B. Jordan and E. Wright, Xenon as an anesthetic agent, AANA J, vol.78, pp.387-392, 2010.

C. Stoppe, A. Rimek, R. Rossaint, R. S. Stevanovic, A. Schälte et al., Xenon consumption during general surgery: a retrospective observational study, Medical Gas Research, vol.3, issue.1, p.12, 2013.
DOI : 10.1046/j.1365-2044.2001.01715.x

D. Ma, T. Lim, J. Xu, H. Tang, Y. Wan et al., Xenon Preconditioning Protects against Renal Ischemic-Reperfusion Injury via HIF-1?? Activation, Journal of the American Society of Nephrology, vol.20, issue.4, pp.713-720, 2009.
DOI : 10.1681/ASN.2008070712

Q. Li, C. Lian, R. Zhou, T. Li, X. Xiang et al., Pretreatment With Xenon Protected Immature Rabbit Heart From Ischaemia/Reperfusion Injury by Opening of the mitoKATP Channel, Heart, Lung and Circulation, vol.22, issue.4, pp.276-283, 2013.
DOI : 10.1016/j.hlc.2012.10.016

C. Hobbs, M. Thoresen, A. Tucker, K. Aquilina, E. Chakkarapani et al., Xenon and Hypothermia Combine Additively, Offering Long-Term Functional and Histopathologic Neuroprotection After Neonatal Hypoxia/Ischemia, Stroke, vol.39, issue.4, pp.1307-1313, 2008.
DOI : 10.1161/STROKEAHA.107.499822

S. Faulkner, A. Bainbridge, T. Kato, M. Chandrasekaran, A. Kapetanakis et al., Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia, Annals of Neurology, vol.15, issue.pt 8, pp.133-150, 2011.
DOI : 10.1002/ana.22387

P. Franks, N. Dickinson, and R. , Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia, Anesthesiology, vol.112, pp.614-622, 2010.

H. David, F. Leveille, L. Chazalviel, E. Mackenzie, A. Buisson et al., Reduction of Ischemic Brain Damage by Nitrous Oxide and Xenon, Journal of Cerebral Blood Flow & Metabolism, vol.23, pp.1168-1173, 2003.
DOI : 10.1097/01.WCB.0000087342.31689.18

Y. , M. D. Ieong, E. Sanders, R. Yu, B. Hossain et al., Xenon and sevoflurane protect against brain injury in a neonatal asphyxia model, Anesthesiology, vol.109, pp.782-789, 2008.

M. Thoresen, C. Hobbs, T. Wood, E. Chakkarapani, and J. Dingley, Cooling Combined with Immediate or Delayed Xenon Inhalation Provides Equivalent Long-Term Neuroprotection after Neonatal Hypoxia???Ischemia, Journal of Cerebral Blood Flow & Metabolism, vol.31, issue.4, pp.707-714, 2009.
DOI : 10.1038/jcbfm.2008.163

G. Natale, D. Cattano, A. Abramo, F. Forfori, F. Fulceri et al., Morphological Evidence that Xenon Neuroprotects against N-Methyl-DL-Aspartic Acid-Induced Damage in the Rat Arcuate Nucleus: A Time-Dependent Study, Annals of the New York Academy of Sciences, vol.61, issue.1, pp.650-658, 2006.
DOI : 10.1196/annals.1344.025

Y. Yamamoto, M. Kawaguchi, N. Kurita, M. Kakimoto, S. Inoue et al., Effects of xenon on ischemic spinal cord injury in rabbits: a comparison with propofol, Acta Anaesthesiologica Scandinavica, vol.54, issue.3, pp.337-342, 2010.
DOI : 10.1111/j.1399-6576.2009.02111.x

R. 13-campos-pires, S. Armstrong, A. Sebastiani, C. Luh, M. Gruss et al., Xenon Improves Neurologic Outcome and Reduces Secondary Injury Following Trauma in an In Vivo Model of Traumatic Brain Injury*, Critical Care Medicine, vol.43, issue.1, pp.149-158, 2015.
DOI : 10.1097/CCM.0000000000000624

