N

N

A Decade of RAPID-Reflections on the Development of
an Open Source Geoscience Code
Cédric H. David, James S. Famiglietti, Zong-Liang Yang, Florence Habets,
David R. Maidment

» To cite this version:

Cédric H. David, James S. Famiglietti, Zong-Liang Yang, Florence Habets, David R. Maidment. A
Decade of RAPID-Reflections on the Development of an Open Source Geoscience Code. Earth and
Space Science, 2016, 10.1002/2015EA000142 . hal-01320030

HAL Id: hal-01320030
https://hal.sorbonne-universite.fr /hal-01320030
Submitted on 23 May 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://hal.sorbonne-universite.fr/hal-01320030
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

QAGU

Earth and Space Science

RESEARCH ARTICLE

10.1002/2015EA000142

Special Section:
Geoscience Papers of the
Future

Key Points:

« A reflection on the open source
development of geoscience codes is
presented

« Sharing can be broken down into
three phases: opening, exposing,
consolidating

« Free online services facilitate sharing
and allow for further academic credits

Correspondence to:
C. H. David,
cedric.david@jpl.nasa.gov

Citation:

David, C. H., J. S. Famiglietti, Z-L. Yang,
F. Habets, and D. R. Maidment (2016), A
decade of RAPID—Reflections on the
development of an open source
geoscience code, Earth and Space
Science, 3, doi:10.1002/2015EA000142.

Received 13 OCT 2015
Accepted 22 MAR 2016
Accepted article online 7 APR 2016

©2016. The Authors.

This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and distri-
bution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications
or adaptations are made.

A decade of RAPID—Reflections on the development
of an open source geoscience code

Cédric H. David'?, James S. Famiglietti"*3, Zong-Liang Yang®*, Florence Habets®, and
David R. Maidment®

'Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, *Center for Hydrologic Modeling,
University of California, Irvine, California, USA, 3Department of Earth System Science, University of California, Irvine,
California, USA, “Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin,
Texas, USA, >°UMR 7619 METIS, CNRS, UPMC, Paris, France, %Center for Research in Water Resources, University of Texas at
Austin, Austin, Texas, USA

Abstract Earth science increasingly relies on computer-based methods and many government agencies
now require further sharing of the digital products they helped fund. Earth scientists, while often supportive
of more transparency in the methods they develop, are concerned by this recent requirement and puzzled by
its multiple implications. This paper therefore presents a reflection on the numerous aspects of sharing code
and data in the general field of computer modeling of dynamic Earth processes. Our reflection is based on
10 years of development of an open source model called the Routing Application for Parallel Computation of
Discharge (RAPID) that simulates the propagation of water flow waves in river networks. Three consecutive
but distinct phases of the sharing process are highlighted here: opening, exposing, and consolidating. Each
one of these phases is presented as an independent and tractable increment aligned with the various stages
of code development and justified based on the size of the users community. Several aspects of digital
scholarship are presented here including licenses, documentation, websites, citable code and data
repositories, and testing. While the many existing services facilitate the sharing of digital research products,
digital scholarship also raises community challenges related to technical training, self-perceived inadequacy,
community contribution, acknowledgment and performance assessment, and sustainable sharing.

1. Introduction

Driven by the need to understand Earth’s dynamic climate, geoscientists have dedicated much effort to creat-
ing numerical models of the major components of the climate system and to analyzing their outputs. Early
modeling studies date back to the 1950s and include simulations of the Earth’s atmosphere [Phillips, 1956],
oceans [Bryan and Cox, 1967], land [Manabe, 1969], and rivers [Miller et al., 1994]. Decades later, computer
modeling and data-intensive analysis have become key elements upon which modern climate science has
been built [e.g., Intergovernmental Panel on Climate Change, 2013], and numerous geoscientists therefore
dedicate considerable research energy to such endeavors. Computer-assisted research is equally ubiquitous
in the broad scientific community, such that some have argued that computer modeling and data-intensive
science be considered legitimate pillars of science, hence joining experimental science and theoretical
science [Bell, 1987; Bell et al., 2009; Hey et al., 2009; Hey, 2010; Hey and Payne, 2015], although such a view
is not without its critics [Vardi, 2010a, 2010b]. Nevertheless, computer modeling and analysis are now integral
parts of many geoscience investigations.

The recent mandate [Holdren, 2013] requesting that the direct results of federally funded scientific research in
the U.S. be made further accessible—including availability of digital data—has spurred much discussion in
the scientific community. Kattge et al. [2014] argued that while data sharing is necessary, associated hurdles
subsist, and proper means of acknowledgment (i.e., citations) are needed so that scientists can benefit from
the added burden. This argument was further supported by the survey of Kratz and Strasser [2015]. Others
have also suggested that the computer codes used to generate or to analyze data are equally important
and should hence be made similarly accessible [Nature, 2014; Nature Geoscience, 2014]. Prior to the recent
mandate, Barnes [2010] had already advocated for sharing computer code so that—Ilike any other scientific
method—code development could benefit from the peer review process. Additionally, the description of
computations using only natural language or equations has inherent ambiguities that have unpredictable
effects on results; hence, access to the source code is essential to reproducing the central findings of studies

A DECADE OF RAPID 1

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2333-5084
http://dx.doi.org/10.1002/2015EA000142
http://dx.doi.org/10.1002/2015EA000142
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2333-5084/specialsection/GPF1
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2333-5084/specialsection/GPF1

@AG U Earth and Space Science 10.1002/2015EA000142

[Peng, 2011; Ince et al., 2012]. Some of the largest geoscience modeling centers have been openly sharing
their software for three decades [e.g., Williamson, 1983; Anthes, 1986; Hurrell et al., 2013] and have already
embraced state-of-the-art software sharing practices [e.g., Rew et al., 2013]. The lack of training in software
engineering and development, however, make such endeavor more challenging for most scientists
[Hey and Payne, 2015].

River modeling—an area of Earth system modeling concerned with the numerical simulation of water flow
waves in surface river networks—does not have a strong tradition of open source codes (as discussed below)
and can benefit from further sharing. At scales ranging from continental to global, the river models that are
the most widely used in existing literature are perhaps those of Lohmann et al. [1996], LISFLOOD-FP
[Bates and De Roo, 2000], RTM [Branstetter, 2001], HRR [Beighley et al., 2009], and CaMa-FLOOD
[Yamazaki et al., 2011]. The degrees at which these software are shared vary widely (see Appendix A
for further details). LISFLOOD-FP can be obtained upon request to the developers and is only available
in the form of an executable (i.e., not the source code) that is limited to noncommercial use. HRR and
CaMa-FLOOD offer a greater degree of openness than LISFLOOD-FP because their respective source
codes can be obtained, although this also requires contacting the developers. The code for RTM can
be downloaded upon open registration, and that of Lohmann is openly available. Perhaps because their source
codes are readily accessible, these two latter river models appear to be the only ones that are currently used by
large modeling centers: RTM is an integral part of the Community Land Model [Oleson et al., 2013], and the code
of Lohmann et al. [1996] is used along with the North American Land Data Assimilation System [Lohmann et al.,
2004; Xia et al., 2012].

