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dimensional problem. For solving this task, we propose adapting the Metric Learning 
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high-dimensional spaces. MLKR aims at estimating the optimal linear subspace for 
reducing the squared error of a Gaussian kernel regressor. We introduce Iterative 
Regularized Kernel Regression (IRKR), an iterative nonlinear feature selection 
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that improves on the state-of-the-art results on several AU databases, ranging from 
prototypical to natural and wild data. 
 
Keywords : Facial Expression, Action Units, FACS, Metric Learning for Kernel 
Regression 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Real-Time Facial Action Unit Intensity Prediction with Regularized Metric

Learning

Jérémie Nicolle, Kévin Bailly, Mohamed Chetouani

Abstract

The ability to automatically infer emotional states, engagement, depression or pain from nonverbal behavior has

recently become of great interest in many research and industrial works. This will result in the emergence of a wide

range of applications in robotics, biometrics, marketing and medicine. The Facial Action Coding System (FACS)

proposed by Ekman features objective descriptions of facial movements, characterizing activations of facial muscles.

Achieving an accurate intensity prediction of Action Units (AUs) has a significant impact on the prediction quality

of more high-level information regarding human behavior (e.g. emotional states). Real-time AU intensity prediction,

in many image-related machine learning tasks, is a high-dimensional problem. For solving this task, we propose

adapting the Metric Learning for Kernel Regression (MLKR) framework focusing on overfitting issues induced in

high-dimensional spaces. MLKR aims at estimating the optimal linear subspace for reducing the squared error of

a Gaussian kernel regressor. We introduce Iterative Regularized Kernel Regression (IRKR), an iterative nonlinear

feature selection method combined with a Lasso-regularized version of the original MLKR formulation that improves

on the state-of-the-art results on several AU databases, ranging from prototypical to natural and wild data.

Keywords: Facial Expression, Action Units, FACS, Metric Learning for Kernel Regression

1. Introduction

Automatic facial expression recognition has recently

become a very active and rapidly evolving research do-

main. To precisely describe facial expressions, the Fa-

cial Action Coding System (FACS [1]) encodes Action

Units (AUs), which correspond to the activation of fa-

cial muscles.

The ability to accurately predict AU intensity has a

significant impact on human behavior assessment. Dur-

ing a video, the ability to describe in each frame what

and to what extent facial muscles are activated gives

us a complete description of a subject’s facial move-

ments. This would contain precious information regard-

ing mental states [2], depression [3] and pain [4] [5]

prediction, for instance. Industrial applications that take

advantage of AU predictions are numerous as well. Ap-

plications in marketing [6] or Human-Computer Inter-

action [7] have recently emerged.

In this paper, we address three main issues: First, AU

automatic prediction has mainly been seen as a classifi-

cation problem. However, the ability to predict muscle

activation more precisely is essential. Very small and

short activations of AUs (called micro-expressions) can

be of great value for emotion assessment [8]. More-

over, the dynamics of AUs have an important impact

on the meaning of facial expressions. In [9], the au-

thors worked on classifying two different types of smiles

(frustrated and delighted) showing the relevance of tem-

poral pattern analysis for this task. For those reasons,

multilevel annotated databases have recently been re-

leased (enhanced CK+ [10], DISFA dataset [11], AM-

FED dataset [6]), thus making it possible to build and

evaluate new methods suited for regression tasks. The

second issue is that the algorithms should be run in real

time, which is an important constraint for many do-

mains such as personal robotics and car passenger se-

curity. This constraint encourages fast-to-compute fea-

tures and fast regression methods. Finally, some AUs

are very rarely activated in natural behavior such as the

Nose Wrinkler (AU9) or Lip Stretcher (AU20). This

makes the number of positive examples small, even

when the amount of acquired video data is important.

Thus, a particular focus on the risk of overfitting on the

training data must be made.

We propose a regression method based on a

Lasso-regularization of MLKR included within an it-

erative nonlinear feature selection framework. This

Preprint submitted to Image and Vision Computing February 19, 2016



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

method lets us project data points into sparse and low-

dimensional spaces, allowing us to reduce overfitting is-

sues. In Section 2, we present a brief state of the art of

AU prediction methods. Section 3 contains an outline of

our framework and the paper contributions. In Section

4, we present MLKR, on which our regression method

is built, and discuss some of its advantages. Section 5

describes our proposed regression method. Its applica-

tion to AU intensity prediction and the associated results

are presented in Section 6. Finally, we conclude and dis-

cuss a few issues and perspectives in Section 7.

2. Related Works

Numerous AU prediction methods have been pro-

posed during the past decade along with the growing in-

terest in this domain. Detecting AUs is a supervised ma-

chine learning problem. Face-centered data are acquired

(gray-level, RGB and/or depth-map) and labeled manu-

ally. The labels indicate the different muscles activated

by the subject. We then must extract features describ-

ing data before learning a prediction model. Because

AUs are related to local changes in facial expression, it

is common to use a facial landmark detector to localize

the different parts of the face (mouth, eyes, nose, eye-

brows). The features can subsequently be extracted on

different facial areas. Those features characterizing data

samples are then used for predicting labels with a su-

pervised machine learning algorithm. Along the entire

data processing chain, from the acquisition sensors to

the prediction method, many questions have been high-

lighted by past works. First, the availability of afford-

able 3D sensors has attracted many researchers to fo-

cus on the utility and contribution of depth-related data

for facial muscle activation predictions and has made

the data type a relevant question. Second, the choice

of the areas used for feature extraction has an impor-

tant impact. Third, the inclusion of prior human knowl-

edge when designing high-level features relevant to the

task can increase performance but leads to less generic

methods. Similarly, including prior knowledge within

the models (e.g. regarding AU co-occurences in natural

facial expressions) has also raised questions. Finally,

the choice of the learning machines used to model the

data has also been an active topic in past works. In this

section, we will briefly review and discuss some of the

main AU prediction methods recently proposed.

The relevance of using 3-dimensional data for facial

expression recognition has been investigated by several

researchers. Sun et al. [12] used 3D motion vectors and

Hidden Markov Models (HMMs) for predicting AUs

and discrete emotions in a Dynamic 3D Facial Expres-

sion Database. Savran et al. [13] extracted local 3D

shape features (mean and Gaussian curvatures, shape in-

dex and curvedness among others) and use an SVM for

predicting AUs in a Bosphorus database. However, 3D

sensors are not yet widely democratized, and many ap-

plications have a need for 2D data solutions, which ex-

plains the numerous recent 2D approaches for AU pre-

diction [14] [11] [15]. Most of those 2D approaches can

be easily extended to 3D approaches by extracting com-

plementary features using depth maps in the same way

as grayscale or color images.