K. Harris, S. Armstrong, R. Campos-pires, L. Kiru, N. Franks et al., Neuroprotection against Traumatic Brain Injury by Xenon, but Not Argon, Is Mediated by Inhibition at the N-Methyl-D-Aspartate Receptor Glycine Site, Anesthesiology, vol.119, issue.5, pp.1137-1148, 2013.
DOI : 10.1097/ALN.0b013e3182a2a265

A. Höllig, A. Schug, A. Fahlenkamp, R. Rossaint, and M. Coburn, Argon: Systematic Review on Neuro- and Organoprotective Properties of an ???Inert??? Gas, International Journal of Molecular Sciences, vol.15, issue.10, pp.18175-18196, 2014.
DOI : 10.3390/ijms151018175

H. David, B. Haelewyn, M. Degoulet, C. Jr, D. Risso et al., Ex Vivo and In Vivo Neuroprotection Induced by Argon When Given after an Excitotoxic or Ischemic Insult, PLoS ONE, vol.40, issue.2, p.30934, 2003.
DOI : 10.1371/journal.pone.0030934.t001

Y. Ryang, A. Fahlenkamp, R. Rossaint, D. Wesp, P. Loetscher et al., Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats*, Critical Care Medicine, vol.39, issue.6, pp.1448-1453, 2011.
DOI : 10.1097/CCM.0b013e31821209be

F. Ulbrich, N. Schallner, M. Coburn, T. Loop, W. Lagrèze et al., Argon Inhalation Attenuates Retinal Apoptosis after Ischemia/Reperfusion Injury in a Time- and Dose-Dependent Manner in Rats, PLoS ONE, vol.386, issue.12, p.115984, 2014.
DOI : 10.1371/journal.pone.0115984.g008

C. Bantel, M. Maze, and S. Trapp, Neuronal Preconditioning by Inhalational Anesthetics, Anesthesiology, vol.110, issue.5, pp.986-995, 2009.
DOI : 10.1097/ALN.0b013e31819dadc7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930813

S. Armstrong, P. Banks, T. Mckitrick, C. Geldart, C. Edge et al., Identification of Two Mutations (F758W and F758Y) in the N-methyl-D-aspartate Receptor Glycine-binding Site that Selectively Prevent Competitive Inhibition by Xenon without Affecting Glycine Binding, Anesthesiology, vol.117, issue.1, pp.38-47, 2012.
DOI : 10.1097/ALN.0b013e31825ada2e

R. Dickinson, B. Peterson, P. Banks, C. Simillis, J. Martin et al., Competitive Inhibition at the Glycine Site of the N-Methyl-d-aspartate Receptor by the Anesthetics Xenon and Isoflurane, Anesthesiology, vol.107, issue.5, pp.756-767, 2007.
DOI : 10.1097/01.anes.0000287061.77674.71

S. Spaggiari, O. Kepp, S. Rello-varona, K. Chaba, S. Adjemian et al., Antiapoptotic activity of argon and xenon, Cell Cycle, vol.56, issue.16, pp.2636-2642, 2013.
DOI : 10.1016/j.celrep.2012.06.017

URL : https://hal.archives-ouvertes.fr/hal-00919297

M. Mattson and S. Chan, Neuronal and glial calcium signaling in Alzheimer???s disease, Cell Calcium, vol.34, issue.4-5, pp.385-397, 2003.
DOI : 10.1016/S0143-4160(03)00128-3

Z. Majláth, J. Toldi, and L. Vécsei, The potential role of kynurenines in Alzheimer???s disease: pathomechanism and therapeutic possibilities by influencing the glutamate receptors, Journal of Neural Transmission, vol.145, issue.6, pp.881-889, 2014.
DOI : 10.1007/s00702-013-1135-5