The generally limited tradition of sharing within the continental to global scale river modeling community
makes this field of Earth system modeling a suitable candidate—out of potentially many—for a case study
on sharing source code and data, which is the purpose of this paper. We here reflect on the benefits and
challenges that have been associated with the open source development of an alternative river model
(Routing Application for Parallel Computation of Discharge (RAPID) [David et al., 2011d]) based on 10years
of experience since its inception. This paper starts with a short background on RAPID (section 2). We then
highlight three consecutive but distinct phases of the sharing process: opening (section 3), exposing (section 4),
and consolidating (section 5). The implications for Earth science are then presented (section 6), followed by our
conclusions. This paper is intended as a reflective perspective in line with this special issue on Geoscience
Papers of the Future.

Our reflection based on the decade-long history of RAPID includes answers to questions that are relevant to
sharing any other type of Earth science model: How to share a geoscience model? What are the minimum
sharing steps? How to share data? How to make both model and data citable? How to programmatically
reproduce an entire study? How to test a model and how to do so automatically? What are the limits
of sharing?

Such questions shall be answered if, as a whole, the geoscience community yearns to abide AGU’s motto of
“unselfish cooperation in research.”

2. Background on RAPID

The Routing Application for Parallel Computation of Discharge (RAPID) [David et al., 2011d] is a numerical
model that simulates the propagation of water flow waves in networks of rivers composed of tens to
hundreds of thousands of river reaches. River routing in RAPID is based on the traditional Muskingum
method [McCarthy, 1938] adapted to a matrix-vector notation [David et al., 2011d]. Given the inflow of water
from land and aquifers—as commonly computed by land surface models—RAPID can simulate river
discharge at the outlet of each river reach of large river networks. River routing with the traditional
Muskingum method is performed using two parameters: a temporal constant (k) characteristic of flow wave
propagation and a nondimensional constant (x) representative of diffusive processes. Each river reach j of a
river network can be prescribed its own set of parameters (k; x;). RAPID includes an automated parameter
estimation procedure based on an inverse method that searches for an optimal set of model parameters
by comparing multiple model simulations with available observations located across the river basins of
interest while varying the Muskingum parameters. Different types of river networks can be used including
those based on traditional gridded representations [David et al, 2011a] and those from vector-based

A DECADE OF RAPID 2

@AG U Earth and Space Science 10.1002/2015EA000142

“fLegend A] Legend
[San Antonio and Guadalupe Basins Q_;P*;}ir [World Political Boundaries|
[Upper Mississippi Basin SN EECU,) Domain of SIM-France
[Texas Gulf Coast Hydrologic Region| = o g =

[Mississippi Basin -
United States
[World Political Boundaries -~

e
N
§

VoS :
0 500 1,(%36}?ﬁometer»sf 0 500 1,000 Kilometers

) \\\,\ ‘_ 5 A
\\\\ . — }] a4

Figure 1. Selected applications of RAPID. (left) The San Antonio and Guadalupe Basins were used in David et al. [2011d]. The
Upper Mississippi Basin was used in David et al. [2011d, 2013a]. The Texas Gulf Coast Region was used in David et al. [2013b].
The Mississippi Basin was used in David et al. [2015]. (right) The domain of SIM-France was used in David et al. [2011a].

A~ et

hydrographic data sets (the “blue lines” on maps) [David et al., 2011d, 2013a, 2013b, 2015]. River routing and
parameter estimation can both be performed on a subset of a large domain in order to study local processes.
RAPID has been applied to areas ranging from 10°km? to 10° km? (Figure 1) and can be run on personal
computers as well as on larger parallel computing machines with demonstrated fixed-size parallel speedup
[David et al., 2011d, 2013a, 2015].

The idea of building a river routing model capable of simulating river discharge in large vector-based hydro-
graphic data sets was first discussed with the author in January 2006 (Figure 2; this idea was discussed in a
meeting between Cédric H. David and David R. Maidment held on Thursday, 26 January 2006 at the Center
for Research in Water Resources of the University of Texas at Austin). The first lines of the RAPID source code
were written in September 2007 after a year of initial research. The development of RAPID has been ongoing
since then, with a source code now containing over 5000 lines. The code is written using the FORTRAN pro-
gramming language and three scientific libraries: the Network Common Data Form (netCDF) [Rew and Davis,
1990] for the largest input and output files, the Portable, Extensible Toolkit for Scientific Computation (PETSc)
[Balay et al., 1997, 2013] for linear algebra, and the Toolkit for Advanced Optimization (TAO) [Munson et al.,
2012] for automatic parameter estimation. PETSc and TAO both use a standard for parallel computing called
the Message Passing Interface (MPI) [Dongatrra et al., 1994].

The community of RAPID users has grown steadily since the software inception a decade ago and currently
includes researchers in universities, government agencies, and industry. Notable applications of RAPID
include studies of river aquifer/interactions [Saleh et al., 2011; Flipo et al, 2012; Thierion et al., 2012],
continental-scale high-resolution flow modeling [Tavakoly et al., 2012], decision support during droughts
[Zhao et al., 2014], computation of river height at the regional scale in preparation for an expected satellite
mission [Hdfliger et al., 2015], nitrogen transport modeling [Tavakoly et al., 2015], reservoir storage simula-
tions [Lin et al., 2015], and operational flood forecasting for the United States [Maidment, 2015].

The breadth of the current RAPID users community can be explained—at least in part—Dby a conscious effort
to share the software and related material in an open manner.

A DECADE OF RAPID 3

@AGU Earth and Space Science 10.1002/2015EA000142
S > > >

Legend g & &

N N N

> > >
& e ¢ e e
© ® © ® &
P P F P NG
—>Software milestones ~ —> Paper publications Training 1 Trainings 2 & 3
—> Trainings
Inception of RAPID First lines of code va v1.0.0v1.1,0v1.2,0 v1.3.0 v1.4.0
Cl

Figure 2. Timeline of the development of RAPID. Note that—with the exception of v1.0.0—the official version numbers all correspond to exact snapshots of the
source code used in the writing of published RAPID articles. The v1.0.0 benefited from data model enhancements compared to the alpha version which had been
used in David et al. [2011d]. The list of acronyms used is the following: Center for Research in Water Resources, the University of Texas at Austin (CRWR), Mines-Paristech
(Mines), Department of Geological Sciences, Jackson School of Geosciences, the University of Texas at Austin (DGS), University of California Center for Hydrologic
Modeling (UCCHM), Jet Propulsion Laboratory, California Institute of Technology (JPL), U.S. National Science Foundation Project EAR-0413265 (NSF-EAR), French projects
VUINAR/PIREN-Seine and Mines-Paristech (FR), U.S. National Aeronautics and Space Administration Projects NNX07AL79G (NASA-IDS1) and NNX11AE42G (NASA-IDS2),
University of California Office of the President (UCOP), Jet Propulsion Laboratory Strategic Research and Technology Development (JPL-R&TD), National Center for
Atmospheric Research Advanced Study Program (NC), American Geophysical Union Horton Research Grant (AGU), and Microsoft Azure for Research (MSR).

3. Initial Steps of Sharing Geoscience Software—Opening RAPID

While many geoscientists are seduced by the concept of open source software, the lack of knowledge regard-
ing where to initiate the process of sharing seems to be the most commonly acknowledged impediment. The
purpose of this section is therefore to expose the three most basic steps involved in open sourcing in order to
overcome this initial roadblock.

