N
N

N

HAL

open science

Automating the Extraction of Model-Based Software
Product Lines from Model Variants

Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, Yves

Le Traon

» To cite this version:

Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon. Automat-
ing the Extraction of Model-Based Software Product Lines from Model Variants .
IEEE/ACM International Conference on Automated Software Engineering, Nov 2015, Lincoln, Ne-

braska, United States. pp.396-406, 10.1109/ASE.2015.44 . hal-01319983

HAL Id: hal-01319983
https://hal.sorbonne-universite.fr /hal-01319983
Submitted on 23 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

ASE 2015 - 30th

https://hal.sorbonne-universite.fr/hal-01319983
https://hal.archives-ouvertes.fr

Automating the Extraction of Model-based Software
Product Lines from Model Variants

Jabier Martinez*f, Tewfik Ziadif, Tegawendé F. Bissyandé*, Jacques Klein* and Yves le Traon*
*SnT, University of Luxembourg, Luxembourg. firstname.lastname @uni.lu
TLiP6, Sorbonne Universités, UPMC Univ Paris 06, Paris, France. tewfik.ziadi @lip6.fr

Abstract—We address the problem of automating 1) the
analysis of existing similar model variants and 2) migrating them
into a software product line. Qur approach, named MoVa2PL,
considers the identification of variability and commonality in
model variants, as well as the extraction of a CVL-compliant
Model-based Software Product Line (MSPL) from the features
identified on these variants. MoVa2PL builds on a generic
representation of models making it suitable to any MOF-based
models. We apply our approach on variants of the open source
ArgoUML UML modeling tool as well as on variants of an In-
flight Entertainment System. Evaluation with these large and
complex case studies contributed to show how our feature
identification with structural constraints discovery and the MSPL
generation process are implemented to make the approach valid
(i.e., the extracted software product line can be used to regenerate
all variants considered) and sound (i.e., derived variants which
did not exist are at least structurally valid).

I. INTRODUCTION

In the realm of software engineering, models, which are
high-level specifications of systems, have progressively taken
importance for researchers and practitioners as the primary
artefacts of development projects. Traditionally, modeling has
been used in a descriptive way to represent systems by
abstracting away some aspects of the systems and emphasizing
others [1]. Nonetheless, prescriptive modeling is now trending
and is relied upon to automate the generation of products
as well as their validations [2]. In this context, models are
often extended, customized or simply reconfigured for use
in particular system settings. Thus, an important challenge in
Model-Driven Engineering (MDE) is to develop and maintain
multiple variants, i.e. similar models, by exploiting the features
that the models share (commonalities) and managing the
features that vary among them (variabilities) [3]. To address
this problem, which is relevant to many kinds of software
artefacts, Software Product Line (SPL) engineering [4] has
matured as an approach for 1) managing the commonalities and
variabilities of a product family and 2) managing the derivation
of tailored products by combining reusable assets.

Unfortunately, SPL adoption is still a major challenge in
industry [5], [6]. Instead, practitioners use to rely on ad-
hoc mechanisms, such as copy-paste-modify, to perform reuse
when creating similar products. It has even been reported
that more than 50% of industrial practitioners formally im-
plement an SPL only after the instantiation of several similar
variants using ad-hoc reuse techniques [6]. Figure 1, that
will be discussed later, illustrates ad-hoc reuse for variants
creation and the circumstances to consider the adoption of
more advanced variability management approaches. However,
migrating product variants into an SPL is a known challenge

in SPL engineering [7], [8]. Several approaches, referred to
as extractive or bottom-up approaches, have been proposed
for source code artefacts. In this work, we focus on models,
and propose an end-to-end solution for dealing with the
two requirements for building a bottom-up approach to the
adoption of Model-based Software Product Lines (MSPL):

e Feature identification. Analysing and comparing the
existing model variants (i.e., models that are used us-
ing ad-hoc reuse techniques) to identify commonality
and variability in terms of features. A feature is a
prominent or distinctive characteristic, quality or user-
visible aspect of a software system or systems [9].

o Reengineering. Once features are identified, and the
constraints among them are detected, extractive ap-
proaches should propose a transformation phase where
the model variants are actually refactored to conform
to an SPL approach.

With MoVa2PL (Model Variants to Product Line) we ad-
dress simultaneously in a single framework both requirements
for extracting an MSPL from model variants. In the realization
of our approach, we used the Common Variability Language
(CVL) [10] to implement the MSPL. The benefits of this
work for easing the adoption of SPL engineering for models
are numerous. Indeed, first, adopting an MSPL, as for any
other kind of SPL, will allow practitioners to easily and
efficiently propagate changes done in one feature to all existing
variants by simply re-deriving them automatically. Second, the
extracted MSPL can be relied upon to derive efficiently new
products by combining features. This work does not focus on
the challenging problem of model similarity analysis in the
sense that we assume that the variants are not independently
generated out of the same family of systems.

The contributions of this work are:

1) We provide an approach for commonality and vari-
ability analysis that includes the automatic detection
of constraints between identified features.

2) We propose a method for MSPL reengineering to
automatically extract a CVL-compliant MSPL.

3) We assess the approach with two case studies.

The remainder of this paper is structured as follows: Sec-
tion II summarizes our previous work on feature identification
in models and presents the motivation to MSPL adoption. Sec-
tion III presents our approach. Section IV presents experiments
based on case studies with large real-world systems. Section V
discusses the approach and its limitations. Section VI presents
related work. Finally, Section VII concludes this work and
outlines future directions.

@ |nitial Bank 1 needs L4
w - CurrencyConverter and Consortium
and WithdrawWithoutLimit

Bank 2 needs

w - WithdrawWithLimit and no Consortium

Bank 4 needs

- WithdrawWithoutLimit,
No CurrencyConverter and
No Consortium

® Bank 3 needs
- WithdrawWithLimit, Consortium
and no CurrencyConverter

5 <Model> Bank
4 B3 <Package> bs
4 |2 <Class> Account

& <Property> id: string
& <Property> amount : double
=) <Property> currency: int
4 <Operation> Account (i: string, m: doub
4 <Operation> deposit (amount : double)
& <Operation> getAmount () : double
4 <Operation> withdrawWithoutLimit W
4 <Operation> getCurrency () : int

i’—l—bl 4 B2 <Model> Bank

4 B3 <Package> bs
4 =] <Class> Account
=) <Property> id: string

4 |5 <Class> Bank
&) <Property> accounts: Account [0..*]
= <Property> converter [0..1]
= <Property> cons: Consortium —__
4 <Operation> Bank (c: Converter))
43 <Operation> Bank (c: Consortium)
4 <Operation> depositOnAccount (id : stri
4 <Operation> withdrawFromAccount (id :
43 <Operation> convert (curSource: int, cur’
E] <Class> Client
E] <Class> Converter
] <Class> Consortium
E3 <Package> Common Java datatypes