M. Talantova, S. Sanz-blasco, X. Zhang, P. Xia, M. Akhtar et al., A?? induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss, Proceedings of the National Academy of Sciences, vol.110, issue.27, pp.2518-2527, 2013.
DOI : 10.1073/pnas.1306832110

R. Mcshane, A. Sastre, A. Minakaran, and N. , Memantine for dementia, Cochrane Database Syst Rev, vol.50, issue.8, p.3154, 2006.
DOI : 10.1002/14651858.CD003154.pub5

T. Gomez-isla, J. Price, M. Jr, D. Morris, J. Growdon et al., Profound loss of layer II entorhinalcortex neurons occurs in very mild Alzheimer's disease, J Neurosci, vol.16, pp.4491-4500, 1996.

M. Mesulam, The Cholinergic Lesion of Alzheimer's Disease: Pivotal Factor or Side Show?, Learning & Memory, vol.11, issue.1, pp.43-49, 2004.
DOI : 10.1101/lm.69204

C. Andrade-moraes, A. Oliveira-pinto, E. Castro-fonseca, C. Da-silva, D. Guimarães et al., Cell number changes in Alzheimer's disease relate to dementia, not to plaques and tangles, Brain, vol.136, issue.12, pp.3738-3752, 2013.
DOI : 10.1093/brain/awt273

E. Perry, B. Tomlinson, G. Blessed, R. Perry, A. Cross et al., NORADRENERGIC AND CHOLINERGIC SYSTEMS IN SENILE DEMENTIA OF ALZHEIMER TYPE, The Lancet, vol.318, issue.8238, p.149, 1981.
DOI : 10.1016/S0140-6736(81)90327-5

O. Vogels, C. Broere, H. Ter-laak, H. Ten-donkelaar, R. Nieuwenhuys et al., Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer's disease, Neurobiology of Aging, vol.11, issue.1, pp.3-13, 1990.
DOI : 10.1016/0197-4580(90)90056-6

H. Waagepetersen, K. Shimamoto, and A. Schousboe, Comparison of effects of DL-threo-beta-benzyloxyaspartate (DL-TBOA) and L-trans-pyrrolidine-2,4-dicar- boxylate (t-2,4-PDC) on uptake and release of [3H]-D-aspartate in astrocytes and glutamatergic neurons, Neurochemical Research, vol.26, issue.6, pp.661-666, 2001.
DOI : 10.1023/A:1010939304104

I. Nafia, D. Re, F. Masmejean, C. Melon, P. Kachidian et al., Preferential vulnerability of mesencephalic dopamine neurons to glutamate transporter dysfunction, Journal of Neurochemistry, vol.25, issue.2, pp.484-496, 2008.
DOI : 10.1159/000017342

URL : https://hal.archives-ouvertes.fr/hal-00306698

E. Gouix, F. Léveillé, N. O. Melon, C. Had-aissouni, L. Buisson et al., Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation, Molecular and Cellular Neuroscience, vol.40, issue.4, pp.463-473, 2009.
DOI : 10.1016/j.mcn.2009.01.002

URL : https://hal.archives-ouvertes.fr/hal-00409242

L. Liu, Y. Xu, and P. Tang, Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations, The Journal of Physical Chemistry B, vol.114, issue.27, pp.9010-9016, 2010.
DOI : 10.1021/jp101687j

J. Jensen, D. Pickering, and A. Schousboe, Depolarization-induced release of [3H]d-aspartate from GABAergic neurons caused by reversal of glutamate transporters, International Journal of Developmental Neuroscience, vol.18, issue.2-3, pp.309-315, 2000.
DOI : 10.1016/S0736-5748(99)00099-4

G. Hardingham, Y. Fukunaga, and H. Bading, Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways, Nature Neuroscience, vol.5, pp.405-414, 2002.
DOI : 10.1038/nn835

