 < 0, and g 0 < 1, the polynomial has one positive root by Descarte's Rule of Sign.

From the equality ν(I, J, L) = All other parameters are defined as in Table 1.

β 1 I N + β 2 L N + β 3 J, one can deduce that 0 ≤ ν * ≤ β 1 + β 2 + β 3 Λ µ . If R 0 > g 0 > 1, then E 1 > 0, E 0 < 0,

A C C E P T E D M A N U S C R I P T 4 The model with stochasticity

We performed Monte-Carlos simulation on the reinfection rates σ 1 and σ 2 to see how it affects the disease free equilibrium when R 0 < 1 for a fixed population size. Using parameter values as in Fig. 3, it comes out that for random generation of σ i , the disease could converge to an endemic equilibrium or a disease free equilibrium (Figure 5 ). It illustrates the existence of backward bifurcation in the presence of exogenous reinfection.

Analysis of the model with data from Cameroon, as estimated in [START_REF] Moualeu-Ngangue | Parameter identification in a tuberculosis model for cameroon[END_REF],

did not reveal any backward bifurcation. Considering exogenous reinfection as a random phenomena with changes every years due to different reasons, Figure 6 presents result of 50 times numerical simulations of the model.

Here, we considered the exogenous reinfection as random perturbation in the system at each time steps. The stop criterium was the positivity of the system. It appears that TB dies out in all run after relatively long run. This result supports that for various exogenous reinfection and when R 0 < 1, the disease might still die out.

Discussion and conclusion

In this paper, we presented a comprehensive, continuous and realistic 
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with a stable endemic equilibrium, when the basic reproduction ratio is less than unity. However, backward bifurcation dynamics feature is caused by the re-infection of latently infected and recovered individuals had mainly occur for values that over ten times than estimations from Cameroon's data.

Numerical analysis allowed us to observe that to reach a disease free equilibrium, it will take more decades than reaching endemic equilibrium point, because the latently infected population will take more time to reach zero due to the high number and the slow flow to other classes. For high values, potentially unrealistic of the reinfection rate, backward bifurcation was effective and lead to a convergence to a disease endemic equilibrium.

However, for random values of the reinfection rate at each computation state, the disease dies out. This means that backward bifurcation only occurs for constant and high values of reinfection rates. Since the effect of drug resistance is an important aspect on TB propagation, this study might be extended to account drug resistances and specific HIV/AIDS coinfection classes.

A C C E P T E D M

A N U S C R I P T 2. Matrix A has a right eigen-vector u and a left eigen-vector v (each corresponding to the zero eigenvalue). Let f k be the k th component of f and

a = n k,i,j=1 v k u i u j ∂ 2 f k ∂z i ∂z j (0, 0), b = n k,i=1 v k u i ∂ 2 f k ∂z i ∂φ (0, 0),
then, the local dynamics of the system around the equilibrium point 0 is totally determined by the signs of a and b.

1. a > 0, b > 0. When φ < 0 with |φ| 1, 0 is locally asymptotically stable and there exists a positive unstable equilibrium; when 0 < φ 0, 0 is unstable and there exists a negative, locally asymptotically stable equilibrium;

2. a < 0, b < 0. When φ < 0 with |φ| 1, 0 is unstable; when 0 < φ 1, 0 is locally asymptotically stable equilibrium, and there exists a positive unstable equilibrium;

3. a > 0, b < 0. When φ < 0 with |φ| 1, 0 is unstable, and there exists a locally asymptotically stable negative equilibrium; when 0 < φ 1, 0 is stable, and a positive unstable equilibrium appears; 4. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

Let us first make the following simplification and change of variables.

Let x 1 = S, x 2 = E, x 3 = I, x 4 = J, x 5 = L and x 6 = R so that N = x 1 + x 2 + x 3 + x 4 + x 5 + x 6 . Further, by using vector notation x = (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) T , the TB model ( 4) without exogenous reinfections can be written in the form ẋ

= f (x), with f = (f 1 , f 2 , f 3 , f 4 , f 5 , f 6 ) T , as follows:                x 1 = f 1 = Λ -(µ + ν(I, J, L))x 1 , x 2 = f 2 = (1 -p 1 -p 2 )ν(I, J, L)x 1 + ρJ -A 1 x 2 , x 3 = f 3 = p 1 ν(I, J, L)x 1 + h(1 -r 1 )kx 2 + δx 5 + γx 6 -A 2 x 3 , x 4 = f 4 = p 2 ν(I, J, L)x 1 + (1 -h)(1 -r 1 )kx 2 -A 3 x 4 , x 5 = f 5 = αx 3 -A 4 x 5 , x 6 = r 2 x 3 + ωx 5 -A 5 x 6 , (28) 
A