3.1. Authorship and Licensing of the Source Code

Perhaps the two most important steps prior to actually sharing software are to determine the authorship and
the type of license for use. Authorship is key because publication is a prime metric for the scientific commu-
nity. Software licenses are essential to specify what type of usage the authors allow and to avoid any ambi-
guity with regards to potential restrictions intended by them. While authorship is commonly valued by
academics, license specification in geoscience software is relatively infrequent, either because of lack of
computer science training or because the consequences of missing licenses are underappreciated. Yet
sharing software without a license is unwise because it implies that software developers leave copyright
details unspecified and therefore subject to default applicable laws. Such details include questions related
to reproducing, creating derived products, distributing, displaying, and performing of the work [e.g., US
Congress, 1976].

A DECADE OF RAPID 4

@AG U Earth and Space Science 10.1002/2015EA000142

In the case of RAPID the determination of authorship was fairly straightforward because a unique contributor
had been writing the source code. However, some licenses allow for an organization to be named in the license.
At the time of the initial release of RAPID, its development had taken place while the author had been in three
different departments of two institutions located in two countries; hence, the selection of the organization was
a challenge. Fortunately, some licenses allow the author name to be used as the organization name as well,
which was the option chosen for simplicity. Decisions concerning authorship and organization were both made
with agreement from all scientists involved in guidance and funding during the source code development.

The will to foster collaborations among the institutions that had contributed to the development of RAPID
and the desire to encourage broader community use both justified the release of the code in an “open
source” manner. Three of the commonly used license types for open source software were considered in
the selection: the GNU’s Not Unix (GNU) General Public License (GNU GPL) in its version 2.0, the
Massachusetts Institute of Technology (MIT) license, and the Berkeley Software Distribution (BSD) 3-Clause
license; all of which being accessible from the Open Source Initiative (https://opensource.org/). These licenses
all permit private use, commercial use, modifications, and distribution. Additionally, these licenses all include
a requirement for inclusion of the license and copyright notice when sharing the source code, and a statement
that neither the software author nor the license owner can be held liable for any potential damages. The selec-
tion of the license to use for RAPID was made based on the few aspects in which these common licenses differ.
The GNU GPL was not chosen because of a requirement to keep the same license when distributing derived
works (i.e., copyleft), which was found too restrictive and could have limited potential collaborations with industrial
partners. The MIT license does not specifically state that the developers’ names cannot be used in potential adver-
tisements over derived products, which made the author uncomfortable. The BSD 3-Clause license was therefore
selected for RAPID with agreement from all scientists involved in guidance and funding during the source code
development. Note that a full in-depth review of the details associated to available open source licenses is beyond
the scope of this paper. However, online services such as http://choosealicense.com/licenses/ or http://oss-watch.
ac.uk/ provide helpful information regarding open source licenses and may be valuable to readers when deciding
on a license for their own software. Additionally, the book of Rosen [2005] offers an excellent in-depth analysis of
open source licenses and presents many important aspects that are not mentioned here, including: collective
works, work made for hire, and dual licensing.

The specification of both authorship and license can therefore be seen as a key endeavor prior to sharing soft-
ware because such allows to engage in discussions that help clarifying the intentions and concerns of all par-
ties involved. The clarifications provided by licenses then rule any potential utilization of the software that
might otherwise have been unforeseen. The inclusion of the license in the source code then allows for clearer
and safer sharing outside of the circle of developers than would otherwise be possible.

3.2. Software Documentation

An important practice before sharing is to document the software. At the most basic level, documenting
involves describing the various tasks performed by the program with comments in the source code.
Readability is also appreciated by users; hence, some cleaning and formatting of the code can be beneficial.
An additional, valuable step in documenting software is to describe the platforms supported (operating
systems), programming language, dependencies on other software, steps of installation, and commands
(or options) for execution. Such can be done in a users’ manual or a short tutorial.

However, writing full software documentation can be very time consuming, and the associated academic
credits are currently relatively limited compared to the preparation of a scientific manuscript. In the case of
RAPID, software documentation therefore initially focused on commenting, cleaning, and formatting the
source code and on preparing a basic tutorial. Further documentation was later prepared on an as-needed
basis and improved over time. The “metric” used for determining the need for additional documentation is
the frequency of requests for help from different users on any given topic. Current RAPID documentation
includes a series of Portable Document Format (.pdf) files with information related to the basic functioning
of the model, installation procedures, and example tutorials.

Therefore, despite the widely accepted value of users’ manuals, an alternative approach has been taken for
RAPID, in which a basic tutorial was initially produced and additional documents have been prepared when
needed and improved iteratively.

A DECADE OF RAPID 5

https://opensource.org/
http://choosealicense.com/licenses/
http://oss-watch.ac.uk/
http://oss-watch.ac.uk/

@AG U Earth and Space Science 10.1002/2015EA000142

3.3. Sharing the Software

Once authorship and license are determined, basic formatting of the source code is performed, and minimal
supporting documentation is prepared; the source code can be deemed ready to be distributed. At this stage
researchers may consider sharing their software with collaborators using the simplest modes of transmission
including email or portable storage devices.

Additionally, geoscience researchers might wish to share their software beyond their group of direct colla-
borators. The most direct way to enable discovery and access to the software (or the supporting information)
is to create a website. The initial benefits of sharing the source code and its supporting documents online are
twofold. First, a website provides a way for collaborators to access the software and material at any time even
if the developers are not available. Second, many potential collaborators might want to assess the capabilities
of a piece of software and gauge whether or not it could help their needs prior to contacting the authors.

The first RAPID website was published in July 2010 to promote community usage and facilitate ongoing col-
laborations and was at the time hosted by the software author’s institution. At that point in the development,
RAPID had reached a certain level of maturity, demonstrated by its ability to run on two conceptually differ-
ent types of river networks: a vector-based hydrographic data set [David et al., 2011d] and a grid-based net-
work [David et al., 2011a]. Note, however, that the corresponding manuscripts had yet to be accepted for
publication (Figure 2). The website creation and online sharing of the open source software therefore
occurred approximately 3 years after the first lines of code were written but a year before the first papers
were published. Various updates to the RAPID code were then routinely made available as compressed
Linux archives (.tar.gz) in the download section of the website. Over the years, the site was migrated twice
as the employment of the author evolved. The URLs of each website were all published in a series of peer-
reviewed papers; therefore, continuity among websites had to be ensured. Such was made possible through
automatic HTML redirection of older URLs to the newer ones. The RAPID website (now at http://rapid-hub.
org) is still regularly updated and contains a basic introduction, a download page, links to publications,
supporting documents, animations of model results, information on training, and contact details.