S. Hoey, R. Williams, and M. Perkinton, Synaptic NMDA Receptor Activation Stimulates ??-Secretase Amyloid Precursor Protein Processing and Inhibits Amyloid-?? Production, Journal of Neuroscience, vol.29, issue.14, pp.4442-4460, 2009.
DOI : 10.1523/JNEUROSCI.6017-08.2009

S. Guerreiro, A. Ponceau, D. Toulorge, E. Martin, D. Alvarez-fischer et al., Protection of midbrain dopaminergic neurons by the end-product of purine metabolism uric acid: potentiation by low-level depolarization, Journal of Neurochemistry, vol.319, issue.4, pp.1118-1128, 2009.
DOI : 10.1111/j.1471-4159.2009.06040.x

Y. Samuni, S. Goldstein, O. Dean, and M. Berk, The chemistry and biological activities of N-acetylcysteine, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1830, issue.8, pp.4117-4129, 2013.
DOI : 10.1016/j.bbagen.2013.04.016

N. Matsunaga, K. Tsuruma, M. Shimazawa, S. Yokota, and H. Hara, Inhibitory actions of bilberry anthocyanidins on angiogenesis, Phytotherapy Research, vol.64, issue.S1, pp.42-47, 2010.
DOI : 10.1002/ptr.2895

J. Deng, C. Lei, Y. Chen, Z. Fang, Q. Yang et al., Neuroprotective gases ??? Fantasy or reality for clinical use?, Progress in Neurobiology, vol.115, pp.210-245, 2014.
DOI : 10.1016/j.pneurobio.2014.01.001

A. Serrano-pozo, M. Frosch, E. Masliah, and B. Hyman, Neuropathological Alterations in Alzheimer Disease, Cold Spring Harbor Perspectives in Medicine, vol.1, issue.1, p.6189, 2011.
DOI : 10.1101/cshperspect.a006189

W. Ong, K. Tanaka, G. Dawe, L. Ittner, and A. Farooqui, Slow excitotoxicity in Alzheimer's disease, J Alzheimers Dis, vol.35, pp.643-668, 2013.

M. Parsons and L. Raymond, Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders, Neuron, vol.82, issue.2, pp.279-293, 2014.
DOI : 10.1016/j.neuron.2014.03.030

H. Sabir, S. Bishop, N. Cohen, E. Maes, X. Liu et al., Neither Xenon nor Fentanyl Induces Neuroapoptosis in the Newborn Pig Brain, Anesthesiology, vol.119, issue.2, pp.345-357, 2013.
DOI : 10.1097/ALN.0b013e318294934d

N. Franks, R. Dickinson, S. De-sousa, A. Hall, and W. Lieb, How does xenon produce anaesthesia?, Nature, vol.396, issue.6709, p.324, 1998.
DOI : 10.1038/24525

S. Lipton, Pathologically-Activated Therapeutics for Neuroprotection: Mechanism of NMDA Receptor Block by Memantine and S-Nitrosylation, Current Drug Targets, vol.8, issue.5, pp.621-632, 2007.
DOI : 10.2174/138945007780618472

K. Cummings and G. Popescu, Glycine-dependent activation of NMDA receptors, The Journal of General Physiology, vol.15, issue.6, pp.513-527, 2015.
DOI : 10.1007/BF00711446

L. Zhuang, T. Yang, H. Zhao, A. Fidalgo, M. Vizcaychipi et al., The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats*, Critical Care Medicine, vol.40, issue.6, pp.1724-1730, 2012.
DOI : 10.1097/CCM.0b013e3182452164

S. Kotermanski and J. Johnson, Mg2+ Imparts NMDA Receptor Subtype Selectivity to the Alzheimer's Drug Memantine, Journal of Neuroscience, vol.29, issue.9, pp.2774-2779, 2009.
DOI : 10.1523/JNEUROSCI.3703-08.2009