4 |5 <Class> Bank

] <Class> Client
] <Class> Converter

&) <Property> amount: double
+——> = <Property> limit: double
=1 <Property> currency: int
¥ <Operation> Account (i: string, m: d
3 <Operation> deposit (amount : doubl
£ <Operation> getAmount () : double
T & <Operation> withdrawWithLimit (amc
43 <Operation> setCurrency (c: int) i_—> &3 <Operation> getLimit () : double
= b & <Operation> setlimit (I: double)
4 <Operation> getCurrency () : int
43 <Operation> setCurrency (c: int)

& <Property> accounts: Account [0..%

\ b [E_<Property> converter [0..1]

@—» 4 B2 <Model> Bank

4 B2 <Package> bs
4 = <Class> Account

& <Property> id: string
& <Property> amount : double
=] <Property> limit: double
4 <Operation> Account (i: string, m:1
4 <Operation> deposit (amount : dout
£ <Operation> getAmount () : double
4 <Operation> withdrawWithLimit (arr

‘z‘)@

Copy-paste

8 <Operation> getlimit) : double + Add
_Q <Operation> setLimit (I: double) x Remove
4 |5 <Class> Bank > .
Modify

&) <Property> accounts: Account [0..*]
= <Property> cons: Consortium

{f} _<O_p€ration> Bank (c : Consortium)
4 <Operation> depositOnAccount (id :

& <Operation> withdrawFromAccount

_—

x E_<Elass> Client
”E? Class> Consortium
E3 <Package> Common Java datatypes

Fig. 1: Three UML model variants fulfilling different bank systems’ needs and the manual actions for their creation

II. BACKGROUND AND MOTIVATION

In previous work we introduced MoVaC [11] as a meta-
model independent approach for comparing simultaneously a
set of model variants in order to identify commonality and
variability. The approach was flexible to apply or integrate
different matching techniques. Figure 2 shows the proposed
process whose objective was to help domain experts in feature
identification. The approach was designed to support concepts
from the Meta-Object Facility (MOF) [12] which is a well-
known standard in MDE.

Each model variant is decomposed into Atomic Model Ele-
ments (AMEs) since models are artefacts that can be expressed
as a sequence of elementary construction operations [13].
The computed AMEs are either of type Class (not to be
confused with UML classes), Attribute or Reference. Then,
we proposed an algorithm, called Interdependent AMEs, which
automatically identify sets of AMEs that correspond to the
distinguishable features from the model variants. We named
Blocks to these sets of AMEs. Unfortunately, MoVaC has two
main limitations: although it helps in feature identification,
(1) it does not manage to identify the constraints that exist
among the features and (2) it only focuses on one part of

Model variants

e

&
B b
g0 =

1
1
1
i
: Identified
1
!
L Commonality and
Delcomposmon n . B,IO,Ck . Variability Analysis for
Atomic Model Elements identification

f

Identified
features

blocks
Feature identification

Fig. 2: Model Variants Comparison (MoVaC) approach to
identify and analyse commonality and variability

the problem for MSPL extraction since it does not propose a
method to extract an SPL from the identified commonalities
and variabilities.

We present in Figure 1 our running example illustrating a
scenario of building UML model variants for different banking
systems [14], [15], [16]. In this scenario we have created
three models through ad-hoc reuse processes with variations
on the limit of bank withdrawal, the consortium entity and
currency conversion. Thus, the first created variant, Bank 1
UML model, is implemented with information related to cur-
rency conversion and consortium. The Bank 2 UML model
includes a new requested feature that is the support of a limit
in the withdrawal. This new banking system does not however
need consortium. Thus, in order to create it, we consider a copy
of Bank 1 where we added one UML property, two UML
operations, we modified the name attribute of a UML operation
and we removed the UML class Consortium and all its related
UML elements (one UML class and two UML operations).
The needs of Bank 3 on the other hand include limit in
the withdraw and consortium, but no currency conversion. To
create this variant, we build from a copy of Bank 2 where
we removed all UML elements related to currency conversion
(one UML property, four UML operations and one UML
class). However, we also selected and copied UML elements
from Bank 1 variant to complete the implementation of this
Bank 3 variant.

The building of variants for such a basic running example
aims to illustrate how time-consuming and error-prone the
manual creation of variants can be in real-world complex
scenarios. This manual process quickly ceases to be sustainable
if we consider the possibility that continuously creating new
variants will require even more effort in finding, selecting and
reusing elements from other variants. Furthermore, because of
a lack of an explicit formalization of feature relationships,
potential inconsistencies in the requested features for a new
variant will be found during/after the variant creation.

To extract an MSPL from the variants of our running
example, feature identification would consist in analysing the
three UML variants of Figure 1 to identify the core elements
of a banking system and the different features related to
currency converter, consortium and limit support, as well as
the constraints among them. Reengineering will then exploit
the identified features and the existing variants to build the
necessary assets for the MSPL.

In MDE, CVL [10] is a modeling approach that is spe-
cialized for implementing MSPL in a non-invasive, language
independent way. CVL further provides the necessary ex-
pressiveness to support systematic reuse for the derivation
of models [17]. CVL was thus designed to simplify a top-
down approach to the adoption of MSPL, where practitioners
directly write the assets for defining the MSPL. In a bottom-
up approach, the challenge is to leverage existing variants to
extract these assets. CVL consists of two layers:

e Variability definition layer: This layer defines the
variability of the domain in a very similar fashion as
feature modeling. Feature modeling is the most widely
used formalism in SPL engineering to represent the
features of a product family and the relationships
between them [9].

e Product realization layer: The replacement actions
in a Base Model must be defined according to the
variability specification.

In this work we are concerned with the following research
questions:

RQI: Based on existing model variants, can we derive
automatically a Variability definition layer that ensures
the validity of the configuration space?

RQ2: Can we automatically infer a Product realization layer

for variants of complex systems?

III. EXTRACTION OF MODEL-BASED PRODUCT LINES
WITH MOVA2PL

The overall process of MoVa2PL is illustrated in Figure 3.
In the first step, we leverage MoVaC [11] to decompose
the model variants into AMEs (the Decomposition in Atomic
Elements including dependencies step of Figure 3) and we
perform Block and Feature identification. Block identification

Model variants

is performed by computing the interdependence among AMEs.
As defined in our previous work [11], given a set of model
variants MV's, two AMEs ame; and ames (of models from
MYV s) are interdependent if the two following conditions are
fulfilled:

1) dMeMVs amei €M Namey € M

2) VYMeMVs amei €M < ames e M

A Block is thus a set of interdependent AMEs that are
distinguishable in the model variants. Feature identification is a
semi-automatic process where domain experts manually review
the elements from the identified blocks to map them with the
functionalities (i.e., features) of the system.

However, we augment the information of AMEs with
the computation of all dependencies among AMEs in all
variants. Thus, once the features are already identified, we
can implement a Constraints discovery step which will allow a
more reliable definition of the variability model for the MSPL.

Also we modify the decomposition process. In MoVaC
we considered only the attributes and references which have
not the property of being derived, volatile or transient. For
example, if an attribute has the derived flag in a given meta-
model, it means that its value is automatically calculated from
other attributes or by some function, thus MoVaC does not add
this as attribute AME during decomposition of the model in
AMEs. In MoVa2PL, apart from these conditions, we also add
the condition that their values must have been set before (e.g.
non null values or empty lists of referenced elements).