Unexpectedly to the developer, the most immediate benefits of sharing the RAPID source code and docu-
mentation online have been community feedbacks and contributions. Bug reporting from users on applica-
tions to various computing environments (e.g., operating system and compiler collection) has enabled the
source code to be strengthened. Requests for clarification and reports of mistakes in the tutorials have both
improved the documentation. The most gratifying feedback, however, has been when users write their own
documents or programming scripts to be shared back to the community of RAPID users. Such contributions
are also available on the RAPID website. Note that while focus is made here on classic dedicated websites,
online software communities can also provide valuable hosting services [e.g., Horsburgh et al., 2015] and
sometimes even include the ability to run software online [e.g., Peckham et al., 2013]. Finally, this study pre-
sents an approach in which the source code is shared only after reaching a certain level of maturity; partly
because scientists tend to refrain from sharing raw software [Barnes, 2010]. An alternative approach where
software is shared from the onset could be equally valuable and potentially lead to similar but earlier benefits.

4. Fostering Sustainable Use and Development of a Geoscience Model—
Exposing RAPID

The first few years following the initial sharing of RAPID online were accompanied by a slow but steady
growth of its user base. The increasing size of the users community exposed a series of challenges that hin-
dered sustainability of the sharing endeavor. The following describes the difficulties encountered and the
steps taken to empower users by increasing transparency. These steps also allowed saving developer time
while increasing scientific outreach and furthering academic credit.

4.1. Version Control System and Online Code Repository

Between July 2010, when RAPID was first shared online, and March 2014, a total of 32 successive archives to
the source code were made available on the website. For each revision, the entire source code was included
in an archive file with a name that included the date of creation. A text file briefly describing the changes
made to the code was then maintained (but not shared) by the author. The increasing number of versions
of the source code associated with the growth of the RAPID users community made it difficult to support

A DECADE OF RAPID 6

http://rapid-hub.org
http://rapid-hub.org

@AG U Earth and Space Science 10.1002/2015EA000142

users; particularly when their applications were based on outdated RAPID code. It became clear then that
there was a need for a more advanced code management strategy, including mechanisms for fully
documenting and exposing code changes, and for enabling automatic updates by users.

Documenting code changes has traditionally been done using a type of computer science tool called Version
Control Systems (VCSs). Notable examples include the Concurrent Versions System (cvs), Subversion (svn),
Mercurial (hg), and git (git). VCSs have many capabilities including: tracking, commenting, labeling, saving,
comparing, and sometimes merging code changes. These systems can be deployed and used by a single per-
son or by a team of developers to track code changes locally. Alternatively, VCSs are capable of interacting
with online servers called code repositories, in which case the source code is hosted in a remote location.
Examples of code repositories include SourceForge, CodePlex, Google Code, BitBucket, and GitHub.

The increasing notoriety and usage of both git and GitHub motivated their use for RAPID. These two tools
are designed to work hand in hand and together allow tracking and fully exposing code changes online. The
somewhat overwhelming tasks of tracking and documenting changes in all 32 previously released versions of
the RAPID code using git and publishing the full repository on GitHub were therefore undertaken in March
2014. Despite a steep learning curve associated with understanding the functioning and usage of these tools,
the effort turned out to be more natural and less time consuming (approximately 100 h) than initially antici-
pated. One of the capabilities of gi t that was valuable for this endeavor is the tagging of the source code at
any given stage. Tags can then be used to navigate through various snapshots of the software. In the case of
RAPID, tags consisting of the previous release dates were used and hence enabled instant retrieval of any of
the past versions. Version control for all 32 previous releases was completed on 8 April 2014, date that also coin-
cided with the first code update published on GitHub. The same process has continued since April 2014, and the
repository now contains 53 tagged versions including five official releases (see below). The full downloadable
repository including all previously released versions of RAPID with tracked changes is available at https://
github.com/c-h-david/rapid (Figure 3). This GitHub repository allows obtaining all previous versions of the code,
navigating among them, and retrieving any available updates; each of these actions using single-line commands.

Several unanticipated aspects of version control systems and code repositories have also been beneficial to
RAPID. Among them is the ability to create official releases of the source code with tags using classic version
numbers. To leverage this capability, it was decided to associate official release numbers to the snapshots of
the code used in peer-reviewed papers written in the development of RAPID [i.e., David et al., 2011a, 2011d,
2013a, 2013b, 2015] with incremental version numbers from v1.0.0 to v1.4.0. A direct link to the latest official
release of RAPID is at: https://github.com/c-h-david/rapid/releases/latest. This study will be a candidate for a
new official version number. The GitHub official releases are also convenient because they can be assigned a
unique citable Digital Object Identifier (DOI) through a data repository called Zenodo (see section 4.2) as was
done in this study. Each one of the official release numbers hence now has a citable reference (respectively,
David [2010, 2011a, 2011b, 2013a, 2013b]). Another advantage of code repositories is the ability to browse
through the various versions of the source code online; which is helpful for training, for debugging, and
for electronic communications. Also of note are the social media aspects of code repositories that allow users
to be kept appraised of new software developments. Incidentally, industrial partners started manifesting their
interest in RAPID after it was version controlled and published in a code repository, perhaps because these
joint efforts contributed to making the software more professional.

The combined use of version control systems and code repositories for geoscience software therefore allows
levels of transparency in code changes and accessibility to updates that are not permitted by the more com-
mon sharing of snapshots of the source code. Together, VCSs and code repositories can help foster further
community use while lightening the user support load and increasing author acknowledgment through
citable references.

4.2, Sharing the Data

Over the years of development of RAPID, the size of all input and output files used in associated peer-
reviewed publications has grown. These data sets have been stored on various machines and their cumula-
tive size approaches 200 GB. Such data can fill a large portion of the total storage capacity of current personal
computers and therefore represent a potential issue for data storage and data preservation. Additionally,
these files provide examples of the inputs necessary to run RAPID (and of the outputs it produces) and can

A DECADE OF RAPID 7

https://github.com/c-h-david/rapid
https://github.com/c-h-david/rapid
https://github.com/c-h-david/rapid/releases/latest

@AG U Earth and Space Science

10.1002/2015EA000142

c-h-david / rapid @Unwatch~ 5

Routing Application for Parallel computation of Discharge (RAPID) http://rapid-hub.org/ — Edit

211 commits 1 branch 53 releases 1 cantributor

z Branch: master - rapid / +

Modified numbering cf optimizaticns.

BB c-n-david authored 2 days ago mit 2a8ed33odc B

[E] .gitignore
B .travis.yml
B LIcENSE

[El README.md

README.md

buile passing
DOI 10.5281/zenodo.24756

The Routing Application for Parallel computation of Discharge (RAPID) is a river network routing
model. Given surface and groundwater inflow to rivers, this model can compute flow and volume of
water everywhere in river networks made out of many thousands of reaches.

For further information on RAPID including peer-reviewed publications, tutorials, sample input/output
data, sample processing scripts and animations of model results, please go to: http://rapid-hub.org/

Software repository on GitHub

File detailing version control by git
Unique file used by Travis CI

License file

Read me file content displayed below

Latest status badge from Travis Cl

Latest DOI from Zenodo

Figure 3. The GitHub repository for RAPID is available at http://github.com/c-h-david/rapid and offers direct access to all previous releases of the source code, including
official versions. The successive modifications of all files are fully tracked and documented. The status badges in the README file automatically link to the pass/fail state of
the latest automatic build, and to the latest citable version.

therefore serve as the basis for training material. Finally, such files can be used to check that potential new
modifications to the software have not altered its overall functioning (i.e., software testing). There are
therefore many aspects for which the sharing of files associated with previously published RAPID studies
can be valuable, including data preservation, software training, and software testing.