C C E P T E D M A N U S C R I P T where ν(I, J, L) = β 1 x 3 + β 2 x 5 x 1 + x 2 + x 3 + x 4 + x 5 + x 6 + β 3 x 4 , with A 1 , A 2 , A 3 , A 4
and A 5 defined as in model ( 4). The Jacobian of the system (4), at the DFE Q 0 , for all β 3 is given by

J β3 (Q 0 ) =         -µ 0 -β 1 -β3 -β 2 0 0 -A 1 β 1 (1 -p 1 -p 2 ) (1 -p 1 -p 2 ) β3 + ρ (1 -p 1 -p 2 )β 2 0 0 hk(1 -r 1 ) p 1 β 1 -A 2 p 1 β3 + θ β 2 p 1 + δ γ 0 (1 -h)k(1 -r 1 ) p 2 β 1 p 2 β3 -A 3 β 2 p 2 0 0 0 α 0 -A 4 0 0 0 r 2 0 ω -A 5        
.

with β3 = β 3 N 0 .

The reproduction number of the transformed (linearized) model ( 28) is the same as that of the original model given by [START_REF] Benatar | Facing ethical challenges in rolling out antiretroviral treatment in resource-poor countries: Comment on "they call it 'patient selection' in khayelitsha[END_REF]. Therefore, choosing β 3 as a bifurcation parameter and solving equation in β 3 when R 0 = 1, we obtain

β 3 = β * 3 = 1 -e 1 | (-A -1 )B 1 N 0 e 2 | (-A -1 )B 1 .
where e 2 = (0, 0, 0, 1, 0). It follows that the Jacobian J(Q 0 ) of system [START_REF] Kamgang | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF] at the DFE Q 0 , with β 3 = β * 3 , denoted by J β * 3 has a simple zero eigenvalue (with all other eigenvalues having negative real parts). Hence, the Centre Manifold theory [START_REF] Carr | Applications Centre Manifold theory[END_REF] can be used to analyse the dynamics of the model [START_REF] Kamgang | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF]. Now, the theorem 5.1 (cf. [START_REF] Castillo-Chavez | Dynamical models of tuberculosis and their applications[END_REF], can be used to show that the unique endemic equilibrium of the model (28) (or, equivalently, (4)) is locally asymptotically stable for R 0 near 1.

Eigenvectors of J β * 3 : For the case when R 0 = 1, it can be shown that the Jacobian of system (28) at β 3 = β * 3 (denoted by J β * 3 ) has a right eigenvector (corresponding to the zero eigenvalue), given by U = (u 1 , u 2 , u 3 , u 4 , u 5 , u 6 ) T , where, Similarly, the components of the left eigenvectors of J β * (corresponding to the zero eigenvalue), denoted by V = (v 1 , v 2 , v 3 , v 4 , v 5 , v 6 ) T , are given by, 

u 1 = - 1 µ β 1 + β 2 B 4 C 4 u 3 + β3 u 4 < 0, u 2 = 1 A 1 (1 -p 1 -p 2 ) β 1 + β 2 α A 4 + ( β3 (1 -p 1 -p 2 ) + ρ) B 4 C 4 u 3 > 0, u 3 > 0,
v 1 = 0, v 2 = h(1 -r 1 )k A 1 v 3 + (1 -h)(1 -r 1 )k A 1 v 4 , v 3 = v 3 > 0, v 4 = (θ + β3 p 1 )A 1 + h(1 -r 1 )k(ρ + β3 (1 -p 1 -p 2 )) β3 ((1 -h)(1 -r 1 )k((1 -p 1 -p 2 ) + ρ) + p 2 A 1 ) + A 1 A 3 v 3 > 0, v 5 = (1 -p 1 -p 2 ) β 2 A 4 h(1 -r 1 )k A 1 + β 2 p 1 N 0 + δ A 4 v 3 + β 2 (1 -p 1 -p 2 ) A 4 (1 -h)(1 -r 1 )k A 1 + β 2 p 2 A 4 v 4 >
Computation of a: For model [START_REF] Kamgang | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF], the associated non-zero partial derivatives of f (at the DFE Q 0 ) are given by