As presented in Figure 3, MoVa2PL has a Visualisation
layer that covers its different steps. Indeed, as we will show
above, real-world case studies yield model variants that can be
large and complex with a high number of model elements and
constraints. Apart from automating the process of extracting
MSPL, MoVa2PL uses visualisation techniques [18] to help
domain experts to visually analyse, not only the results of
this automation, but also the intermediary results in order to
provide a better understanding of the automatic underlying
process. The generation of feature constraints’ graphs is thus
automated in MoVa2PL.

The tool-support of MoVa2PL is implemented and in-
tegrated in the Bottom-Up Technologies for Reuse frame-
work [19]. In the following subsections we provide details of
the constraints discovery strategy and the MSPL extraction.

Model Product Line

blocks

20 4o B

1

1
! 1
! 1
: 1
| Identified :
1

1
! 1

A = Model
{@} w Base
:> :> I:> E> Model

Variability

Structural
Constraints

Resolution
Model

features

! 1
! 1
! 1
Identified : !
. |
! 1
L 1

Decomposition in
Atomic Model Elements
including dependencies

Block
identification

Feature
identification

J

CVL MSPL ’

Constraints
discovery Extraction

[Visualisation

Fig. 3: MoVa2PL Process

A. Structural constraints discovery

Variability modeling in product line engineering is known
as an efficient paradigm to describe at once several variants of a
system. Precisely specifying a variability model is essential to
guarantee that any derived model is valid. A structurally valid
model is a model that does not violate any constraint defined
in the meta-model such as cardinality of the model references
or the non existence of dangling elements (i.e. an element that
does not have a parent). Semantic validity of model variants,
which is checked by domain experts, is out of the scope of
this paper. In this section, we focus on how we compute the
dependencies between AMEs and how, by reasoning on these
dependencies, we infer constraints between features to ensure
that the models that will be derived from the extracted MSPL
are structurally valid.

1) Dependencies between Atomic Model Elements: A de-
pendency involves a pair of AMEs and it has an ID which
corresponds to the dependency type. Each dependency type has
an upper bound representing the maximum number of times
an AME can be referenced with its dependent counterpart.

The AME dependencies are calculated as following:

e C(Class: A class AME depends on its parent class
AME. By parent we mean the container relation (not
to be confused with inheritance in a UML sense).
The dependency ID is the ID of the containment
reference as it was given in the meta-model. The upper
bound is the containment reference upper bound. For
instance, from the running example, the class AME
UML Operation deposit depends on the class
AME UML Class Account, its dependency ID is
ownedOperation and, in this case, there is no up-
per bound given that a UML Class can have unlimited
owned operations.

e Attribute: An attribute AME depends on the class
AME that hosts the attribute. The dependency ID
is the ID of the attribute. The upper bound is 1 in
the sense that a class cannot have the same attribute
twice. As an example of such dependency we note
that any UML Operation has an attribute AME name.
In UML Operation deposit, the attribute AME
name depends on UML Operation deposit and
there can only be one attribute name.

mClass AME 9
Attribute AME °
W Reference AMEo

(a) Bank System variant 1
Fig. 4: Visualisation of the decomposition of three model variants into Atomic Model Elements

(b) Bank System variant 2

o Reference: A reference AME depends on the class
AME that hosts the reference and on each of the class
AME:s that are referenced. The dependency ID is the
ID of the reference in the case of the host class, and
the hard-coded value referenced is used as ID
for the dependencies to the referenced class AME:s.
The upper bound in a dependency with the host is
1 as it happened for the attribute AME. However
the upper bound in a dependency with referenced
classes is unlimited given that a class AME can
be referenced as many times as desired. From the
running example we note that the reference AME
Type of UML Parameter amount depends on
UML Parameter amount and also depends on the
class AME UML Primitive Type double.

Figure 4 shows the AMEs of Bank 1, Bank 2 and Bank
3 and their corresponding dependencies using a directed graph
visualisation. All the graphs shown in this paper are automat-
ically generated by MoVa2PL. The direction of the edges are
clockwise. We can see how the class AMEs (in black) are
surrounded by the attribute AMEs (light color) and reference
AMEs (dark color) that depend on each class AME. We can
also see, as black edges, how some class AMEs depend on
other class AMEs through a containment relation (given that a
class depends on its parent class AME). The graph shows how
attribute AMEs only depend on their corresponding host class
AME. On the contrary, we can see the reference AMEs that,
besides their host class AME, also depend on the referenced
class AMEs.

2) Requires constraints discovery: For the discovery of
structural constraints between features we reason on the de-
pendencies of the AMEs. In order to avoid dangling elements
in derived models after MSPL construction, we identify the
requires constraints that will assure that all the model classes
(except the root) will have a parent. We also identify the
requires constraints between any pair of features where one
feature needs the other in order to be successfully integrated
in a system variant.

In Figure 5 we show the blocks that were identified by com-
puting the interdependence between AMEs. The BankCore
Feature, which corresponds to the first block (Block 0), com-
prises most of the AMESs. Specifically, it comprises those
that are common for all model variants. On the contrary,

(c) Bank System variant 3

I Biock 0 -BankCore
I Block 1 -CurrencyConverter
I Block 2 -WithdrawWithLimit
B Block 3 -Consortium

Block 4 -WithdrawWithoutLimit

Fig. 5: Bank variants’ identified Features. The dependencies
among their associated Atomic Model Elements are used for
constraints discovery

CurrengyConverter Col ium
requires reguires

Bar@o e
(reqv(requires
Withdra@;i ALimit—excludes Withdra@houtumit

Fig. 6: Structural constraints discovered between the features
of the Banking System

WithdrawWithoutLimit is only based on one AME that
is the attribute AME of the name of an Operation. In
this Figure, each AME shows also its dependencies with
other AMEs through the edges. We can see how most of
these dependencies are intra-feature structural dependencies
given that they exist between AMEs corresponding to the
same feature. However, we can see inter-feature structural
dependencies that in this case are all in the direction to the
Block 0 (i.e., BankCore feature). We identify the requires
constraint between two features when at least one AME from
one feature has a structural dependency to an AME of the other
feature. Figure 6 thus shows the discovered requires constraints
in the running example.

3) Mutual exclusion constraints discovery: Cardinality in
model references plays an important role in defining a domain
specific language. These cardinalities define constraints in the
domain that must not be violated to obtain valid models. To
avoid violation of upper bound cardinalities we identify in
which cases two features cannot coexist in the same model
(mutual exclusion constraint).

To illustrate upper bound cardinalities in real scenarios,
and following with the context of the running example, we
discuss the cardinalities of the widely used UML meta-model.
In the case of the UML meta-model, as implemented in Eclipse
UML2 ecore, we have 242 classes with a total of 3113 non-
volatile, non-transient, non-derived references. 67.7% of these
references have no upper bound. 32.2% of them have an upper
bound of 1 maximum referenced model classes. The remaining
0.1% corresponds to the DurationObservation meta
class which allows to model execution durations in UML. This
class has the event reference with an upper bound of 2 UML
NamedElements.