As with software sharing, the choice of authorship, license, and repository are at the base of data sharing. The
most widely used data licenses appear to be those of the Creative Commons (CC). CC licenses and their
differences share many commonalities with the various software licenses (section 3.1) and specify details
related to attribution, derivatives, distribution, and commercial use. Readers may find the online service for
guiding the choice of a Creative Commons license (https://creativecommons.org/choose/) helpful when pick-
ing a license for their data. Note that the selection of a data license is a requirement before sharing data on
online repositories. Three repositories currently seem to be the most popular for scientific data sharing:
FigShare (http://figshare.com/), Dryad (http://datadryad.org/), and Zenodo (https://zenodo.org/). These
repositories vary in their cost and storage capabilities, but all provide a unique Digital Object Identifier
(DOI) making the data fully citable in peer-reviewed publications. Data repositories (like software repositories)
also allow for the inclusion of a short description of the files.

The input and output files associated with RAPID simulations consist in a series of small Comma Separated
Variables (csv) files and of larger netCDF files. The csv files contain information including river network con-
nectivity, Muskingum model parameters, existing observations, and subbasin specifications. The netCDF files
contain the inflow of water from land and aquifers into river reaches and the outflow of water from the
river reaches.

A DECADE OF RAPID 8

https://creativecommons.org/choose/
http://figshare.com/
http://datadryad.org/
https://zenodo.org/
http://github.com/c-h-david/rapid

@AG U Earth and Space Science 10.1002/2015EA000142

The input and output files corresponding to peer-reviewed publications of RAPID are usually either gener-
ated from scratch or prepared based on off-the-shelf data sets or on files prepared by coauthors.
Generally, the amount of work involved in the choice of data sources, data preparation, or data transforma-
tion is well aligned with the authorship of the associated papers. It was therefore decided that the authorship
of the data sets used in the preparation of existing peer-reviewed RAPID publications would mirror the
authorship of the corresponding papers.

The details associated with each of the few Creative Commons licenses vary from very permissive to very
restrictive. Similarly to the choice of software license for RAPID, the selection of data license was made to
maximize community usage. The Creative Commons Attribution (also known as CC BY) license was chosen
for RAPID-related data sets as it allows for distribution, modifications, derived works, and commercial use.
The CC BY license is the most accommodating of the Creative Commons licenses, and its only requirement
is to credit the original author(s) of the work.

FigShare, a free data repository, is probably the most popular of the available data sharing services, but its
current 250 MB limitation on any file in each data set makes it impossible to share RAPID files (often of larger
than 1 GB). Dryad only accepts files corresponding to peer-reviewed publications, which would satisfy our
needs, but their service is not free, and data publication charges increase steeply once the size of each data
set goes beyond 10 GB (here again common in RAPID data sets). Zenodo was therefore chosen to host data
associated with our peer-reviewed publications as it allows for many large files (each up to 2 GB) and remains
free. Zenodo is supported by the European Center for Nuclear Research and appears to be functioning under
stable funding. Furthermore, Zenodo guarantees survival of data sets and of their DOI. The files correspond-
ing to the first two peer-reviewed articles using RAPID [i.e., David et al., 2011a, 2011d] were published in two
separate Zenodo repositories (respectively, David et al. [2011b, 2011c]) for the purpose of this study. A short
note (1-2 pages) included in each data publication summarizes the sources for all raw data used and explains
the content of each file as well as how it was prepared.

In addition to fulfilling recent requirements for increasing access to funded research [e.g., Holdren, 2013] data
publication is therefore beneficial for data preservation and storage, for training, and for software testing.
Perhaps more importantly for geoscience researchers, data publications can be officially cited, resulting in
potential academic credit for authors [Kratz and Strasser, 2015], although the related benefits are complex
(section 6.3).

4.3. Training Courses

To date, three training courses have been organized for RAPID (Figure 2). The first training course was held at
the Institute of Atmospheric Physics of the Chinese Academy of Sciences in Beijing, China, on 24-26 May
2011. The second training course was part of the Community WRF-Hydro Modeling System Training work-
shop held at the National Center for Atmospheric Research in Boulder, Colorado, on 5-7 May 2015. The third
training course was organized during the National Flood Interoperability Experiment Summer Institute held
at the National Water Center in Tuscaloosa, Alabama, between 1 June 2015 and 17 July 2015. Each one of the
training courses enabled further growth of the users community. Additionally, each training course allowed
the evaluation of the ease of use of RAPID and of the quality of the tutorials. Note that while the first two train-
ing courses were taught by the lead software developer, the instructor of the third training was instead a
member of the RAPID users community. The third training course hence marked a transition when RAPID
users started teaching themselves, which can be seen as a milestone in user support. The organization of
training courses therefore allows for the evaluation of software usability, but can also be seen as an integral
part of community growth and engagement.

5. Facilitating Updates of a Geoscience Model—Consolidating RAPID

Inevitably, with years of development, the complexity of the source code for RAPID increased. Additionally, as
RAPID reached a certain level of maturity, the users community gradually became more active, and the
frequency of requests for updates, upgrades, and bug fixes grew. At this stage in model development, the
need for regular testing of the code after each modification became crucial to avoid the risk of becoming
inundated by bug reports from users. It followed that a more efficient approach for model testing was

A DECADE OF RAPID 9

@AG U Earth and Space Science 10.1002/2015EA000142

needed to avoid being overwhelmed by user support activities, while sustaining community engagement
and entertaining user requests.

5.1. The Transition From Manual to Automatic Testing

The many steps involved in testing software are often repetitive, tedious, and prone to human errors. The
most basic testing steps consist of running the program with a given set of instructions and verifying that
the outputs that are generated are as expected. If the source code and/or example data are not available
locally, testing also involves downloading of a series of files. Additionally, when the software depends on
other programs or libraries, their installation is required (see section 5.3) prior to the creation of the program
executable from the source code. As the frequency of software updates increases, full testing can become a
great consumer of developers’ time and is therefore sometimes avoided, increasing the risk of releasing
faulty source code.

The testing of RAPID—as that of many other geoscience models—involves all the aforementioned testing
steps. When performing testing operations manually, many of these steps are achieved using Graphical
User Interfaces (GUIs), i.e., the most natural tools for human-machine interactions. Downloading of the code
and data is done using an Internet browser or a File Transfer Protocol client. The instructions for each simula-
tion are created and modified manually using a text editor. Model outputs are checked visually by reading
(for text outputs) or inspecting graphics (e.g., hydrographs created from binary outputs). However, despite
the value of GUIs in easing human-machine interactions, the automation of tasks performed in GUIs is
a challenge.

In most operating systems, text-only interfaces called shells allow users to request tasks from the computer
by typing commands. Shells are the most fundamental way in which users can interact with the system.
Actually, shells used to be the main tools for interactions with computers before the advent of GUIs. Each
command entered in the shell results in an action performed and/or in text output. The success (or failure)
of each action is then summarized by an integer number called exit code generated after each command
execution, although it is kept hidden to the user unless specifically requested. A series of consecutive
operations can therefore be easily automated by creating a text file containing the corresponding commands
(i.e., a shell script), and their respective success can be checked using exit codes. Hence, the automation of
model testing can be accomplished if all the steps involved can be summarized in a series of simple
commands and included in a script.