∂ 2 f 1 ∂x 3 ∂x 1 = - β 1 N 2 0 , ∂ 2 f 1 ∂x 4 ∂x 1 = -β 3 , ∂ 2 f 1 ∂x 5 ∂x 1 = - β 2 N 2 0 , ∂ 2 f 2 ∂x 3 ∂x 2 = -(1 -p 1 -p 2 ) β 1 N 0 , ∂ 2 f 2 ∂x 5 ∂x 2 = -(1 -p 1 -p 2 ) β 2 N 0 , ∂ 2 f 3 ∂x 2 ∂x 3 = -p 1 β 1 N 0 , ∂ 2 f 3 ∂x 2 3 = -2p 1 β 1 N 2 0 , ∂ 2 f 3 ∂x 4 ∂x 3 = -p 1 β 1 N 0 , ∂ 2 f 3 ∂x 5 ∂x 3 = -(β 1 + β 2 ) p 1 N 0 , ∂ 2 f 3 ∂x 6 ∂x 3 = -p 1 β 1 N 0 , ∂ 2 f 4 ∂x 1 ∂x 4 = β 3 p 2 , ∂ 2 f 4 ∂x 3 ∂x 4 = -β 1 p 2 1 N 0 , ∂ 2 f 4 ∂x 5 ∂x 4 = -β 2 p 2 1 N 0

2. 1

 1 The model formulation A finite total population at time t denoted by N (t) was considered and sub-divided into mutually exclusive sub-populations of S susceptible: healthy people not yet exposed to TB, E latently infected: exposed to TB but not infectious, I diagnosed infectious: have active TB confirmed after a sputum examination in a hospital, J undiagnosed infectious: have not yet been to a hospital for diagnosis but are active for confirmation by a sputum examination, L lost sight: people who have been diagnosed as having active TB, begun their treatment and quitted before the end, R recovered: people cured after treatment in the hospital.

A

  proportion p of the latently-infected individuals develop fast active TB and the remainder (1p) develop latent TB and enter the latent class A C C E P T E D M A N U S C R I P T E. Among latently-infected individuals developing active TB, a fraction f is assumed to undergo a fast progression directly to the diagnosed infectious class I, while the remainder (1f ) enters the undiagnosed infectious class J. We set p 1 = pf and p 2 = p(1f ). Once latently infected with Mtb, an individual will remain so for life unless reactivation occurs. Latently infected individuals are assumed to acquire some immunity as a result of infection, which reduces the risk of subsequent infection but does not fully prevent it. Due to endogenous reactivation, a fraction 1r 1 of latently infected individuals who did not receive effective chemoprophylaxis become infectious with a constant rate k, and get re-infected after effective contact with individuals in the active TB classes or lost sight at a rate

  S C R I P T ditional medicine, natural recovery and drugs bought in the street (practiced in sub-Saharan Africa), a fraction of lost sight and undiagnosed infectious can spontaneously recover at constant rates ρ and ω, respectively and enter the latent class E and recovered class R respectively. The transfer diagram of the model is shown in Fig. 1.

Figure 1 :

 1 Figure 1: Transfer diagram of the TB model.

  y * (-A -1 )B 2 + e 4 | y * (-A -1 )B 3 ]. (10) Then, one can deduce that e 1 | y * = ν * [x * R 01 + a 1 e 3 | y * + a 2 e 4 | y * ], e 2 | y * = ν * [x * R 02 + a 3 e 3 | y * + a 4 e 4 | y * ], e 3 | y * = ν * [x * a 5 + a 6 e 3 | y * + a 7 e 4 | y * ], e 4 | y * = ν * [x * a 8 + a 9 e 3 | y * + a 10 e 4 | y * ],

Lemma 3 . 1 .

 31 The TB model (4) (i) could have a unique endemic equilibrium wherever R 0 > 1;

Figure 2 :

 2 Figure 2: Bifurcation diagram for model (4). (a) σ 1 = 2.38390 • 10 -4 and (b) σ 1 = 0.015. The notation EEP stands for endemic equilibrium point.

  Fig.2 (b), it clearly appears that there are three equilibrium points in Ω ε : a locally asymptotically stable disease-free equilibrium point on the boundary of the positive orthant of R 6 + , and two endemic equilibrium points inside the positive orthant. Linear stability analysis (through analysis of the jacobian

Figure 3 :Figure 4 :

 34 Figure 3: Simulation results of model (4) showing the global asymptotic stability of the DFE for the fraction of population in each class using various initial conditions when β 3 = 0.26•10 -6 and σ 1 = σ 2 = 0 (so that R 0 = 0.44).

Figure 5 :Figure 6 :

 56 Figure 5: Monte-Carlos simulation of model (4) showing the instability of the DFE for various random values of σ 1 and σ 2 when β 3 = 0.26 • 10 -06 (R 0 = 0.44).