Before extracting features from images, a common

first step in many face-centered machine learning sys-

tems is to detect fiducial points, which are some key

points in faces (centers and corners of the eyes, con-

tours of the nose, the mouth and the eyebrows). In Jeni

et al. [16] and Chu et al. [17], those fiducial points are

used to define local patches for feature extraction to pre-

dict AUs. However, a few methods [18] [19] avoid this

part of fiducial point localization, extracting features on

somewhat global regions defined only using the area ob-

tained with the face detector (commonly using the Viola

and Jones algorithm [20]). Yang et al. [18] directly ex-

tracted dynamic Haar-like features after a rescaling the

detected face image and then encoded it with binary pat-

terns before classification using Adaboost [21]. Chuang

and Shih [19] divided the face region in upper and lower

parts before using the Support Vector Machine (SVM)

on Independent Component Analysis (ICA) projections.

Other methods use only eye localization for defining

feature extraction areas [10] [22]. By definition, AUs

are characterized by local movements of face appear-

ance. This is why the extraction of features in local ar-

eas defined from fiducial points lead to relevant infor-

mation for our task. However, using more global areas

defined using only the face region or the centers of the

eyes (which are the most accurately located points in

most landmark detection methods) can avoid the spread

of possible errors in facial point tracking. The recent

improvement of facial point localization systems can

explain the fact that local areas are increasingly used

in AU prediction systems [16] [17] [15].

AU prediction methods also differ regarding the

amount of human knowledge included in the feature

choice. Some methods use data-driven features, which

often makes the framework more generic; for example,

Chuang and Shih [19] used Independent Component

Analysis (ICA), and Jeni et al. [16] used Non-negative

Matrix Factorization (NMF). Even if it introduces a loss

of genericity, other methods use handcrafted features,

which may lead to relevant invariance and characteriza-
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tions. Rudovic et al. [23] used Local Binary Patterns

(LBPs) that are invariant to illumination changes. Ga-

bor wavelets are commonly used [10] [22] [13] and have

shown promising results for AU prediction as noted by

Littlewort et al. [24]. However, dense computation

of those features for different scales and orientations

quickly becomes time-consuming and unsuited for real-

time algorithms. This can explain the choice of His-

tograms of Oriented Gradients (HOG) made by Mc-

Duff et al. [6], which encode relevant information for

expression-relative wrinkle characterization while being

less time-consuming to extract.

Prior knowledge can also be included in data mod-

eling. Several researchers have focused on learning dy-

namic relationships and co-occurrences between AUs to

increase algorithm performance, such as Tong et al. [10]

and Li et al. [14], using Dynamic Bayesian Networks

(DBNs). These approaches are able to consider correla-

tions between AUs in natural facial expressions. For in-

stance, eyebrow raising (AU1+AU2) and upper lid rais-

ing (AU5) are often activated simultaneously. However,

AUs correspond to facial muscles and can be activated

independently, making the prior knowledge about dy-

namic relations between AUs inadequate in some ap-

plications. For instance, in the context of facial reedu-

cation for patients who had a cerebrovascular accident

(CVA), different muscles may need to be separately ac-

tivated by the patient and thus separately recognized.

A prior knowledge inclusion in this case could bias the

prediction system.

Finally, there is the question of the machine learn-

ing algorithms used for building prediction models. In

many databases (Cohn-Kanade [25], Carnegie Mellon

University PIE database [26], Fera-Gemep [27]) AUs

are labeled as activated or not, stating the problem as

one of classification. Thus, Support Vector Machines

(SVMs) have been widely used in the facial expression

domain [22] [28] [6]. However, information given by

AU detectors is limited, and many applications require

more comprehensive information–i.e., the intensity of

the AU. In the first few attempts to estimate intensi-

ties of facial expression [29, 30, 31, 32], only binary

labels were used to train classifiers such as SVM or Ad-

aBoost. Intensities were thus inferred from the output of

the classifier (e.g., the signed distance from the sample

to the separating hyperplane of the SVM [29, 31] or the

confidence of the decision in the case of AdaBoost clas-

sifier [30, 32]). These approaches assume that facial ex-

pression intensity is directly related to the distance from

the decision boundary. The idea is that samples corre-

sponding to low intensities are more difficult to clas-

sify and are thus more likely to be near the boundary.

This point is questionable because the difficulty of clas-

sifying a sample can be due to other unrelated factors

such as lighting conditions and morphological charac-

teristics.

Recent works on intensity level estimation are mainly

based on the newly released datasets with intensity la-

bels to obtain a more accurate estimation (Bospho-

rus [33], CK+ [34], UNBC-McMaster [35], DISFA

[11]). In the case of AUs, intensities are discrete val-

ues ranging from 0 to 5. Thus, intensity estimation

can be viewed either as a 6-class recognition problem

[36, 11, 37] or as a regression task [16, 38, 39, 40, 41].

In [36], binary SVM classifiers are used in a one-versus-

one strategy to obtain a multi-class decision. In the

same line, Ming et al. [37] extends the framework in-

troduced in [42], based on LGBP features and multi-

kernel SVM to tackle multi-class classification. The

main drawback of classification approaches is that the

training does not consider relative distances between la-

bels.

In contrast, regression-based methods intrinsically

consider the ordinal relation between labels. Large dif-

ferences between prediction and ground truth will be

more penalized than small errors. Given the good per-

formance reached by SVM for AU classification, SVR

[16] and RVM [38] are among the most widely used

predictors for intensity estimations, but other machine

learning algorithms have been investigated such as gen-

erative latent trees [39] or deep convolutional neural net-

works [40]. In that type of study, predictions in each

frame are made independently based on observations in

the current frame [16, 43, 13]. Temporal [44] and/or

other contextual information [41] can be used to im-

prove the prediction. On the one hand, the use of a

sequence of frames can improve the prediction by re-

moving some ambiguities. On the other hand, these

methods can be applied only in video-based applica-

tions and required pre-segmented sequences during the

training stage. Moreover, some of those graphical prob-

abilistic models such as HMM can be challenging to

learn given the number of features usually employed.

The dimension of the input space can also be an issue

for static methods. Savran et al. [13] investigated two

regression-oriented versions of Adaboost to select fea-

tures and noted the strong sensitivity of this approach to

some hyper-parameters such as the threshold that con-

vert the regression problem to a classification one or

the power coefficient of the weighting function in Ad-

aBoost.RT.

Our method combines a filter-based feature selection

approach with a metric learning algorithm to best adapt

the high-dimensional input feature space to the task to

3
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perform. Our choices regarding the issues highlighted

by this state of the art are presented in the next section

in an overview of our regression framework.

3. Overview

In figure 1, we present the architecture of our system.

We use grayscale images as the raw data type to ensure

a wide range of applications. We chose both geometric

and appearance features. Our geometric features char-

acterize relationships among triplets of fiducial points

to avoid sensitivity to rotations and scaling. For appear-

ance features, we use Histograms of Oriented Gradients

(HOGs) on local patches because of their relevance for

describing emotion-related wrinkles and their low com-

putation time. Some of our patches are centered us-

ing the fiducial points. Other patches are located using

only the Viola-Jones face detection area to ensure ro-

bustness in case of a landmark tracking failure. More

details about our features can be found in Section 6.1.

Those features and the associated labels are then used

for learning our prediction system.