Despite a few years of programming experience gained in the development of the RAPID source code, the
author was not familiar with the many command line tools allowing such automation. However, after
overcoming the initial learning curve associated with the discovery and use of a series of these tools, it
was found that many of the steps involved in the testing of RAPID can be performed directly from the shell
using existing programs (see the Appendix B for examples on Linux). The few tasks that could not be directly
performed with off-the-shelf tools were specifically related to the outputs of RAPID and necessitated the
creation of ad hoc programs.

As mentioned earlier (section 2), two main modes of usage currently exist for RAPID: the first consists in per-
forming flow simulations, and the second is dedicated to parameter optimization. When simulating flows,
RAPID generates a netCDF file containing the discharge for each river reach and at each time step. When
checking simulations manually, hydrographs are created based on output files and verified visually. In order
to allow for automated testing of simulations, a new approach was needed to compare two separate netCDF
files and return an exit code for success if the files are similar. The issue here is that different computing envir-
onments can lead to slightly different results (generally on the order of 10" m®/s in RAPID simulations) due
to variations in ordering of floating-point arithmetic operations. A bit-to-bit comparison of files or of their cor-
responding floating points was therefore not possible. A FORTRAN program for testing the similarity of two
RAPID output files was hence created to automatically compare among all simulated discharge values with
an option for specifying acceptable absolute and/or relative tolerances. When run in parameter optimization
mode, RAPID generates a text file including all parameter values tested and the corresponding cost functions
obtained, along with the final optimized parameter values. However, because the optimization method used
is unconstrained, the parameters found automatically are sometimes void of physical meaning in which case
one has to handpick the best possible parameters from the list of physically valid values. Additionally, given

A DECADE OF RAPID 10

@AG U Earth and Space Science 10.1002/2015EA000142

the dependence of the search space on the initial values used at the start of an optimization procedure,
comparisons among a series of optimization experiments help selecting best possible parameters. Finally,
these best possible parameters need be compared with previous results to perform software testing. Three
automatic tasks were therefore needed to test the optimization procedure in RAPID: (1) finding the best valid
parameters in a given optimization experiment, (2) picking the optimal parameters among a series of
experiments, and (3) comparing these optimal parameters with previously computed values. Three shell
scripts using off-the-shelf Linux programs were prepared to perform these three tasks. These programs
all consist in a series of text editing tasks that were all made possible by combining existing Linux tools
(see Appendix B).

Overall, the greatest challenge in creating programs for testing of RAPID was in the discovery of available
command line tools. Once this learning curve was overcome, the automation process became straightfor-
ward. Despite their value for automatic testing (section 5.2), the custom programs that were created also
turned out to be beneficial for day-to-day usage of the software. Indeed, the few manual tasks involved in
basic postprocessing of RAPID outputs were time consuming and prone to human error. The development
of automatic tools for testing, albeit motivated by user support, therefore turned out to be a valuable endea-
vor for the developer as well.

5.2. Testing by Reproducing Entire Studies Programmatically

Once the programs that are necessary for automatic testing of a piece of software are prepared, the actual
process of designing tests can begin. The choice of what tests to be performed therefore had to be made.
In the case of RAPID, the creation of tests was motivated by the desire to check that any potential modifica-
tion of the source code did not alter the overall functioning of the model. It was therefore decided to test soft-
ware updates by automatically reproducing all model runs that had been performed in previously published
studies. The first two RAPID papers [i.e., David et al., 2011a, 2011d] were selected for this endeavor. For each
study, two main shell scripts were created: one for downloading the corresponding data and the other for
reproducing and checking all model runs, hence fully exposing the provenance of past results. Creating
programs that automatically download data is fairly straightforward if the data sets are published online
(section 4.2) and can be done using off-the-shelf command line tools. The design of programs that automatically
reproduce a series of model runs requires further effort. Because the generation of an executable from the source
code (i.e,, software build) can be time consuming, it is important that the code is designed so that all model
options can be accessed at runtime (without rebuild). Such capability is usually achieved through the use of
an input text file containing instructions. Several model runs can then be performed automatically solely by mod-
ifying the instruction file prior to execution. Finally, programs for resetting each instruction file to its respective
default state (chosen arbitrarily) turned out to be useful when launching multiple model runs successively.

The programs that were created for the automatic reproduction of the first and second RAPID papers
together combine 138 tests (23 and 115, respectively). The number of tests allowed by these programs is
about an order of magnitude greater than what was used when performing manual testing and approxi-
mately an order of magnitude faster. Such a stricter testing procedure allowed for both increased robustness
of the software and for temporal savings. Here again, the value of these tests goes beyond their use for devel-
opment work, as they provide examples of model usage as well as a means for users to check their installation
(or modifications) of RAPID. The tests corresponding to the first RAPID paper were actually run successfully by
25 attendees of the second RAPID training (section 4.3). Finally, the automatic reproduction of existing
studies fully document the provenance of all simulations performed in the corresponding studies.

5.3. Continuous Integration

The principal strength of automatic tests is that they allow checking that the piece of software functions as
expected after creation of the executable (build). However, geoscience models are often built upon existing
software, all of which being already installed on the developer’'s computer. The only way for developers to
ensure portability of their geoscience model—i.e., to verify that there are no any unexpected dependen-
cies on their own system—is to install the model on a blank machine. This machine can be a dedicated
computer requiring frequent reinstallation of the operating system or a less costly and less time
consuming virtual machine (VM) that can be regularly reset using VM snapshots. Another approach to

A DECADE OF RAPID 1

@AG U Earth and Space Science 10.1002/2015EA000142

guaranteeing portability, but does not require manual resetting of the machine (actual or virtual), is made
possible by hosted Continuous Integration (Cl) services.

The purpose of hosted Cl services is to monitor changes to a source code repository and perform a set of
given tasks upon publication of updates. The list of tasks to be performed is provided in a text file that is
specific to the Cl service and that is included in the source code. The most basic task performed by the Cl
server is to build the software using the instructions provided. Any time that an update is published on
the code repository, the Cl server automatically creates a clean operating system, downloads the source code,
and builds the software.

Several services currently exist for hosted continuous integration, including Travis Cl, Codeship, and Circle Cl.
These services share many commonalities including the capacity to interact with GitHub repositories. Travis
Cl was chosen here for RAPID because of its relative higher popularity, its tight coupling with GitHub (using
the same identifier and password), and its free support of open source projects. Surprisingly, activating Travis
Cl for RAPID turned out to be a very straightforward two-step process. The first step consists in adding a text
file called .travis.yml to the GitHub repository including the series of shell commands necessary to
install RAPID and its dependencies. These commands were already summarized in one of the existing tutor-
ials, which eased this procedure. The second step consists in logging in on Travis Cl using GitHub credentials
and activating the monitoring of the RAPID GitHub repository. The result of this two-step process is available
at https://travis-ci.org/c-h-david/rapid (Figure 4) and includes information on all previous builds of RAPID
since the continuous integration process was activated. Of particular interest here is the pass/fail status of
the latest build.