UML meta-model excerpt

H TimeEvent | when|H TimeExpression
1 >

Variant 1 Variant 2
4 T <Time Event> Important Event 4 "’@ <Time Event> Important Event

t+c <Time Expression> Time t+c <Time Expression> Time

Identified features and AMEs’ dependencies

Core feature
F@ <Time Event> Important Event

when when
Time 1 feature Time 2 feature

t+c <Time Expression> Time t+c <Time Expression> Time

Structurally invalid model
4 Y@ <Time Event> Important Event
t+c <Time Expression> Time
t+c <Time Expression> Time

Time 1 feature
Time 2 feature

Fig. 7: Nlustrative example of structurally invalid model as
result of composing two features

If the upper bound of a containment reference is 1, that
means that it is structurally invalid to try to reference 2
different containments at the same time. Figure 7 illustrates an
example where a structural invalid model is created by combin-
ing two features. In the UML meta-model, the TimeEvent
class has the when containment reference with an upper
bound of 1 to a TimeExpression class. Therefore, it is not
valid to reference two TimeExpression classes using this
reference. Suppose we have a class AME TimeEvent that is
part of the common feature and then two different class AME
TimeExpressions belonging to two different features. Both
class AME TimeExpressions will have a dependency to
the same TimeEvent class AME. The dependency type of
both dependencies correspond to the when dependency ID
that has an upper bound of 1. Given such information we
can identify mutual exclusion constraints between two features
when the sum of the dependencies of a given dependency
type that points to a given AME from one feature and the
dependencies which points to the same AME with the same
dependency type from the other feature, exceeds the defined
upper bound of this dependency type.

This is applicable also for the reference AME and for
the attribute AME. In our running example, we have two
attribute AMEs that depend on the same UML Operation
class AME with the name dependency ID. In one of them
the value is withdrawWithLimit and in the other is
withdrawWithoutLimit. These attribute AMEs corre-
spond to two different features and only 1 can be used in
a derived model. This discovered constraint is made visible in
Figure 6 by an “excludes” link between the two features.

B. CVL models generation

Different strategies can be selected for implementing
an MSPL ranging from additive, subtractive or hybrid ap-
proaches [20], [21]. The additive approach relies on a Min-
imum Base Model composed only by the Core of the family
of models, i.e. the model elements that are common to all
model variants. Then the approach requires Library Models
which will contain the model fragments to be added to the
Base Model. On the contrary, the subtractive strategy consists

in constructing the Maximum Base Model (also known as
150% model) and then removing the model elements related
to each of the non selected features. Hybrid approaches use a
mix between subtractive and additive strategies by providing
to some extent Library models and still leaving the possibility
to subtract from the Base Model. In MoVa2PL, we rely on
a subtractive strategy. Notice that it is possible to construct
a Maximum Base Model even if the resulting Base Model
violates reference upper bounds. It will be the responsibility
of the resolution model to operate in the Base model to
bring it to a valid state. The following paragraphs explain
how the CVL layers, described in Section II, are created.
Using these layers, CVL implementations provide an engine to
automatically transform the Base model in a resolved model.

Variability model: The variability model is created using
information from the identified features and the discovered
constraints. Figure 8 shows the CVL variability model created
from the three model variants of the running example. The
steps for its creation are as follows:

1) Identified features are added as well as their nega-
tions. Feature negations are needed to differentiate the
actions of the resolution layer given that the negation
will be the responsible to remove the model elements
in this subtractive strategy.

2) Discovered structural constraints, as presented in Sec-
tion III-A, are added as propositional logic formulas.

3) Mutual exclusion constraints are added to avoid se-
lecting a feature and its own negation.

4) Configurations, in terms of features in the existing
model variants, are added. These configurations are
called resolution elements. The resolution elements
will trigger the actions on the Base Model to re-
generate the existing model variants.

In this example, three resolution elements are created in
step 4 correspond to existing variants. However, with the
features and constraints shown in Figure 8 as result of the steps
1, 2 and 3, there are eight possible valid resolution elements.
Therefore five additional models can be derived using different
combinations of feature selections.

Base model: The Base model creation is a realization
of an n-way model merge, a technique that has proven to
produce better results than pairwise merging [22]. We leverage
the feature identification approach with its computation of
Interdependent AMEs where the model matching is performed.
Figure 5 already showed the hyper-set of all the AMEs from
the Model variants. These AMEs are the result of an n-way
matching. In order to create the Base Model, we start from
the class AME that is marked as the initial resource (i.e. the
root) and we automatically construct the Base Model from
scratch with the information contained in each AME using:
1) an in-depth tree traversal of the containment dependencies
creating the MOF classes and setting their attributes; and 2) a
second phase where the references are set to the corresponding
classes in the Base Model. In this process, there is neither need
to consider if upper bound cardinalities are being violated, nor
that there are attributes in the Base Model that are already set.
In these cases, as discussed before, the resolution model is
responsible for providing information to adjust it at resolution
time. Figure 9 shows the Base Model obtained from the
variants of our running example.

4 ‘0} Bank

4 @ varModel
4 @ Bank

2 OR[0.8]
1) Identified ﬁ @ BankCore \
features and

their
negations

CurrencyConverter
Consortium
WithdrawWithLimit
WithdrawWithoutLimit
No_CurrencyConverter
No_Consortium
No_WithdrawWithLimit
\ @ No_WithdrawWithoutLimit
Discovered ﬁ 4 IMPLIES \
structural 4 CurrencyConverter
constraints <4 BankCore

< IMPLIES

4 IMPLIES

4 IMPLIES

4 4 NOT
4 < AND
4 WithdrawWithLimit

\ <4 WithdrawWithoutleiy
3) Feature ("4 4 NOT

negations’ 4 < AND

constraints 4 CurrencyConverter
4 No_CurrencyConverter

LR 2R 2

2

~—

\[other negations’ mutual exclusions]

4) Model 4 < Resolution Element Bank_1.uml
variants’ 4 @ ->0R
resolution & ->BankCore

& -> CurrencyConverter

& -> Consortium

& -> No_WithdrawWithLimit

& -> WithdrawWithoutLimit
< Resolution Element Bank_2.uml

elements

< Resolution Element Bank_3.uml

Fig. 8: CVL variability model for the Banking systems

4| = platform:/resource/BankPL/BaseModel.uml

4 = <Model> Bank

4 E'
=
= <Property> id: string

<Property> amount : double
<Property> limit : double
<Property> currency : int
<Operation> Account (i : string, m : double)
<Operation> deposit (amount : double)
<Operation> getAmount () : double
<Operation> withdrawWithLimit (amount : doi
<Operation> getLimit () : double
<Operation> setLimit (I : double)
<Operation> getCurrency () : int

#HeBBLBLVPO0O0OD0O

<Operation> setCurrency (c: int)