Labeling AUs is complex and time-consuming for

several reasons. Only experts, with specific train-

ing, can precisely identify the activated muscles and

their corresponding intensities in an image [45]. Thus,

frame-by-frame annotation of an important number of

AUs is difficult (there are more than 45 muscles in the

human face). Moreover, in natural behavior, many AUs

are very rarely activated. This explains why, even with

several hours of video data, the number of positive ac-

tivations can be small (e.g., there are only 4 activations

of maximal intensity for AU2 in the DISFA database).

The data are said to be imbalanced (the number of unac-

tivated samples is considerably higher than the number

of activated ones). Thus, we decided to focus on over-

fitting when designing our method.

For each AU, we learn a low-dimensional space

suited for a non-parametric Gaussian kernel regres-

sor by using a Lasso-regularized version of MLKR

within an iterative nonlinear feature selection process.

The small number of dimensions in our representation

spaces and the regularization aim at reducing a poten-

tial overfitting on the training data. Moreover, the im-

balanced data distribution induces some issues for re-

gression evaluation when using commonly used metrics

such as Root Mean Square Error (RMSE) or Correla-

tion Coefficient (CC). We discuss this and introduce a

new evaluation metric, r-AUC, in Section 6.3.

More details about our regression framework can be

found in Section 5. The main contributions of this paper

are the following:

• A complete framework for real-time AU intensity

prediction improving state-of-the-art results in pro-

totypical and natural databases.

• A Lasso-regularized version of Metric Learning

for Kernel Regression (Lasso-MLKR).

• A new evaluation metric (r-AUC), suited for re-

gression tasks on imbalanced data, extending Area

Under ROC Curve for regression, that we present

in Section 6.3.

Our method is built upon Metric Learning for Ker-

nel Regression (MLKR), which we introduce in the next

section.

4. Metric Learning for Kernel Regression

Kernel regression has proved to be efficient in a wide

range of applications (from image deblurring [46] or

segmentation [47] to automatic human emotion predic-

tion [48]). However, the performance of the regressors

highly depends on the relevance of the space in which

the samples lie, making appropriate dimensionality re-

duction a necessary initial step. Weinberger and Tesauro

[49] proposed MLKR (Metric Learning for Kernel Re-

gression), which aims at finding the optimal linear pro-

jection to minimize the kernel regression squared error

on the training set.

In kernel regression, an instance label is predicted

using the Nadaraya–Watson estimator [50], as an aver-

age of the training instance labels weighted using some

similarity measure. If we consider ns training sam-

ples {x1, x2, .., xns
} associated with corresponding labels

{y1, y2, .., yns
}, the label corresponding to a feature vec-

tor xt will be approximated by

ŷt =

ns
∑

i=1

yiki,t

ns
∑

i=1

ki,t

(1)

using a kernel ki,t = k(xi, xt) as a similarity metric be-

tween samples i and t.

MLKR proposes a direct optimization of the kernel

regression error for the commonly used Gaussian ker-

nel, which can be defined as follows:

ki, j =
1

σ
√

2π
e
−

d2
i, j

σ2 (2)

where σ is the Gaussian spread and di, j = d(xi, x j) is the

euclidean distance between samples i and j. Let us con-

sider an original space of dimension nd and an output

4
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Figure 1: Architecture of the proposed framework : the most relevant geometric and appearance features are selected by evaluating the conditional

entropy between each feature and the label to predict. For each Action Unit, a low-dimensional space suited for a non-parametric Gaussian kernel

regressor is learned by using a Lasso-regularized version of Metric Learning for Kernel Regression. Complementary features are iteratively selected

according to the prediction errors.

space of dimension nr. MLKR aims at finding a projec-

tion matrix A ∈ Mnd ,nr
(R) that minimizes the squared

error L on the training samples:

L(A) =

ns
∑

i=1

(ŷi − yi)
2 (3)

where

ŷi =

∑

j,i

y jk j,i(A)

∑

j,i

k j,i(A)

where

ki, j(A) =
1

σ
√

2π
e
− di, j (A)2

σ2

di, j(A)2 = ‖A(xi − x j)‖2 = (xi − x j)
⊤A⊤A(xi − x j)

is the squared distance in the reduced subspace of di-

mension nr. The optimization process of the squared

error is performed with a gradient descent. We obtain

by an analytical calculation

∂L(A)

∂A
= 4A

∑

i

(ŷi − yi)
∑

j,i

ki j

∑

j

(ŷi−y j)ki j(xi−x j)(xi−x j)
⊤

(4)

Metric Learning for Kernel Regression (MLKR) lets

us project data points in a low-dimensional space suited

for nonlinear prediction via Gaussian kernel regression.

In this paragraph, we explain our choice to use

MLKR by discussing some advantages and limitations

of the method.

First, MLKR does not directly learn a prediction func-

tion but learns a space in which a Nadaraya–Watson es-

timator is performed using a set of data and labels. We

can then project new data points in the learned space for

predicting without relearning the system (for instance,

to easily adapt to a new database or to a specific sub-

ject). Second, the Nadaraya–Watson estimator is able

to adapt easily to heterogeneous point distribution be-

cause of the normalization by
ns
∑

i=1

ki,t, which helps AU

intensity prediction when trying to predict an unknown

subject lying in a sparsely populated part of the space.

However, MLKR has several drawbacks. First, it is

non-convex. However, experiments have shown that lo-

cal minima lead to accurate predictions on standard re-

gression datasets [49]. We observed a similar behavior

with our experiments on AU databases. Second, it has

a quadratic complexity relatively to both the number of

features and the number of samples, which makes it dif-

ficult to use on high-dimensional and large datasets.

In the next section, we introduce our regression method,

which is based on an adaptation of MLKR for high-

dimensional spaces.

5
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5. Iterative Regularized Kernel Regression (IRKR)

In the MLKR algorithm, the number of estimated pa-

rameters when reducing a space of dimension nd into a

subspace of dimension nr is npar = nd.nr. If the num-

ber of training samples is too small compared with the

number of model parameters, the risk of overfitting in-

creases. We propose in Section 5.1 to modify the origi-

nal formulation by regularizing it using a Lasso-penalty

for the reduction of overfitting risk.

Moreover, the gradient computation for a projection

of ns samples into a space of dimension nd has a com-

plexity of O(n2
s .n

2
d
), making it difficult to use in high-

dimensional spaces. We propose a complete framework

improving the original MLKR formulation to make it

efficient in high-dimensional datasets.

A widely used step for supervised dimensionality re-

duction is filter feature selection [51], which aims at

characterizing the relevance of the features indepen-

dently of the predictor’s choice, often one by one, for

predicting the label. In other words, it computes a sim-

ilarity (or dissimilarity) measure between each feature

and the label and selects the highest ones (or the small-

est ones, respectively). We propose the use of a con-

ditional entropy measure that is able to find nonlinear

relationships between features and labels. Details are

given in Section 5.2.

Furthermore, we propose that it be included within an

iterative framework because filter-based methods have a

high risk of selecting redundant information (see para-

graph 5.3).