Despite demonstrating the portability of the RAPID source code through automatic building of the software,
one of the direct benefits of hosted continuous integration was to fully trace the software dependencies and
environment variables that are needed to build RAPID. A successful build on a Cl server guarantees that all
necessary software were properly described and therefore that the installation procedure was fully documen-
ted. Setting up continuous integration for RAPID also proved to be immediately valuable as it allowed for
illumination of some dangerous programming practices present in the source code (e.g., lack of variable
initialization and implicit data type conversions). These weaknesses were exposed because the compiler col-
lection used in the Cl server provided different warnings than that of the development machine. Continuous
integration therefore had an immediate impact on the quality of the RAPID code. Another benefit of
continuous integration is the ability to advertise for the validity of the latest releases through a “status badge”
confirming that the latest build was successful (Figure 3).

In addition to enhancing the portability and quality of the code, continuous integration helped with auto-
matic testing of RAPID. Once automatic tests were included in the code repository, their use in the continuous
integration process was easily activated through inclusion in the Cl server instructions. The only difficulty
associated with testing within the Cl server was to ensure that the integration process—i.e., the combination
of software building and testing—could be performed in a limited period of time (50 min for Travis Cl), so
tests had to be split into smaller groups running on 15 different Travis Cl computers. Exit codes being the sole
means of the Cl server to determine success (or failure) of each command, their proper handing within
testing scripts (section 5.2) was particularly key for continuous integration. The benefits of the temporal
investments made in sharing code, data, and in preparing automatic tests therefore became even greater
when using continuous integration, as they together allowed for machines to take over many of the time-
consuming parts of code development.

6. Implications for Earth Science—Lessons Learned
6.1. On the Phases of Sharing and Their Associated Benefits

The first phase of sharing, i.e., “opening” a piece of software, consists in a series of consecutive steps. Perhaps
the most important step in this phase is to determine the authorship and license hence clarifying potential
ambiguities on permissions and restrictions intended by the authors prior to release. Software description
—through cleaning, formatting, and commenting the code, and/or through preparation of a basic tutorial
—allows potential peers to independently start using the software and evaluating the associated capabilities.
Note that our recommendation for minimal initial software description is marginally more time consuming

A DECADE OF RAPID 12

https://travis-ci.org/c-h-david/rapid

@AG U Earth and Space Science 10.1002/2015EA000142

Continuous Integration with Travis Cl

Status badge automatically updated

(/Y 20150906 M imbering of optimizatiol ot sasied Version of software being used
o

v 211 Multiple simultaneous builds for testing

L SARREC ST ST SRR IR S

(=

Figure 4. The continuous integration server for RAPID is available at http://travis-ci.org/c-h-david/rapid and provides details on all previous builds of the software.
The continuous integration of RAPID is currently running on fifteen separate Travis Cl workers. Note that the build time provided is the sum of the run times of all
workers and that the wall clock time is shorter as several workers run concurrently.

than sharing code “as is” [e.g., Barnes, 2010]. The creation of a website is then the natural next step to provide
continuous access to (and a means of discovery for) the software and associated documents; which together
permit the fostering of a burgeoning community of users. One of the benefits of opening software, albeit not
easily quantifiable, is the satisfaction one may get in having their research used by peers: hence contributing
to one’s community. In addition, opening software has direct benefits for the code itself. Initially, community
feedback on potential bugs in the code and clarity of the code and tutorials are to be expected. Eventually, com-
munity contribution to the software knowledge base (tutorials and processing scripts) are even more rewarding.

The second phase of sharing, i.e., “exposing” the software and data, consists in using version control systems
(VCSs) to track code changes, in publishing code and data through online repositories, and in organizing
training courses. VCSs allow documenting code changes, labeling versions, comparing snapshots, and mer-
ging differences. Code repositories are companions to VCSs and facilitate browsing through code, increasing
the transparency of changes, publishing official versions, and increasing accessibility to updates. The social
media capabilities of code repositories also allow users to be kept appraised of software developments.
Online availability is equally helpful for discussing specifics of the source code with remote users. Data
repositories are valuable for storage and preservation, but also because sharing example data provide useful
training material and later support automatic testing. Perhaps more importantly [e.g., Kattge et al., 2014; Kratz
and Strasser, 2015], data repositories enable potential furthering of academic credit through citable material
(for both code and data) while fulfilling recent requirements in accessibility to direct products of funded
research [Holdren, 2013]. Code and data sharing are particularly valuable once a small community of users
exists. Training courses allow for the evaluation of software usability and are also an integral part of user
engagement. Exposing software empowers users through eased access and usability and hence contributes
to the growth of the users community while simultaneously saving developer time therefore making the

A DECADE OF RAPID 13

http://travis-ci.org/c-h-david/rapid

@AG U Earth and Space Science 10.1002/2015EA000142

sharing process more sustainable. Finally, this phase demonstrates a certain level of maturity in the software
and thus helps attract more users including potential industry partners.

The third phase of sharing, “consolidating” software, becomes necessary as the community of users
continues to grow and the frequency of requests for code modifications increases. An active user base is very
valuable because not only it generates motivation for software improvements but also it demands rigorous
testing of updates at the risk of being inundated by bug reports. Manual testing—a repetitive, tedious, and
time-consuming task that is prone to human error—is then no longer appropriate because the associated
temporal investments become an impediment to user support and hence to sustainable sharing. At such
stage of open source development, the creation of automatic testing tools and the activation of hosted con-
tinuous integration become necessary. The automatic tests facilitate tremendous savings in developer time
and enable users to check their installation and/or potential code modifications. Continuous integration
enhances software portability through ensuring a full and up-to-date description of software dependencies.
Together, continuous integration and testing eventually allow saving time, strengthening the code, and
benefit day-to-day operations. From a developer’'s perspective, continuous integration enables a more
sustainable approach to software development through letting machines take over many of the time-
consuming development tasks and therefore frees up availability to further community engagement.

The three phases of open source sharing that are presented here are incremental and align with the size of
the users community. Therefore, while every phase enhances the sharing endeavor compared to its prede-
cessor, each implementation can be spread out over the lifetime of the software (Figure 2). Note that the
completion of the various steps in each phase (or of the phases themselves) can sometimes be made in a dif-
ferent order than that proposed here. For example, continuous integration can be implemented before auto-
matic testing, or data can be published before using VCSs and code repositories. Likewise, VCSs can be used
prior to sharing the software as can be needed if several developers are initially involved. However, we highly
recommend the selection of a license—a step that is too often overseen in practice—before sharing.

6.2. Implications for Source Code Development

Our experience with the open source development that is presented in this study has highlighted three
aspects of software design that are important to the sharing process: the necessity of a strong data model,
the importance of instruction files, and the choice of the hosting location for material linking data
and software.

The data model is the standard used to describe the content and format of the various files read or created by
the Earth science model, along with how they relate to one another. This description includes the name and
content of variables accompanied by their computer-based representation (i.e., character, logical, integer,
floating point, and associated precision), the sorting details (e.g., arbitrary, ascending, and descending),
and the file type used to store the data (e.g., csv and netCDF). The data model has a direct impact on the func-
tioning and performance of an Earth science model and is therefore usually defined before or at the same
time, but it is almost always refined with time. One should hence actively promote early data model stability
for model development. Additionally, from a data sharing perspective, one should also wait for some stabi-
lization of the data model before publishing data sets at the risk of making such data sets hastily obsolete. A
stable data model is also advantageous because it facilitates the consistency of tutorials and automatic tests.
In our experience, a good metric for determining the maturity of the data model has been its ability to accom-
modate different types of conceptually different inputs.