& <Property> accounts: Account [0.."]
& <Property> converter [0..1]
& <Property> cons: Consortium
8 <Operation> Bank (c : Converter)
4 <Operation> Bank (c: Consortium)
4% <Operation> depositOnAccount (id : string, an
4% <Operation> withdrawFromAccount (id : string
@ <Operation> convert (curSource : int, curTag
] <Class> Client
4 & <Qass> Converter
4% <Operation> conv (curSource :int, curTarge
] <Class> Consortium
4 1 <Package> Common Java datatypes
<Primitive Type> long
<Primitive Type> float
<Primitive Type> boolean
<Primitive Type> void
<Primitive Type> char
<Primitive Type> short
<Primitive Type> byte
<Primitive Type> string

Fig. 9: Base Model for the Banking Systems Product Line

Resolution model: Given that we are following a subtrac-
tive strategy, each feature negation will be resolved by remov-
ing the feature’s corresponding classes. For this, we create
three CVL elements for each feature negation: A placement
fragment, a replacement fragment and a fragment substitution
element. The placement fragment defines the model elements
from the Base Model that will be replaced with the replacement
fragment. This replacement fragment consists actually of an
empty fragment. The fragment substitution element just relates
the placement and replacement fragments. Figure 10 shows the
overall process to obtain a resolved model.

Figure 11 shows an excerpt of the resolution model for
our running example. Notice that in the CVL implementation
that we are using [23], the resolution layer is defined inside
the variability model itself so the resolution information is con-
tained in each of the features presented before in the variability
layer. In the case of No CurrencyConverter we can see a
Placement fragment that encompasses all the classes related to
CurrencyConverter. In Figure 9, the classes that are in-
side the placement fragment of No CurrencyConverter
are highlighted in dark color. The placement also includes the
FromPlacement. In the FromPlacement we specify all
the classes that are referenced from any class of the placement
classes and from any class in the contents of the placement
classes. These classes are highlighted in light color in Figure 9.
This placement information will allow, at resolution time,
the removal of the CurrencyConverter feature by its
substitution with the empty replacement.

Base Model

B <Package> bs

3 Placement Fragment Other “\
|

- ~< ‘Placement-

, £ <Class> Converter \, Fragmeénts
'

/

Resolved
Model

& <Property> currency : int

“~.___ Otherclasses ‘_,/'

Attributes and
References
substitution

B3 <RBackage> Common Java
[#) <Primitive Type> int

Replacement fragment

Fragment
substitution

Empty

Fig. 10: Subtractive MSPL resolution process with CVL

4 ‘@ No_CurrencyConverter
4 a Placement

1 Property currency
1 Operation getCurrency
1 Operation setCurrency
1 Property converter
1 Operation Bank
1 Operation convert
B Class Converter
a FromPlacement

a Replacement Empty

i Substitution

4 ‘@ WithdrawWithoutLimit
8 PlacementValue Operation name
w® withdrowWithoutLimit
" ValueSubsititution

Fig. 11: Excerpt of the CVL resolution model

Regarding attribute and reference AMEs, if the class
AME that hosts this AME is not in the same feature, we
need to add a placement, replacement and substitution el-
ements to the resolution information of the feature asso-
ciated to the attribute or reference AME. For example, in
the WithdrawWithoutLimit feature we add a Placement
value in the name attribute of the corresponding Operation
class and we add a replacement value with the String
of the value of the attribute AME. At resolution time, if
WithdrawWithoutLimit is selected, this attribute value
will be assigned. For reference AME:s it is the same approach
but Object placement, replacement and substitution are used.

IV. EXPERIMENTAL ASSESSMENT

In this section we discuss the assessment of MoVa2PL.
First, we describe the case studies of real-world systems
that we rely on to evaluate our approach. We then present
characteristics of the extracted MSPL for the case studies.
Finally, we summarize the evaluation of the MoVa2PL where
we checked its efficiency to extract an MSPL for large models,
and its effectiveness to derive back the existing models and
new valid model variants.

A. Case Studies

ArgoUML Case Study: ArgoUML is an open source
tool for UML modeling. Variants from this tool were created
from its Java codebase by removing specific features [24].
These features are mainly related to the tool support for
the edition of different kind of UML diagrams (i.e. Activity,
Collaboration, Deployment, Sequence, State and UseCase dia-
grams). We reverse engineered the source-code of the original
ArgoUML and the 6 variants related to diagram edition support
as UML models in order to apply MoVa2PL. Concretely, the
first column of Table I enumerates these variants. As example,
the first one, ActivityDisabled, means that this model
variant contains all the features related to UML diagrams’
edition except Activity diagram. These models contain more
than 50K classes. Table I shows the AMEs obtained after
MoVa2PL decomposition of the models.

The decomposition in AMEs for the 7 model variants,
including the dependencies, took an average of 15 seconds (i.e.
around 2 seconds per variant) using a lap-top Dell Latitute
E6330 with a processor Inter(R) Core(TM) i73540M CPU
@3.00GHz 3.00GHz, 8GB RAM, with Windows 7 and 64-
bit Operating System. The Interdependent AMESs identified 41
Blocks and took an average of 7 minutes. Table II shows the
result of the identified blocks and their size in terms of AME:s.

We manually analysed the blocks in order to identify
the features. The meaning of the blocks from 0 to 6 were
easily recognisable by looking at the textual description of
its associated AMEs. Block 0 corresponds to the Core of
ArgoUML, Block 1 to UseCase diagrams edition, Block 2
to Sequence, Block 3 to Collaboration, Block 4 to
State, Block 5 to Deployment and Block 6 to Activity
diagrams. These blocks were the bigger ones in terms of
number of AMEs because the rest of the Blocks only contain
very few of them. We manually checked these small blocks
and we realized that most of them contain reference AMEs
that, in the UML meta-model, are defined as ordered (i.e. the
order of the referenced elements is important). The applied

TABLE I: Number of Atomic Model Elements of ArgoUML
UML model variants and number dependencies between them

AMEs Class Attr Ref Depend
ActivityDisabled 157896 | 51235 | 77707 | 28954 180623
CollabDisabled 158535 | 51418 | 78046 | 29071 181338
DeployDisabled 157314 | 51033 | 77450 | 28831 179949
Original 159771 | 51820 | 78667 | 29284 182738
SequenceDisabled | 155231 | 50349 | 76417 | 28465 177646
StateDisabled 156193 | 50699 | 76805 | 28689 178785
UsecaseDisabled 157504 | 51056 | 77547 | 28901 180184

TABLE II: Number of Atomic Model Elements of the blocks
identified in the ArgoUML case study

AMEs Class Attribute Reference

Block 0 -Core 143894 | 46724 70696 26474
Block 1 -UseCase 2260 760 1117 383
Block 2 -Sequence 4509 1461 2233 815
Block 3 -Collaboration 1204 392 604 208
Block 4 -State 3499 1095 1818 586
Block 5 -Deployment 2457 787 1217 453
Block 6 -Activity 1796 559 916 321
Block 7 0 0 0 1
Block 8 0 0 0 1
Block 40 4 2 2 0

matching method takes into consideration the ordering of the
referenced elements and therefore considered them as different.
This issue, probably introduced by the Java to UML reverse
engineering tool, makes more difficult the work of the domain
expert that needs to manipulate and analyse these blocks.
However, in terms of size of model elements, the main part of
the features were successfully identified by MoVa2PL.