B 4 = p 2 + ( 1 -p 1 -p 2 ) ( 1 -A 1 β 1 + β 2 α A 4 and C 4 = A 3 - 1 ( 1 -

 421121144311 h)k(1r 1 ) β3 p 2 + β3 (1p 1p 2 ) + ρ A h)(1r 1 )k . A C C E P T E D M A N U S C R I P T

3 = -N 0 , ∂ 2 f 2 ∂x 4 ∂β * 3 = ( 1 - 3 = p 1 N 0 , ∂ 2 f 3 ∂x 4 ∂β * 3 = p 2 N 0 6 i=1 u i ∂ 2 f 2 ∂x i β * + v 3 6 i=1 u i ∂ 2 f 3 ∂x i β * + v 4 6 i=1 u i ∂ 2 f 4

 331313206664 Computation of b: For the sign of b, it can be shown that the associated non-vanishing partial derivatives of f are∂ 2 f 1 ∂x 4 ∂β * p 1p 2 )N 0 , ∂ 2 f 3 ∂x 4 ∂β *Substituting the respective partial derivatives into the expressionb = v 2 ∂x i β * , gives b = u 4 N 0 (v 2 (1p 1p 2 ) + v 3 p 1 + v 4 p 2 ) > 0.

Table 1 :

 1 R I P T Numerical values of the parameters of the TB model[START_REF] Balabanova | Analysis of undiagnosed tuberculosis-related deaths identified at post-mortem among hiv-infected patients in russia: a descriptive study[END_REF] 

	Parameters	Symbol Estimate /yr	Source
	Recruitment rate of susceptible	Λ	679685	[37, 41]
	Transmission rate Transmission rate Fast route to infectious class Fast route to undiagnosed infectious class	β 1 , β 2 β 3 p 1 p 2	1, 4 6.05681 • 10 -06 [37] [37, 11] 9.36432 • 10 -04 [37] 2.43736 • 10 -02 [37]
	Reinfection parameter of latently infected individuals	σ 1	2.38390 • 10 -04 [37]
	Reinfection parameter of recovered individuals	σ 2	0.7 • (p 1 + p 2 )	[37, 3]
	Slow route to active TB Natural mortality	k µ	3.31390 • 10 -04 [37] 1/53.6 [37, 11, 41]
	TB mortality of diagnosed infectious	d 1	0.139	[37, 11]
	TB mortality of undiagnosed infectious d 2	0.413	[37]
	TB mortality of lost sight	d 3	0.20	[37]
	Chemoprophylaxis of latently	r 1	0	[37, 42]
	infected individuals			
	Detection rate of active TB	h	0.828248	[37]
	Recovery rate of diagnosed infectious	r 2	0.758821	[37, 42]
	Recovery rate of lost sight	ω	0.5	[37]
	Recovery rate of undiagnosed infectious ρ	0.131140	[37]
	Relapse of recovered individuals Diagnosed infectious route	γ α	8.51257 • 10 -02 [37] 0.216682 [37]
	to the lost sight class			
	Lost sight route	δ	0.39	[37]
	to the diagnosed infectious class			
	Diagnosed rate	θ	0.495896	[37]
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equilibria suggests that the disease-free equilibrium of model ( 4) is globally asymptotically stable when R 0 < 1.

We claim the following result about the global stability of the DFE of model ( 4) whenever σ 1 = σ 2 = 0. Theorem 3.2. Consider model [START_REF] Balabanova | Analysis of undiagnosed tuberculosis-related deaths identified at post-mortem among hiv-infected patients in russia: a descriptive study[END_REF] with σ 1 = σ 2 = 0. Then, the DFE is globally asymptotically stable in Ω ε whenever R 0 ≤ 1.

The proof of Theorem 3.2 is given in Appendix A.

Figure 3 shows the time series of of susceptible individuals (S), latently infected individuals (E), diagnosed infectious (I), undiagnosed infectious (J), lost sight (L) and recovered individuals (R) of model ( 4) when β 3 = 0.2605681 • 10 -6 (so that R 0 = 0.4424) using various initial conditions.

All other parameters are as in Table 1. It illustrates the convergence of the trajectories of the model (4) without exogenous reinfection to the disease free equilibrium when R 0 ≤ 1. This means that after long time of decreasing, TB will die out in the absence of exogenous reinfection. This figure also shows that reaching a disease free equilibrium, will take more decades than meet the endemic equilibrium point. This is certainly due to the fact that some latently infected individuals might not develop the disease over their life time. In fact, the high number of latent makes the class persistent throughout the simulation and allows therefore longer time to reach the DFE.

The local stability of the endemic equilibrium of the model (4) without exogenous reinfection is stated in Theorem 3.3 below and proved in Appendix B.