5.1. Lasso-MLKR

Original MLKR minimizes the training reconstruc-

tion error with respect to the coefficients of the pro-

jection matrix A. We propose to regularize this origi-

nal MLKR formulation using a Lasso-penalty, meaning

that we add a weight to the cost function correspond-

ing to the L1-norm of the matrix A (which is the sum of

the absolute values of its coefficients). This penalty has

been proved to induce sparsity in the estimated param-

eters, reducing the risk of overfitting [52]. Some of the

coefficients are shrunk all the way to zero. Correspond-

ing solutions, with multiple values that are identically

zero are said to be sparse. The new energy formulation

becomes

L(A) =

ns
∑

i=1

(ŷi − yi)
2 + λ.L1(A) (5)

where λ controls the regularization rate. The associate

gradient becomes

∂L
∂A
= 4A

∑

i

(ŷi−yi)
∑

j,i

ki j

∑

j

(ŷi − y j)ki j(xi − x j)(xi − x j)
⊤ + λ.s(A)

(6)

where s is the sign function.

The optimization of the regularization rate λ can be

performed in cross-validation. In Iterative Regularized

Kernel Regression (IRKR), this Lasso-MLKR method

is used after a filter-based selection method and within

an iterative process. This corresponds to the Metric

Learning step in our system’s schema (see figure 1).

It is common in face-related machine learning prob-

lems to extract tens of thousands of features for charac-

terizing face appearance. However, the complexity of

each step of the MLKR algorithm, quadratic with re-

spect to the number of features, makes it complicated

to use with such a high number of features. This moti-

vates the feature selection we perform using a nonlinear

dissimilarity metric described in the next section.

5.2. Conditional Entropy Feature Selection

The purpose of supervised filter-based feature selec-

tion is to identity features that contain relevant informa-

tion for predicting a label. Different prior assumptions

can be made on the functional relationship between fea-

tures and labels. The simplest prior assumption that can

be made between features and labels is linear depen-

dency. The similarity measure associated with that de-

pendency is the Correlation Coefficient. Because our

regression method is nonlinear, we chose to use condi-

tional entropy, which is able to discover nonlinear rela-

tionships between features and labels. The conditional

entropy of a label l given a feature f is defined as fol-

lows:

H(l| f ) = −
∑

x∈F
p(x)
∑

y∈L
p(y|x) log(p(y|x))

where F and L are the sample spaces in which the

feature and label are defined, respectively. Because

fine estimations of conditional probabilities can be

time-consuming with a high number of samples, we de-

cided to compute the probabilities using six-level quan-

tization of the features.

This metric allows relevant feature selection for pre-

dicting labels by assuming nonlinear functional rela-

tionships between features and labels. It is used in the

Feature Selection step of IRKR (see figure 1).
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5.3. Iterative Feature Selection

Filter-based methods have been commonly included

in iterative frameworks to select feature sets containing

uncorrelated information [53]. In our framework, we

first select a set of features and apply our regression

to the learning database. We then select features cor-

related (in terms of conditional entropy) to the predic-

tion error (for selecting uncorrelated information) and

features correlated to the samples with the highest er-

rors (to rapidly reduce the prediction error). The fi-

nal framework, Iterative Regularized Kernel Regression

(IRKR), which combines our three proposed contribu-

tions (Lasso-MLKR, conditional entropy and iterative

feature selection), is presented in algorithm 1.

Algorithm 1 Iterative Regularized Kernel Regression

1: select a subset of ns features {F} calculating H(l| f j)

for all j

2: vsel = {F}
3: compute A using Lasso-MLKR on the feature set

vsel

4: calculate the prediction l̂1 on the training set

5: calculate the prediction squared error e1 = (l̂1 − l)2

on the training set

6: calculate the sum of errors of training samples s1

7: identify the subset S 1 of samples whose errors are

superior to the mean of e1

8: u = 1

9: repeat

10: u = u + 1

11: select a subset of ns features {Fe} calculating

H(eu−1| f j) for all j

12: select a subset of ns features {Fm} calculating

H(l(S u−1)| f j(S
u−1)) for all j

13: vsel = vsel ∪ {Fe} ∪ {Fm}
14: compute A using Lasso-MLKR on the feature

set vsel

15: calculate the prediction l̂u on the training set

16: calculate the prediction error eu = (l̂u − l)2 on

the training set

17: calculate the sum of errors of training samples

su

18: identify the subset S u of samples whose errors

are superior to the mean of eu

19: until su

su−1 < 0.99

20: perform Kernel Regression on the test samples in

the projected space defined by the matrix A learned

last

In the next section, we present the application of

IRKR to the task of AU intensity prediction.

6. Application to AU prediction

The feature extraction process is described in Sec-

tion 6.1, followed by a presentation of the databases we

used in Section 6.2. Different metrics commonly used

for measuring AU system performance are discussed in

Section 6.3. Finally, we detail our evaluation protocol in

Section 6.4 and present the evaluations of the different

parts of IRKR in Section 6.5 followed by our results in

Section 6.6.

6.1. Feature Extraction

Most of the methods in facial-related information

prediction combine two types of features: shape-based

features and appearance-based features. Shape-based

features are information relative to the positions of

key landmarks in faces (eyes, nose, eyebrows and

mouth contours), and appearance-based ones aim at

describing image texture (globally or locally). For our

task, landmark positions contain particularly interesting

information because some AU activations directly

induce important key point movements (such as raising

the eyebrows or smiling). However, it is important to

combine shape-related features with appearance-related

ones for at least two reasons. First, shape-based

features cannot encode some crucial information for

AU prediction such as expression-relative wrinkle

characterization. Second, current trackers may suffer

from a lack of precision or robustness in challenging

conditions, and appearance information may compen-

sate for those errors in landmark prediction.

Shape-based features

We use Intraface tracker [54], which localizes 49 fa-

cial landmarks in real-time. To be insensitive to scaling

and rotation in the image plane, we extract features rel-

ative to point triplets (as in [55]). Some works on facial

expression analysis have proposed using features ob-

tained after projection onto a manifold learned by PCA

[56] [48]. However, those features encode global infor-

mation. AU prediction is a local task because each AU

corresponds to one facial muscle. Thus, we chose to

extract information relative to point triplets. For each

triplet of points tk1k2k3
= (pk1

,pk2
,pk3

), we calculate the

ratio of both vectors

vk2k3
= pk3

− pk2
= (px

k3
− px

k2
) + i.(p

y

k3
− p

y

k2
)

and

vk2k1
= pk1

− pk2
= (px

k1
− px

k2
) + i.(p

y

k1
− p

y

k2
)
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to form

f (tk1k2k3
) =

vk2k1

vk2k3

=
‖vk2k1

‖
‖vk2k3

‖ .e
i ̂(vk2k3

,vk2k1
)

that indicates the location of pk1
relatively to pk2

and pk3
. In this work, we take the real part and the

imaginary part of f (tk1k2k3
) as features.