Figure 12 shows the graph visualisation of the discovered
structural constraints. Concretely, for the ArgoUML case study
45 requires constraints and 13 mutual exclusion constraints
were discovered. These discovered constraints reduce consid-
erably the configuration space of the possible feature combi-
nations. Figure 12 shows that the 6 identified features related
to the diagrams depend on the Core feature. The other nodes
of the graph correspond to the blocks that the domain expert
will need to analyse. These automatically calculated relations
between the blocks can also help during this manual process.
For example, those blocks that exclude each other should be
related and the scope of analysis is narrowed for those blocks
that requires another block that is not the Core feature.

Once the constraints are discovered, the CVL MSPL ex-
traction step generates the Variability model, the Base Model
and the Realization layer. Figure 13 shows an excerpt of the
realization layer related to the UseCase and Sequence
features. We can see the Placement fragment containing the
ToPlacement relations. The BaseModel was created as the
Maximum model from the model variants. The time for the
BaseModel creation took an average of 8 minutes and the
Variability and Realization layer took 3 seconds.

While in the beginning we had model variants that only
considered disabling one type of diagram each, with the
extracted MSPL, we can generate ArgoUML UML model
variants with any combination of diagrams. For example,
we can derive a UML model that only considers ArgoUML
Sequence diagrams edition.

requires reqb/
requires™ 12

UseCase

Fig. 12: Structural constraints discovered for the ArgoUML
case study

@ No_UseCase 4 ‘@ No_Sequence

o i Placement o {§ Placement
3 Operation parseExtensionPoint B Package sequence2
& Property ACTION_USE_CASE_DIAGRAM) Property ACTION_SEQUENCE_DIAGRAM
& Enumeration Literal UseCase 1 Class GoClassifierToSequenceDiagram
1 Package use_case 1 Class GoOperationToSequenceDiagram
& Class ActionUseCaseDiagram & Class CrSeglnstanceWithoutClassifier
1 Package use_cases 1 Enumeration Literal Sequence
& From Placement B Package sequence
¥ Replacement Empty & Class ActionSetAddMessageMode

3 Class ActionSequenceDiagram

l Data Type ModeCreate

& Data Type HandlerFactory

& Data Type UnknownHandler

& Data Type List<FigActivation>

& Data Type List<MessageNode>

a From Placement

g Replacement Empty

Fig. 13: Excerpt of the CVL Realization layer for the Ar-
goUML case study

The mentioned problem identified with the ordering of the
references highlight the importance of the matching method
during MoVa2PL. MoVa2PL is flexible to apply different
matching methods. By providing a matching method that ig-
nores the ordering of the references, 18 blocks were identified
in the ArgoUML case study from which the first 7 blocks also
correspond to the Core and diagrams’ features. The trade-off is
that, by ignoring the order, we will be assuming that the order
was not important and this design decision on the matching
policy requires a manual analysis by the domain expert on the
models.

In-Flight Entertainment Systems Case Study: We
consider the case study of an In-Flight Entertainment (IFE)
System. The IFE system is responsible for providing enter-
tainment services for the passengers, including movies, music,
internet connection or games during a flight. The IFE system
needs also to adjust its behavior in special circumstances (e.g.
when the crew wants to communicate with the passengers or
during take-off or landing).

For our experiments we consider an IFE system from the
Thales Group. Their IFE system was modelled in Capella.'

ICapella and IFE system model example available at
http://polarsys.org/capella/download.html

Passenger Aircraft

@ Play Games.

Pergonal Device
., Browse the
@® @ Connect to
Internet © wifi Network

DB Access
D intemet Afcess v

® Provide
~ Internet ..,

Fig. 14: Operational analysis diagram of the In-Flight Enter-
tainment system variant showing some model elements related
to Wi-Fi access for passengers

Capella is a systems engineering modeling tool which imple-
ments the Arcadia method for system, software and hardware
architectural design [25]. A system modelled with Capella
consists of 5 layers. The Operational analysis layer captures
the stakeholders, their needs, as well as general information of
the system’s domain. The System analysis layer formalizes the
system requirements. The Logical architecture layer defines
how the system will fulfil its requirements. The Physical
architecture layer defines how the system will technically
be developed and built. Finally, the End-Product Breakdown
Structure layer formalizes the component requirements defi-
nition to facilitate components’ integration, validation, veri-
fication and qualification. The domain of Arcadia method is
realized and tool-supported in Capella by defining a domain
specific language consisting of 17 meta-models. These 17
meta-models are highly linked among themselves and they
have a total of 411 meta-classes.

We consider in our study 3 model variants of the IFE
system. The first one is the Original one and the other two
are manually created independently. The second one, called
LowCost1 is a variant that does not include the feature for
Wi-F1i access for passengers. Figure 14 shows an operational
analysis diagram that contains some model elements related
to Wi-Fi access. We can see how the Aircraft provides con-
nectivity and the Personal device will allow the Passenger
to Browse the internet during the flight. The capability of
Wi-Fi access for passengers is propagated to the rest of the
model layers such as the System Analysis and the Logical
and Physical architecture. The third one, LowCost2, does
not contain support for ExteriorvVideo which allows the
passengers to watch, in their personal screens, the exterior of
the plane at any time during the flight. This variant is intended
for aircrafts that may not have cameras outside the plane.

Following the MoVa2PL process as defined in Figure 3,
first the IFE model variants were decomposed in AMEs and
the dependencies between AMEs inside each variant were
calculated. Figure 15 shows the decomposition of the Original
IFE System variant. Table III shows the obtained number of
AME:s for each variant.

Our Interdependent AMEs method lead to the identification
of 3 blocks. The identified blocks where manually analysed
and mapped to the features. Table IV summarizes the number
of AMEs for the corresponding features.

In the end of this step MoVa2PL automatically discov-
ers the structural constraints among the different features.
Thus, we discovered that both Wi-Fi and ExteriorVideo

Fig. 15: In-Flight Entertainment system variant decomposition
in Atomic Model Elements

TABLE III: Number of Atomic Model Elements of IFE system
model variants and number dependencies between them

AMEs | Class Attr Ref Depend
Original 16624 5345 | 4081 | 7198 24205
LowCost1 16551 5321 4066 | 7164 24098
LowCost2 16594 5335 | 4075 | 7184 24161

TABLE IV: Number of Atomic Model Elements of the
Features identified from the In-Flight Entertainment model
variants

Total AMEs Class Attribute Reference
Block0 -Core 16521 5311 4060 7150
Block1 -Wi-Fi 73 24 15 34
Block2 -ExteriorVideo 30 10 6 14

requires the Core feature. With the gathered information
the CVL models were automatically generated obtaining a
MSPL for the IFE models. From this MSPL we are able
to generate a new variant that does not contain Wi-Fi nor
ExteriorVideo.