Theorem 3.3. The endemic equilibrium of model without exogenous reinfection (4) is locally asymptotically stable for R 0 > 1 but close to 1.

The time evolution of the fraction of susceptible individuals (S), latently infected individuals (E), diagnosed infectious (I), undiagnosed infectious (J), lost sight (L) and recovered individuals (R) of system (4) using various initial values when β 3 = 1.26 • 10 -06 and σ 1 = σ 2 = 0 (so that R 0 = 1.6079) is shown in Figure 4. Various initial states are used to see numerically the impact of varying initial values on the stability of the endemic equilibrium.

The figure illustrates the convergence of the trajectories of model (4) without exogenous reinfections to a local endemic equilibrium.
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Appendix A: Proof of Theorem 3.2

The local stability of Q 0 is classic by the result of van den Driessche and Watmough [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF]. Since we are interested in the global asymptotic behavior of model ( 4), we will show that there exists T > 0 such that, if R 0 < 1, the solutions of model system (4) without exogenous reinfections tend to the DFE Q 0 = (S 0 , 0, 0, 0, 0) when t → ∞, ∀t > T . Indeed, from the first equation of model ( 4) without exogenous reinfections, one has

This suggests the linear comparison system:

The linear comparison system (23) has a unique positive equilibrium S 0 which is globally asymptotically stable. By the comparison theorem for cooperative systems, one has that

Thus, for any σ > 0, there exists a sufficiently large T > 0 such that S(t) ≤ S 0 + σ, for all t > T .

Since R 0 depend of S 0 , we set F = F (S 0 ), S σ 0 = S 0 + σ and

Since the spectral radius of F σ V -1 is a continuous function of σ, we can choose σ as small as possible such that if ρ(F V -1 ) < 1, so ρ(F σ V -1 ) < 1. Now, since S(t) ≤ S 0 + σ for all t > T and S(t) N (t) ≤ 1, replacing S(t) by S 0 + σ in model ( 4) without exogenous reinfections, we have the following comparison linear system in E, I, J, L and R :

Model system (25) can be written in the following compact form:
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where y is defined as in model [START_REF] Begon | A clarification of transmission terms in host-microparasite models : numbers, densities and areas[END_REF]. Note that y = (0, 0, 0, 0, 0) is the unique equilibrium of the linear comparison system [START_REF] Iggidr | Stability analysis of within-host parasite models with delays[END_REF] which is globally asymptotically stable, since it is well known that if s(F σ -V ) is the stability modulus of the matrix (F σ -V ) defined as the maximal real part of the eigenvalues of (F σ -V ), then from [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF],

Therefore, all solutions of the linear comparison system (26) converge to the trivial solution y = (0, 0, 0, 0, 0) when t → ∞, with t > T . It is obvious to see that F σ -V as the Jacobian of model ( 26) is a M-matrix and irreducible.

Thus, by the comparison theorem for monotone dynamical systems [START_REF] Birkhoff | Ordinary Differential Equations[END_REF], we can conclude that the E, I, J, R components of model ( 4) also converge to zero when t → ∞, with t > T . Putting this last zero solution into the first equation of model ( 4) without exogenous reinfections gives the linear system (23) which admits a unique positive equilibrium S 0 which is globally asymptotically stable. Finally, by the asymptotically autonomous systems theory [START_REF] Castillo-Chavez | Asymptotically autonomous epidemic models[END_REF], we can conclude that the S-component of the solution of system (4) without exogenous reinfections converges to S 0 . This proves the global asymptotic stability of the DFE Q 0 = (S 0 , 0, 0, 0, 0, 0) when R 0 < 1, and this completes the proof.

Appendix B: Proof of Theorem 3.3

In order to analyze the stability of the endemic equilibrium point, we make use of the Centre Manifold theory as described by Theorem 4.1 of [START_REF] Castillo-Chavez | Dynamical models of tuberculosis and their applications[END_REF], stated below (Theorem 5.1 for convenience), to establish the local asymptotic stability of the TB endemic equilibrium in the absence of reinfection.

Theorem 5.1. [START_REF] Castillo-Chavez | Dynamical models of tuberculosis and their applications[END_REF]: Consider the following general system of ordinary differential equations with a parameter φ:

where 0 is an equilibrium point of the system (that is, f (0, φ) ≡ 0 for all φ) and assume so that the bifurcation coefficient a < 0 since u 1 < 0. Thus, we have a < 0 and b > 0. All conditions of Theorem 5.1 are satisfied and it should be noted that we use β * 3 as the bifurcation parameter, in place of φ in Theorem 5.1). Thus, it follows that the endemic equilibrium is locally asymptotically stable. This concludes the proof.