Appearance-based features

Before extracting appearance features, we cancel the

rotation in the image plane and normalize the image

using the estimation of the centers of the eyes. We

then extract HOG descriptors (Histograms of Oriented

Gradients) on different patches in the image. Some

of them are centered on the landmarks to describe

local texture and be able to capture expression-related

wrinkles, and others are obtained by a 4x4 division of

the image (see figure 2), giving us the possibility of

catching up for potential point tracking errors. The

patches centered using the landmarks we chose are

presented in figure 3.

Figure 2: Patches located without the landmarks

6.2. Databases

We used the Enhanced Cohn–Kanade Dataset for

evaluating the different key points of our framework.

This database contains prototypical behavior recorded

in controlled conditions. We compared our algorithm

results with state-of-the-art methods using the more

natural DISFA Dataset.

Enhanced Cohn-Kanade Dataset

The CK dataset [25] consists of small video sequences

in which subjects change their facial expressions from

neutral to expressive. Each sequence is labeled in dis-

crete emotions and FACS. A second version with more

sequences (CK+) has been released [34], increasing the

Figure 3: Patches centered using the landmarks

number of different subjects to 123. However, the labels

are available only for the last frames of the sequences.

The Intelligent Systems Lab of Rensselear Polytechnic

Institute added manual relabeling of the dataset, frame

by frame, with three different intensity levels for each

AU (Enhanced Cohn–Kanade dataset). The different

intensity levels are 0 if the AU is not activated, 1 if it is

activated with small intensity, and 2 if it is completely

activated. Image samples of the database are presented

in figure 4.

Figure 4: Examples of images extracted from the CK+ dataset

DISFA Dataset

The Denver Intensity of Spontaneous Facial Actions

(DISFA) dataset [11] contains videos of 27 subjects

(12 females and 15 males) with different ethnicities

recorded watching a 4-minute emotive video stimulus.

Data have been manually labeled frame by frame for 12

AUs on a six-level scale by a human FACS expert and

verified by a second FACS coder. Image samples are

presented in figure 5.

8
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Figure 5: Examples of images extracted from the DISFA dataset

6.3. Metrics

Different metrics exist for evaluating the perfor-

mance of regression systems. In this paragraph, we

define three commonly used metrics–namely, Root

Mean Squared Error (RMSE), Pearson’s Correlation

Coefficient (CC) and Intraclass Correlation Coefficient

(ICC)–and introduce a new metric called r-AUC and

empirically show its advantages over other metrics on

two examples.

The most commonly used metric for regression

evaluation is RMSE, defined as follows for a label l and

an estimated label l̂:

RMS E(l̂, l) =

√

√

√

√ n
∑

i=1

(l̂(i) − l(i))2

n
(7)

RMSE is often combined with Pearson’s CC for eval-

uating the performance of a regression system. CC is

defined as follows:

CC(l̂, l) =

n
∑

i=1

(l(i) − l̄)(l̂(i) − ¯̂l)

√

n
∑

i=1

(l(i) − l̄)2

√

n
∑

i=1

(l̂(i) − ¯̂l)2

(8)

where l̄ denotes the mean of the label.

Another commonly used metric is ICC, which, for k

judges (i.e. a label l and an estimated label l̂ in our case),

is defined as

ICC =
W − S

W + (k − 1)S
(9)

where W is the Within-target Mean Squares, and S is the

Residual Sum of Squares. Details of the computation

can be found in [57].

Note that for our computations of the previously in-

troduced evaluation metrics, we compare the ground

truth to the regression system output with no quantiza-

tion step.

Data used for learning AU prediction systems have

a particular characteristic: they are highly imbalanced,

meaning that there are in many cases very few positive

samples compared with zero-valued samples (AU un-

activated). In this context, and considering AU predic-

tion as a classification task, Jeni et al. [58] investigated

different performance measures (accuracy, F1 measure,

AUC score, etc.) and concluded that Area Under ROC

Curve (AUC) was the most robust and reliable metric

for this task. The Receiver Operating Characteristic

(ROC) curve represents the rate of true positives (pos-

itive samples that are correctly detected) as a function

of the rate of false positives (negative samples that are

incorrectly detected).

To take advantage of the robustness of this AUC met-

ric for imbalanced data in the context of regression,

we propose a new metric, called regression Area Under

ROC Curve (r-AUC), defined as a mean of AUC scores

for different binary quantizations of the label. Let us

consider a label l varying from 0 to 1. We define a set

{l j, j ∈ [[1; ns]]} of ns binary quantizations of the label.

l j(i) is 0 if l(i) <
j

ns+1
and 1 otherwise. r-AUC corre-

sponds to the mean of the ns AUCs calculated using the

prediction and the different binary quantizations of the

label. For a label l and a prediction p, we can obtain an

explicit r-AUC score in a continuous manner as

r-AUC(l, p) =
1

max(l) − min(l)

max(l)
∫

min(l)

AUC(p, ls)ds

where ls is the binary quantization of label l using the

threshold s.

Let us consider two examples to illustrate the interest of

r-AUC. If the system predicts a linear transformation of

the label l̂ = α.l+ β, RMSE can be high, even for α near

one and β near zero. We illustrate this issue in figure

6, where we can see that the noisy prediction on the

lower part leads to a smaller RMSE than the prediction

on the upper part. For many applications, this latter

prediction would nevertheless be of great value because

it contains all the dynamic information. We can notice

that by using r-AUC metric, as well as CC or ICC, the

first prediction is evaluated as the most relevant one.

Note that a random prediction leads to an r-AUC of 0.5,

and random predictions in binary classification lead to

an AUC of 0.5.

Pearson’s Correlation Coefficient (CC) lets us consider

9
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that linear transformations of the label are accurate

predictions. However, in some cases, CC can be

misleading. On the upper part of figure 7, the prediction

is successful for the four main activations of the AU,

but with wrong intensities, and on the lower part, the

system succeeds only in predicting the most important

activation. We can notice that all three metrics (RMSE,

CC and ICC) indicate in this example that the second

prediction is the best. The proposed r-AUC metric

in this case would evaluate the first prediction more

favorably because more activations are detected.

We believe that this metric lets us overcome im-

portant limitations of other standard metrics in the

context of imbalanced data. We decided to use it

along with CC for evaluating the different parts of

our method. We used RMSE and CC for comparing

our system’s performance with recent state-of-the-art

methods because those metrics were reported in the

corresponding papers.

6.4. Experimental setup

All presented results for both datasets correspond

to a subject-independent 4-fold cross-validation. All

evaluations are performed on a global prediction signal

corresponding to the concatenation of the 4 predictions.

We extract 22,960 features from each frame (19,632

geometric features extracted from triplets of points

and 3328 appearance features). Our HOG features are

extracted with 8 directions on a 4x4 grid for each of

the 26 patches. The λ regularization rate optimal value

we found is 0.06. We add 10 features at each step of

our iterative feature selection strategy, obtaining 70

final selected features for each AU. Our Lasso-MLKR

algorithm performs projections on 4-dimensional

spaces.

For the Enhanced Cohn–Kanade dataset, we used 2600

images for each of the four training folds and for each

AU. We selected them to have 1300 unactivated sam-

ples (corresponding AU of value 0) and 1300 activated

samples (randomly selected). The total training for

the 14 AUs takes approximately 8 h on an Intel Core

i7-3770 at 3.4 GHz.