B. Summary evaluation of MoVa2PL

For evaluating MoVa2PL, based on the case studies out-
lined above, we focused on checking that, in each case, the
extracted MSPL is able not only to 1) re-generate the pre-
viously existing variants using our systematic reuse approach
but also to 2) generate previously non-existing variants which
are structurally valid. By realizing the experiments on different
modeling meta-models, namely UML models and the Capella
domain specific language, we demonstrated the flexibility and
genericity of MoVa2PL as it worked for the two meta-models.
We obtained an exact match of the re-generated models and
we generated possible non-existing variants (RQI1 and RQ2).
We also checked the structural validity manually and we found
that we prevent invalid models (RQ1).

V. LIMITATIONS AND THREATS TO VALIDITY

Currently, our work presents a number of limitations and
includes hypotheses which are threats to validity. We now
summarize them before discussing related work.

Feature identification is a challenging task and can be com-
plex for domain experts. Automatically identifying features
using heuristics may lead to an output where a given marked

feature is actually a set of different features. This situation is
likely when a set of features came always together in all the
variants considered. In this case, the Interdependent AMEs
approach cannot distinguish among them. Dealing with this
kind of issue is out of the scope of the work presented in this
paper. We, however, recommend the MoVa2PL approach to be
used when in presence of a wide range of variants, increasing
the probability that the minimum number of combinations were
available to allow distinguishing all features.

In this work we have also eluded the question of semantic
validity of the derived model variants. A semantically valid
model is a structurally valid model which also makes sense
in the domain (i.e. a combination of features that does not
violate any semantic rule of the domain). In our work, the
extracted MSPL will allow the creation of new models based
on combinations of identified features. These new models may
be semantically invalid. The challenging issue of assuring some
notion of semantic validity has been addressed in other works
such as Czarnecky et al. [26] or in our previous work proposing
visualisation schemes [27].

Finally, MoVa2PL presents some limitation in ensuring the
structural validity of models. Indeed, we are not considering
constraints that could be defined using the Object Constraints
Language (OCL) [26], [28], [29]. Also, the constraints dis-
covery only check requires and excludes constraints between
pair of features. More complex structural constraints involving
more than two features are not considered.

VI. RELATED WORK

MSPL Reengineering from variants: There are other
extractive approaches that study reengineering of MSPLs from
model variants. Zhang et al. [30] propose the CVL Compare
process that combines EMF compare and the CVL framework
to analyse a set of model variants and create a preliminary
MSPL model. This approach is similar to our MoVa2PL,
however, there are three differences: 1) while we automatically
calculate the Base Model, CVL Compare relies on the SPL
developer to choose it. 2) CVL Compare is based on EMF
Compare two-way comparison mechanism. i.e.; model variants
are only compared with each other but not simultaneously. 3)
CVL Compare do not consider the identification of constraints.
As mentioned below, the structural constraints represent the
core aspect in our approach to construct valid MSPL.

Rubin [8] and Rubin ef al. [31] propose the merge-
refactoring framework. merge-refactoring is a formal frame-
work to compare UML model variants using what is referred
as n-way Model merging [22]. Rubin et al. also propose
to refactor the input model variants and create an MSPL
using the compose operator. While our approach is generic
and can be applied to any MOF-based models, the merge-
refactoring is only applied to UML models. In addition to
the reengineering of the MSPL model, the merge-refactoring
framework propose what is referred to as quality-based metrics
that guide the refactoring process to ensure that all refactoring
produced by the framework are semantically correct. As we
presented in this paper, our approach is based on the structural
constraints to generate coherent and correct CVL-compliant
MSPLs. Koschke et al. [32] propose an automated approach
for comparing specific model variants that only concern the
static architectural view.

Feature identification: Some existing works only consider
feature identification without any support for the reengineering
step. Assungdo et al. present a recent survey on these works
[33]. For instance, Ryssel et al [34] compare model variants
that are represented as function-blocks. Ziadi et al. [14]
propose an approach to analyse the source code through the
use of UML class diagrams of a set of software variants
and identify commonality and variability between them. Apart
from not covering the reengineering step, these approaches
are not generic to any MOF-based scenario. The tool Fea-
tureMapper [35] enables manual and automatic mapping of
model elements to features. However, their automatic mapping
is based on monitoring the developer while is modeling the
realisation of a feature.

Feature constraints discovery: Bosco et al. [36] targeted
the challenge of generating invalid models from MSPL to be
used as counterexamples to refine variability models. Their
assumption is that the MSPL exists while we focus on ex-
tracting them from variants. The work of Blanc et al. [13] also
propose an approach for validating sub-models of a monolithic
model. In Section V we already discussed Czarnecky et al.
work regarding OCL constraints [26] as well as our approach
to target constraints discovery through a semi-automatic ap-
proach using visualisation techniques [27]. These works can be
complementary to MoVa2PL structural constraints discovery.

Model comparison and splitting: Model comparison have
received a lot attention in the MDE community. However, this
is often limited to a comparison between two versions of a
model. Stephan e al. [37] and Kolovos et al. [38] analysed
model comparison approaches and provided a classification of
them. Model splitting [39] is used to reduce the complexity
of monolithic models for human comprehension and team
collaboration by hiding part of it. These approaches provide
heuristics to modularize the model before splitting. However,
these approaches focus in single models, not model variants.
We consider that model splitting can be complementary in the
feature identification process.

VII. CONCLUSION

We have presented MoVa2PL as a solution to MSPL
adoption from existing model variants. First, the feature iden-
tification process considers structural constraints discovery in
order to extract a variability model that ensures the validity of
the MSPL configuration space. Secondly, a product realization
layer is extracted with the information of the AME:s related to
each of the features. This realization layer will operate on a
base model extracted by an n-way model merge of the variants.
We assessed MoVa2PL in two case studies that consider big-
medium sized model variants with different meta-models. As
further work we want to provide a better support for the semi-
automatic step of MoVa2PL that is the analysis and naming of
the identified features by using advanced information retrieval
techniques.

ACKNOWLEDGMENT

Funded by FNR Luxembourg under the AFR grant agree-
ment 7898764. The work of Tewfik Ziadi was also supported
by the University of Luxembourg as a visiting researcher.

[1]

[2]

[3]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

M. Voelter, DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages. http://dslbook.org.

D. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39,
no. 2, February 2006.

S. Apel and C. Kistner, “An overview of feature-oriented software
development,” Journal of Object Technology, vol. 8, no. 5, pp. 49-84,
July/August 2009.

L. M. Northrop, P. C. Clements et al, “A Frame-
work for Software Product Line Practice, Version 5.0,”
http://www.sei.cmu.edu/productlines/framework.html, 2009.

C. Kistner, A. Dreiling, and K. Ostermann, “Variability mining: Con-
sistent semi-automatic detection of product-line features,” IEEE Trans.
Software Eng., vol. 40, no. 1, pp. 67-82, 2014.

Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An exploratory study of cloning in industrial software
product lines,” in 17th European Conference on Software Maintenance
and Reengineering, CSMR 2013, Genova, Italy, March 5-8, 2013,
A. Cleve, F. Ricca, and M. Cerioli, Eds. IEEE Computer Society,
2013, pp. 25-34.