J. Coyle and P. Puttfarcken, Oxidative stress, glutamate, and neurodegenerative disorders, Science, vol.262, issue.5134, pp.689-695, 1993.
DOI : 10.1126/science.7901908

A. Brennan, S. Suh, S. Won, P. Narasimhan, T. Kauppinen et al., NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation, Nature Neuroscience, vol.169, issue.7, pp.857-863, 2009.
DOI : 10.1097/00004647-200002000-00018

H. Girouard, G. Wang, E. Gallo, J. Anrather, P. Zhou et al., NMDA Receptor Activation Increases Free Radical Production through Nitric Oxide and NOX2, Journal of Neuroscience, vol.29, issue.8, pp.2545-2552, 2009.
DOI : 10.1523/JNEUROSCI.0133-09.2009

K. Mohanakumar, B. Thomas, S. Sharma, D. Muralikrishnan, R. Chowdhury et al., Nitric Oxide, Annals of the New York Academy of Sciences, vol.34, issue.1, pp.389-401, 2002.
DOI : 10.1111/j.1749-6632.2002.tb04083.x

I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki et al., Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals, Nature Medicine, vol.81, issue.6, pp.688-694, 2007.
DOI : 10.1038/nm1577

Y. Kimura, Y. Goto, and H. Kimura, Hydrogen Sulfide Increases Glutathione Production and Suppresses Oxidative Stress in Mitochondria, Antioxidants & Redox Signaling, vol.12, issue.1, pp.1-13, 2010.
DOI : 10.1089/ars.2008.2282

X. Liu, I. Popescu, J. Denisova, R. Neve, R. Corriveau et al., Regulation of Cholinergic Phenotype in Developing Neurons, Journal of Neurophysiology, vol.99, issue.5, pp.2443-2455, 2008.
DOI : 10.1152/jn.00762.2007

A. Guemez-gamboa, L. Xu, D. Meng, and N. Spitzer, Non-Cell-Autonomous Mechanism of Activity-Dependent Neurotransmitter Switching, Neuron, vol.82, issue.5, pp.1004-1016, 2014.
DOI : 10.1016/j.neuron.2014.04.029

J. Hartikka and F. Hefti, Development of septal cholinergic neurons in culture: plating density and glial cells modulate effects of NGF on survival, fiber growth, and expression of transmitter-specific enzymes, J Neurosci, vol.8, pp.2967-2985, 1988.

O. Strada, S. Vyas, E. Hirsch, M. Ruberg, A. Brice et al., Decreased choline acetyltransferase mRNA expression in the nucleus basalis of Meynert in Alzheimer disease: an in situ hybridization study., Proceedings of the National Academy of Sciences, vol.89, issue.20, pp.9549-9553, 1992.
DOI : 10.1073/pnas.89.20.9549

E. Mufson, S. Counts, S. Perez, and S. Ginsberg, Cholinergic system during the progression of Alzheimer???s disease: therapeutic implications, Expert Review of Neurotherapeutics, vol.8, issue.11, pp.1703-1718, 2008.
DOI : 10.1586/14737175.8.11.1703

D. Toulorge, S. Guerreiro, A. Hild, U. Maskos, E. Hirsch et al., Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca2+, The FASEB Journal, vol.25, issue.8, pp.2563-2573, 2011.
DOI : 10.1096/fj.11-182824

S. Traver, B. Salthun-lassalle, M. Marien, E. Hirsch, F. Colpaert et al., The Neurotransmitter Noradrenaline Rescues Septal Cholinergic Neurons in Culture from Degeneration Caused by Low-Level Oxidative Stress, Molecular Pharmacology, vol.67, issue.6, pp.1882-1891, 2005.
DOI : 10.1124/mol.104.007864

A. Douhou, J. Troadec, M. Ruberg, R. Raisman-vozari, and P. Michel, Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors, Journal of Neurochemistry, vol.67, issue.1, pp.163-174, 2001.
DOI : 10.1046/j.1471-4159.2001.00401.x

I. License, The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license