For DISFA database, we used 6000 images for each

of the four training folds and each AU. We selected

them to have 3000 unactivated samples (corresponding

AU of value 0) and 3000 activated samples (ran-

domly selected). The total training for the 12 AUs takes

approximately 14 h on an Intel Core i7-3770 at 3.4 GHz.

6.5. Evaluations of the Enhanced CK

In this section, we evaluate the contribution of the

different key points of our framework on the Enhanced

Cohn–Kanade Dataset (which is annotated using three

different intensity levels).

Conditional entropy

In this paragraph, we compare feature selection

with the conditional entropy similarity measure and

Pearson’s Correlation Coefficient on the Enhanced

CK dataset. We consider the simplest configuration,

without iterative feature selection or regularization of

the MLKR formulation. We present the results obtained

in terms of CC and r-AUC scores in table 1. We can

observe a global improvement of 1.7 % when using the

conditional entropy metric for feature selection in terms

of CC, which is consistent for an important number

of AUs (12 of 14 AUs are better predicted). This

improvement is significant for several AUs. The main

improvements correspond to AU4 (Brow Lowerer),

AU5 (Upper Lid Raiser), AU6 (Cheek Raiser), AU7

(Lid Tightener), AU23 (Lip Tightener), AU24 (Lip

Pressor) and AU25 (Lips Part). Most of these AUs

have the common characteristic of provoking small

landmark displacements, making appearance-based

information of primary interest. We can explain those

improvements by the important amount of nonlinear-

ities between appearance-based features and labels,

making conditional entropy particularly relevant for

those AUs.

Lasso-MLKR

In this paragraph, we evaluate the contribution of

MLKR Lasso-regularization. We consider a configu-

ration with conditional entropy-based feature selection

without iterative feature selection. We present the re-

sults obtained in table 2. We can observe a global im-

provement of 2.1% in terms of CC when adding regu-

larization that is consistent with an important number

of AUs (11 of 14 AUs are better predicted). The regu-

larization, which lets us reduce the overfitting and in-

crease the generalization power of our models, has a

significant impact on some AUs, such as AU4 (Brow

Lowerer), AU15 (Lip Corner Depressor), AU17 (Chin

Raiser), AU23 (Lip Tightener) and AU24 (Lip Pressor).

We can observe an important negative correlation be-

tween scores without regularization and the gain pro-

vided by the regularization, meaning a greater improve-

ment for AUs that are the most difficult to predict. This

can be explained by the regularization, which is useful

when the training samples are insufficient to learn mod-

els without overfitting. For AUs with high scores with-

out regularization, the training samples were sufficient

10
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Figure 6: Comparison of different evaluation metrics on synthetic data, first example : r-AUC, ICC and CC metrics did succeed to discriminate a

good AU intensity predictor (the upper figure) from a poor one (the lower figure) contrary to RMSE that gives approximately the same value in

both cases

Figure 7: Comparison of different evaluation metrics on synthetic data, second example : the proposed r-AUC metric would evaluate the first

prediction more favorably because more activations are detected. On the contrary, RMSE, CC and ICC favor the system that only predicts the

strongest peak of intensity

in number and contained enough variability for learning

models. In those cases, the gain provided by the Lasso-

regularization is less important.

Iterative Feature Selection

In this paragraph, we evaluate the contribution of our it-

erative feature selection framework. We consider a con-

figuration with conditional entropy-based feature selec-

tion and Lasso-MLKR. We present in figure 8 the re-
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Table 1: Comparison of Pearson’s Correlation Coefficient (CC) and

Conditional Entropy (C-Ent) for feature selection on Enhanced CK

dataset

Evaluation measure CC (%) r-AUC (%)

Feature selection CC C-Ent CC C-Ent

AU1 82.4 83.1 94.4 94

AU2 89.4 87.7 96.4 96.2

AU4 79.4 80.8 90.7 92

AU5 68.5 73.1 91.7 92.9

AU6 73.9 75.2 93 94.2

AU7 66.7 67.9 89.6 89.9

AU9 79.7 74.6 95.3 93.8

AU12 88.9 90 96.5 97.2

AU15 68.7 69.7 91 91.4

AU17 73.8 74.7 92 92

AU23 50.7 53.8 88.8 90.7

AU24 50.4 53.2 80.2 82.9

AU25 79.5 85.8 95.5 95.6

AU27 92.8 92.9 99.2 99.3

Mean 74.6 75.9 92.4 93

Table 2: Comparison of MLKR (M) and Lasso-MLKR (L-M) on En-

hanced CK dataset

Evaluation measure CC (%) r-AUC (%)

Algorithm M L-M M L-M

AU1 83.1 83.4 94 94.1

AU2 87.7 88.5 96.2 96.5

AU4 80.8 84.2 92 93.6

AU5 73.1 73.8 92.9 93.5

AU6 75.2 75 94.2 93.9

AU7 67.9 68.8 89.9 90.7

AU9 74.6 74.9 93.8 93.5

AU12 90 91.2 97.2 98

AU15 69.7 71.3 91.4 92.3

AU17 74.7 79.7 92 94.8

AU23 53.8 57 90.7 92.3

AU24 53.2 60.2 82.9 87.9

AU25 85.8 84.5 95.6 95.1

AU27 92.9 92.6 99.3 99.4

Mean 75.9 77.5 93 94

sults obtained for CC scores averaged over all 14 AUs.

For learning the first model, we selected 10 features,

and then we added 10 features at each iteration. We

can observe that the models learned using our iterative

framework lead to a greater CC score at every iteration.

In applications where very fast predictions are needed,

the number of features must be restricted to save time

during kernel computations. The iterative process we

propose lets us perform better with the same number of

features (for instance, using only 30 features selected in

2 iterations, we see an improvement of 2 % compared

with a direct selection of 30 features). This iterative

feature selection process leads to a more efficient and

compact representation by avoiding the selection of re-

dundant information.

Figure 8: Comparison of standard conditional entropy feature selec-

tion and iterative conditional entropy feature selection on Enhanced

CK dataset with different number of selected features

The evaluations using the prototypical Enhanced

Cohn–Kanade Dataset prove the relevance of the differ-

ent key points of IRKR: conditional entropy similarity

metric, our L1-regularization of MLKR original formu-

lation and our iterative framework for feature selection.

6.6. Evaluations of DISFA dataset

In this section, we present and compare three versions

of IRKR learned with three different sets of features and

compare IRKR with two recent state-of-the-art methods

on the natural DISFA dataset.