R. E. Lopez-Herrejon, T. Ziadi, J. Martinez, and A. K. Thurimella, “Sec-
ond international workshop on reverse variability engineering (REVE
2014),” in 18th International Software Product Line Conference, SPLC
’14, Florence, Italy, September 15-19, 2014, S. Gnesi, A. Fantechi,
P. Heymans, J. Rubin, K. Czarnecki, and D. Dhungana, Eds. ACM,
2014, p. 354.

J. Rubin, “Cloned product variants: From ad-hoc to well-managed
software reuse,” Ph.D. dissertation, University of Toronto, 2014.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (foda) feasibility study,” Carnegie-
Mellon University Software Engineering Institute, Tech. Rep., 1990.

. Haugen, A. Wasowski, and K. Czarnecki, “CVL: common variability
language,” in SPLC 2013, 2013.

J. Martinez, T. Ziadi, J. Klein, and Y. L. Traon, “Identifying and
visualising commonality and variability in model variants,” in Modelling
Foundations and Applications - 10th European Conference, ECMFA
2014, Held as Part of STAF 2014, York, UK, July 21-25, 2014.
Proceedings, ser. Lecture Notes in Computer Science, J. Cabot and
J. Rubin, Eds., vol. 8569. Springer, 2014, pp. 117-131.

OMG, “Meta-Object Facility (MOF) Core Specification,” 2006.
[Online]. Available: http://www.omg.org/spec/MOF/2.0/

X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in Proceed-
ings of the 30th International Conference on Software Engineering, ser.
ICSE °08. New York, NY, USA: ACM, 2008, pp. 511-520.

T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane, “Feature identi-
fication from the source code of product variants,” in /6th European
Conference on Software Maintenance and Reengineering, CSMR 2012,
Szeged, Hungary, March 27-30, 2012, T. Mens, A. Cleve, and R. Ferenc,
Eds. IEEE Computer Society, 2012, pp. 417-422.

T. Ziadi and J. Jézéquel, “Software product line engineering with the
UML: deriving products,” in Software Product Lines - Research Issues
in Engineering and Management, T. Kidkold and J. C. Dueias, Eds.
Springer, 2006, pp. 557-588.

C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger,
R. Laqua, D. Muthig, B. Paech, J. Wiist, and J. Zettel, Component-based
Product Line Engineering with UML. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002.

K. Czarnecki, P. Griinbacher, R. Rabiser, K. Schmid, and A. Wasowski,
“Cool features and tough decisions: A comparison of variability mod-
eling approaches,” in Proceedings of the Sixth International Workshop
on Variability Modeling of Software-Intensive Systems, ser. VaMoS ’12.
New York, NY, USA: ACM, 2012, pp. 173-182.

S. K. Card, J. D. Mackinlay, and B. Shneiderman, Eds., Readings in
Information Visualization: Using Vision to Think. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1999.

J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon,
“Bottom-up adoption of software product lines: a generic and extensible

approach,” in Proceedings of the 19th International Conference on
Software Product Line, SPLC 2015, Nashville, TN, USA, July 20-24,

2015, 2015, pp. 101-110.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[39]

X. Zhang, “Developing model-driven software product lines,” Ph.D.
dissertation, University of Oslo, Norway, 2014.

G. Perrouin, J. Klein, N. Guelfi, and J. Jézéquel, “Reconciling au-
tomation and flexibility in product derivation,” in Software Product
Lines, 12th International Conference, SPLC 2008, Limerick, Ireland,
September 8-12, 2008, Proceedings, 2008, pp. 339-348.

J. Rubin and M. Chechik, “N-way model merging,” in Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 301-311.

SINTEF, “CVL Tool,” 2015. [Online]. Available: http://www.omgwiki.
org/variability/doku.php?id=cvl_tool_from_sintef

M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software
product lines: A case study using conditional compilation,” in Proceed-
ings of the 2011 15th European Conference on Software Maintenance
and Reengineering, ser. CSMR ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 191-200.

Polarsys, “Capella,” 2015. [Online]. Available: https://www.polarsys.
org/capella/

K. Czarnecki and K. Pietroszek, “Verifying feature-based model tem-
plates against well-formedness OCL constraints,” in Generative Pro-
gramming and Component Engineering, 5th International Conference,
GPCE 2006, Portland, Oregon, USA, October 22-26, 2006, Proceed-
ings, 2006, pp. 211-220.

J. Martinez, T. Ziadi, R. Mazo, T. F. Bissyandé, J. Klein, and Y. L.
Traon, “Feature relations graphs: A visualisation paradigm for feature
constraints in software product lines,” in VISSOFT, 2014.

OMG, “Object Constraint Language,” 2014. [Online]. Available:
http://www.omg.org/spec/OCL/

J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA, 2nd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

X. Zhang, @. Haugen, and B. Mgller-Pedersen, “Model comparison to
synthesize a model-driven software product line,” in Software Product
Lines - 15th International Conference, SPLC 2011, Munich, Germany,
August 22-26, 2011, E. S. de Almeida, T. Kishi, C. Schwanninger,
I. John, and K. Schmid, Eds. IEEE, 2011, pp. 90-99.

J. Rubin and M. Chechik, “Combining related products into product
lines,” in Fundamental Approaches to Software Engineering, FASE
2012, Tallinn, Estonia, 2012, 2012.

R. Koschke, P. Frenzel, A. P. J. Breu, and K. Angstmann, “Extending
the reflexion method for consolidating software variants into product
lines,” Software Quality Journal, vol. 17, no. 4, pp. 331-366, 2009.

W. K. G. Assung¢@o and S. R. Vergilio, “Feature location for software
product line migration: A mapping study,” in Proceedings of the 18th
International Software Product Line Conference: Companion Volume 2,
ser. SPLC *14. New York, NY, USA: ACM, 2014, pp. 52-59.

U. Ryssel, J. Ploennigs, and K. Kabitzsch, “Automatic variation-point
identification in function-block-based models,” in GPCE, 2010, pp. 23—
32.

F. Heidenreich, J. Kopcsek, and C. Wende, “Featuremapper: mapping
features to models,” in 30th International Conference on Software Engi-
neering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, Companion
Volume, 2008, pp. 943-944.

J. B. Ferreira Filho, O. Barais, M. Acher, J. Le Noir, A. Legay, and
B. Baudry, “Generating Counterexamples of Model-based Software
Product Lines,” Software Tools for Technology Transfer (STTT), Jul.
2014.

M. Stephan and J. R. Cordy, “A survey of model comparison approaches
and applications,” in MODELSWARD, 2013, pp. 265-277.

D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige, “Different
models for model matching: An analysis of approaches to support
model differencing,” in Proceedings of the 2009 ICSE Workshop on
Comparison and Versioning of Software Models, ser. CVSM ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 1-6.

D. Struber, J. Rubin, G. Taentzer, and M. Chechik, “Splitting models
using information retrieval and model crawling techniques,” in Fun-
damental Approaches to Software Engineering, ser. Lecture Notes in
Computer Science, S. Gnesi and A. Rensink, Eds. Springer Berlin
Heidelberg, 2014, vol. 8411, pp. 47-62.