Comparison between different sets of features

In this paragraph, we present the results obtained by

learning IRKR with only the geometric features (I1),

only the appearance features (I2) and the complete set

of geometric and appearance features (I3). We present

in table 3 the results in terms of CC and r-AUC. In

the DISFA dataset, AUs are labeled on a six-level scale

12
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from 0 (no activation of AU) to 5 (activation with max-

imal intensity). For continuous signals, r-AUC can be

calculated as follows:

r-AUC(l, p) =
1

max(l) − min(l)

max(l)
∫

min(l)

AUC(p, ls)ds

where ls is the binary quantization of label l using the

threshold s. For the six-level labels of DISFA, by con-

sidering the following vector of thresholds

v = {0.5, 1.5, 2.5, 3.5, 4.5}

r-AUC can be simplified as

r-AUC(l, p) =
1

5

5
∑

i=1

AUC(p, lvi
)

which corresponds to an average of 5 AUC scores for

the different thresholds (the first one separating the sam-

ples of values 0 from the others, the second one separat-

ing the samples of values 0 and 1 from the others, and

so on).

Table 3: Comparison among three versions of IRKR on the DISFA

dataset. I1 corresponds to a model learned using only shape features,

I2 to a model learned only with appearance features and I3 to a model

learned with both shape and appearance features

Evaluation measure CC (%) r-AUC (%)

Feature set I1 I2 I3 I1 I2 I3

AU1 57 60 70 91 91 94

AU2 61 60 68 94 93 94

AU4 54 61 68 87 89 91

AU5 36 39 49 77 96 98

AU6 63 58 65 93 91 94

AU9 40 34 43 90 88 92

AU12 83 75 83 96 94 96

AU15 19 33 34 74 77 83

AU17 29 26 35 79 82 86

AU20 10 25 21 65 68 74

AU25 87 78 86 94 90 94

AU26 55 37 62 90 88 92

Mean 50 49 57 86 87 91

We observe a gain of 14% of the average CC score

when adding appearance features to geometric ones.

We can see that for AU12 (Lip Corner Puller) and

AU25 (Lips Part), appearance features did not improve

the prediction. Geometric features were sufficient to

obtain relatively precise predictions for those AUs.

However, for more subtle AUs inducing smaller facial

movements, appearance features have considerably

improved the predictions for AU5 (Upper Lid Raiser),

AU15 (Lip Corner Depressor), AU17 (Chin Raiser) and

AU20 (Lip Stretcher).

In the next paragraph, to compare our method, we

use the complete version of IRKR (I3), which includes

both geometric and appearance features.

Comparison with state-of-the-art methods

IRKR is compared to the method proposed by Sand-

bach et al. [59] and that proposed by Baltrušaitis et

al. [44] in terms of Root Mean Square Error (RMSE)

and Correlation Coefficient (CC) in table 4. In [59],

the authors used Support Vector Regression on Local

Binary Pattern (LBP) features and included priors via

Markov Random Fields (MRF). In [44], Continuous

Conditional Neural Fields (CCNF) are used after

modeling the appearance with Nonnegative Matrix

Factorization (NMF) on local patches.

In [59], only the AUs corresponding to the upper face

have been predicted. Considering this subset of AUs,

the average RMSE of IRKR is 0.58 compared to 0.66 for

[59] and 0.71 for [44]. The average CC of IRKR is 60.3

compared to 34.2 for [59] and 46.5 for [44].The statisti-

cal significance of these results has also been evaluated

using the Friedman test [60]. With the 3 methods, and

6 upper face AUs the p-values are 0.015 and 0.009 for

RMSE and CC respectively which highlight the strong

significance of the results. If we consider the whole set

of 12 AUs and we compare our results with [44], the

test is less significant (the p-value is equal to 0.08 for

both CC and RMSE). However, if we compare the two

means 0.59 vs 0.66 and 56.9 vs 49 for RMSE et CC re-

spectively, this improvement of our proposed method is

highly significant (the p-values of the t-tests are 0.036

and 0.015 for RMSE and CC respectively).

We can notice, for AU9, that the RMSE error of [59]

is lower than that of IRKR but that the CC score of

IRKR is higher. This contradiction illustrates the met-

ric problem we discussed in Section 6.3. We proposed

an r-AUC score to overcome this issue. In figure 9,

we present the 5 AUC scores we obtain for the dif-

ferent thresholds and the average r-AUC for each AU.

For most AUs, we can see that the AUC scores corre-

sponding to the low thresholds are lower than the AUC

scores for higher thresholds. This means that the algo-

rithm succeeds more easily at separating high-intensity

activations from the others and has more difficulties in

separating the non-activated ones from the rest. If we
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consider that an AU is activated when its intensity is

equal to or higher than level 3 (corresponding to the

third threshold), 8 of 12 AUs are predicted with an AUC

score higher than 0.9 (except AU9, AU15, AU17 and

AU20).

In figure 10, we show the prediction of IRKR al-

gorithm on a part of the third sequence of the DISFA

dataset for AU4 (Brow Lowerer). We can observe that

the algorithm succeeds well at predicting two brow low-

ering actions in the middle and at the end of the se-

quence. In those actions, the intensity reaches level 4.

For the beginning of the sequence, our algorithm suc-

ceeds at differentiating level 3 from non-activation but

with a certain amount of noise. The small activation

reaching level 2 around frame 1450 is not predicted by

our system. This example illustrates the AUC scores of

AU4 on figure 9. It is more difficult to differentiate ac-

tivations of levels 0, 1 and 2, but recognition is relevant

from level 3 (AUC score is higher than 0.9 for those

thresholds).

The computational complexity is O(ns.nr), where ns

is the number of samples, and nr is the number of

selected features. Using 6000 samples of dimension

nr = 70, our Matlab implementation of the IRKR al-

gorithm is able to simultaneously predict 14 AUs at a

frequency of 16 frames per second on an Intel Core i7-

3770 at 3.4 GHz, making it usable in real-time applica-

tions.

7. Discussion and conclusion

In this paper, we presented the Iterative Regularized

Kernel Regression (IRKR) framework, a generic regres-

sion method built upon Metric Learning for Kernel Re-

gression (MLKR) [49]. We applied it to real-time pre-

diction of AU intensity, improving state-of-the-art re-

sults with several databases. In this work, we propose

an L1-regularization of the original MLKR formulation

to reduce overfitting. We use conditional entropy for se-

lecting features with nonlinear functional relationships

with labels. We then perform an iterative framework to

avoid selecting redundant information. Finally, we in-

troduce r-AUC, a new evaluation metric for regression

in the context of imbalanced data.

We evaluated and compared our method using two

AU databases containing multilevel annotations. The

first one, the enhanced Cohn–Kanade dataset, is a

widely used prototypical database upon which we eval-

uated the different key points of our method. We com-

pared IRKR with state-of-art methods on the natural

DISFA dataset on 12 AUs, leading to mean improve-

ments of 10.3% and 11.6% for Root Mean Squared Er-

ror (RMSE) and Correlation Coefficient (CC), respec-

tively.

The most accurate predictions were obtained for AU1

(Inner Brow Raiser), AU2 (Outer Brow Raiser), AU4

(Brow Lowerer), AU12 (Lip Corner Puller) and AU25

(Lips Part), which are frequently activated in natural be-

havior. Other AUs appear to be more complex to model

and predict. This can be explained by the small number

of positive samples for some AUs in natural databases.

Indeed, some AUs are activated only in particular and

rare emotional states, which can be difficult to induce

in natural setups when acquiring data. Considering this

imbalanced data distribution, it is particularly important

to focus on overfitting reduction, which is the purpose of

the Lasso-penalty we added to the original cost function

of MLKR, which leads to important gains, especially for

the complex AUs.

However, the results show that for the Lip Corner De-

pressor (AU15) and Lip Stretcher (AU20), the number

of positive samples may not be sufficient for modeling

the activations accurately. The amount of available la-

beled data still remains as a hindrance to AU intensity

prediction, and natural protocols inducing rare facial ex-

pressions may be very important for continued increas-

ing accuracy in automatic face-centered human behav-

ior analysis.

The comparison between IRKR learned only with ge-

ometric features and IRKR learned with geometric and

appearance features stresses the importance of appear-

ance characterization for AU intensity prediction. Re-

cent advances in facial landmark tracking considerably

improves AU prediction scores, but research on appear-

ance features remains of great interest in this domain, as

underscored by these results. Although the relationship

between facial landmarks and AU activations have an

important chance of being near linear, the same is not

the case for appearance features. Thus, it is important

to model those relations nonlinearly. This is why we

decided to use the nonlinear conditional entropy metric

for selecting features. The obtained results show that

using this metric, compared with the Correlation Coef-

ficient, improves predictions of AUs that are linked to

appearance characterizations, such as AU4 (Brow Low-

erer), AU5 (Upper Lid Raiser), AU6 (Cheek Raiser),

AU7 (Lid Tightener), AU23 (Lip Tightener) and AU24

(Lip Pressor).

We used this metric within an iterative framework

for feature selection to avoid selecting redundant infor-

mation. This leads to a more compact representation,

obtaining higher scores with a reduced set of features.

This compact representation can be interesting for sev-

eral reasons. First, reducing the number of parameters
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Table 4: Comparison between our algorithm and those proposed by Sandbach et al. [59] and Baltrušaitis [44] on the DISFA dataset in terms of

Root Mean Square Error (R) and Correlation Coefficient (CC)

AU R, IRKR R, [59] R, [44] CC, IRKR CC, [59] CC, [44]

1 0.57 0.63 0.74 69.7 56.3 48

2 0.49 0.58 0.63 68.2 54.1 50

4 0.85 1.10 1.13 67.7 43.8 52

5 0.29 0.30 0.33 49.2 22.6 48

6 0.63 0.77 0.75 64.7 11.9 45

9 0.62 0.58 0.67 42.6 16.8 36

12 0.58 - 0.71 83.2 - 70

15 0.47 - 0.46 34.2 - 41

17 0.62 - 0.67 35 - 39

20 0.59 - 0.58 21.0 - 11

25 0.69 - 0.63 86.2 - 89

26 0.69 - 0.63 61.5 - 57

Mean 0.59 - 0.66 56.9 - 49

Figure 9: AUC scores of IRKR on the DISFA dataset for different thresholds. There are only 4 thresholds for AU15 and AU20 because the database

does not include samples of intensity 5 for those AUs.

in the model can reduce overfitting, and second, com-

pact representations lead to faster predictions, which is

useful considering the real-time constraints of many ap-

plications related to automatic AU prediction.

Several metrics exist for evaluating a regression

method. The most commonly used in AU intensity pre-

diction are Root Mean Square Error (RMSE) and Cor-

relation Coefficient (CC). However, some problems are

encountered when using those metrics on imbalanced

data. To solve those problems, we propose r-AUC, an

15
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Figure 10: Prediction of AU4 on a part of sequence 3 of the DISFA dataset

adaptation of Area Under ROC Curve (AUC) that is

suited for regression problems in an imbalanced con-

text.

The results obtained on the natural DISFA dataset are

very promising, especially for the most frequently acti-

vated facial muscles. However, AU intensity prediction

is a particularly difficult task, and many improvements

could still be made–for instance, by proposing multi-

task methods including other information such as age

or head pose, which play a crucial role in facial appear-

ance deformations, or by thinking about new database

acquisition protocols to naturally induce rare facial ex-

pressions.
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B. Sankur, L. Akarun, Bosphorus database for 3d face analysis,

in: Biometrics and Identity Management, Springer, 2008, pp.

47–56.

[34] P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar,

I. Matthews, The extended cohn-kanade dataset (ck+): A

complete dataset for action unit and emotion-specified expres-

sion, in: Computer Vision and Pattern Recognition Workshops

(CVPRW), 2010 IEEE Computer Society Conference on, 2010,

pp. 94–101.

[35] P. Lucey, J. F. Cohn, K. M. Prkachin, P. E. Solomon,

I. Matthews, Painful data: The unbc-mcmaster shoulder pain

expression archive database, in: Automatic Face & Gesture

Recognition and Workshops (FG 2011), 2011 IEEE Interna-

tional Conference on, IEEE, 2011, pp. 57–64.

[36] M. H. Mahoor, S. Cadavid, D. S. Messinger, J. F. Cohn, A

framework for automated measurement of the intensity of non-

posed facial action units, in: Computer Vision and Pattern

Recognition Workshops, 2009. CVPR Workshops 2009. IEEE

Computer Society Conference on, IEEE, 2009, pp. 74–80.

[37] Z. Ming, A. Bugeau, J.-L. Rouas, T. Shochi, Facial action

units intensity estimation by the fusion of features with multi-

kernel support vector machine, in: Automatic Face and Ges-

ture Recognition (FG), 2015 11th IEEE International Confer-

ence and Workshops on, Vol. 6, IEEE, 2015, pp. 1–6.

[38] S. Kaltwang, O. Rudovic, M. Pantic, Continuous pain intensity

estimation from facial expressions, in: Advances in Visual Com-

puting, Springer, 2012, pp. 368–377.

[39] S. Kaltwang, S. Todorovic, M. Pantic, Latent trees for estimat-

ing intensity of facial action units, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015,

pp. 296–304.

[40] A. Gudi, H. E. Tasli, T. M. den Uyl, A. Maroulis, Deep learn-

ing based facs action unit occurrence and intensity estimation,

in: Automatic Face and Gesture Recognition (FG), 2015 11th

IEEE International Conference and Workshops on, Vol. 6, IEEE,

2015, pp. 1–5.

[41] O. Rudovic, V. Pavlovic, M. Pantic, Context-sensitive dynamic

ordinal regression for intensity estimation of facial action units,

Pattern Analysis and Machine Intelligence, IEEE Transactions

on 37 (5) (2015) 944–958.

[42] T. Senechal, V. Rapp, H. Salam, R. Seguier, K. Bailly, L. Pre-

vost, Facial action recognition combining heterogeneous fea-

tures via multikernel learning, Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on 42 (4) (2012) 993–

1005.

[43] J. M. Girard, J. F. Cohn, F. De la Torre, Estimating smile inten-

sity: A better way, Pattern Recognition Letters.
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1) We present a framework for real-time Action Unit intensity prediction. 

2) We introduce a Lasso-regularized version of Metric Learning for Kernel Regression. 

3) We propose a new evaluation metric (r-AUC) designed for regression tasks. 
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