At the initial stage of development, many variables are often “hardwired” in the Earth science model source
code, be it because of a strive for early results standing against recommended programming practices or per-
haps because such can sometimes facilitate the detection of programming inconsistencies (e.g., array sizes)
by compilers. This advantage comes at a price: the source code needs be rebuilt every time new instructions
are used. As the software matures, it is therefore good practice to combine all possible instructions in a single
text file that is read at runtime. The instruction file then enables multiple simulations to be run without
rebuilding the source code, which greatly eases day-to-day operations and automatic testing.

Some files create a link between the source code and the data of an Earth system model. Examples include
the data downloading script (which contains the names of all input and output files) and the instruction file
(which can also contain their respective sizes). In the process of sharing source code and data, one may

A DECADE OF RAPID 14

@AG U Earth and Space Science 10.1002/2015EA000142

therefore wonder which of the associated repositories is the most appropriate to store these specific files. Our
experience has shown that it is helpful to include the data download scripts with the source code so that
users can readily obtain example data to check their installation and/or modifications of the code and in
order to ease the continuous integration process. Additionally, while the file names and sizes corresponding
to a set of example input/output files tend to remain stable, the associated variables names within the source
code might evolve (e.g.,, to improve readability) in which case old instruction files would no longer be
applicable. It is therefore good practice to also keep example instruction files with the source code and
not with the data.

6.3. Remaining Community Challenges and the Limits of Sharing

As geoscientists further embrace digital scholarship, a series of community challenges are to be expected.
These challenges include matters related to the following: technical training, self-perceived inadequacy,
community-based documentation, acknowledgment and assessment of digital scholarship, and
sustainable sharing.

As mentioned earlier (section 3), geoscientists seem to often justify the lack of sharing by a lack of know-how,
at least in conversation. This paper touches on many aspects related to code and data sharing including
licenses, repositories, versioning, testing, and continuous integration. While these subject matters are com-
monly taught in computer science departments, they are typically absent from most geoscience depart-
ments. Such a lack of training has now been recognized by computer science colleagues [e.g., Hey and
Payne, 2015]. If digital scholarship is expected of geoscientists, it must also become part of their curriculum
in universities.

Another common justification for the lack of sharing seems to be that computer codes created are too simple
(or “not good enough”) to be made public. This apparent self-perceived inadequacy was humorously dis-
cussed by Barnes [2010] who argued that if the code does the task that it is designed for, then it is good
enough to be shared. Our opinion is well in line with that of Barnes, as too many of we geoscientists spend
much of our time writing code that others have written before, and more will write in the future. While much
can be learned writing one’s own code, having access to examples could lead to community-wide
temporal savings.

The need to document software can also be seen as an impediment to sharing. Preparing documentation
and keeping it up to date with latest code developments is indeed time consuming. While some argue for
sharing as is [e.g., Barnes, 2010], our experience has shown that if there is in fact a community need for the
tools, users are likely to manifest themselves with questions. We therefore recommend here a limited amount
of editing and formatting of the source code—as was already advocated for by Easterbrook [2014]—and
suggest that the preparation of a small tutorial suffices as initial supplementary documentation. Such an
approach was taken for RAPID and was later rewarded by contributions to the documentation from enthu-
siastic members of the users community.

This case study suggests that the many steps involved in sharing together require substantial dedication;
particularly as the users community grows. In the words of Easterbrook [2014], “making a code truly open
source [...] demands a commitment that few scientists are able to make.” The geoscience community should
therefore acknowledge sharing efforts in a way comparable to traditional scientific article publications
[e.g., Kattge et al., 2014]. Fortunately, modern technology now allows for digital products to be fully citable
(see sections 4.1 and 4.2), which is a significant step toward acknowledging contributions [Kratz and Strasser,
2015]. However, some scientific software eventually grow beyond the publishing scientific community, in
which case an alternative measurement of their broader impact would be valuable. Unfortunately, there does
not appear to be a way to track downloads in current data or software repositories. GitHub does provide a
download count, but this capability is limited to the binary files associated with official releases which only
represent a portion of the total number of downloads. The lack of this capability is perhaps why many devel-
opers wish to be contacted by users before granting access to their code. This might also explain the regis-
tration systems used by some modeling centers to track the usage of their codes [e.g. Hurrell, 2013].
Further, while we agree on the many benefits of citable digital research products [Kattge et al., 2014;
Scientific Data, 2014; Kratz and Strasser, 2015] we further argue here that an additional step is needed to pro-
mote open research: a cultural shift in the assessment of research performance. Digital scholarship can be

A DECADE OF RAPID 15

@AG U Earth and Space Science 10.1002/2015EA000142

seen as impactful for research, education, and outreach, and researchers might respond more enthusiastically
to the added burden if their peers (i.e., colleagues and tenure and promotion committees) valued the efforts.
This expectation in turn means digital scholars must become advocates of their own cause.

Finally, and contrary to common belief, open source software does not mean free user support [Barnes, 2010;
Easterbrook, 2014]. This unfortunate misconception hinders sustainable sharing as it does sustainable
research. An analogy between traditional publishing and digital scholarship can be made here. It is common
that a given researcher X reads a scientific paper written by another researcher Y, applies the published meth-
ods to his/her case study, and writes their own paper citing the work of Y. However, it is less usual for X to ask
Y for help with the data collection or application of the methods to the new case study without an implied
understanding of coauthorship. Such is particularly true if the associated efforts require rigorous data collec-
tion, detailed data inspection, and/or enhancement of the methods. The same modus operando can reason-
ably be applied to digital scholarship. Citation of the digital research products is appropriate—and sufficient
—when using these products as is. However, if user support requires “substantial” expertise or involvement
from the developers, coauthorship seems appropriate. Similarly, if research proposals planning to use open
source software are likely to necessitate assistance from the developers, a proportionate amount of funding
can reasonably be requested. Such funding can then be used to answer new scientific questions and lever-
aged for support. Developers must therefore acknowledge that they too often drown—happily—in the time
sink of user support. The benefits of community feedback cannot alone justify the associated efforts as devel-
opers’ time could be very well spent instead on new publications or new research proposals. As we encou-
rage geoscientists to enthusiastically embrace the open source approach, our community must therefore
also strive for a proper balance between further sharing and sustainable research.

7. Conclusions

As geosciences gradually evolve to rely on increasing amounts of computer-aided methods and our society
clamors for further transparency in the products of the research it supports, many geoscientists are faced
with the challenges of digital scholarship. The importance of learning best sharing practices is particularly
acute in the general field of Earth science modeling—i.e., the creation, update, and maintenance of numerical
models used to study the dynamic elements of the Earth—which is a key component of current climate
change studies. This paper focuses on the specific field of continental to global scale numerical modeling
of flow wave propagation in rivers, one of potentially many scientific areas in which open development is
uncommon, merely as an avenue to reflect on the open sharing process in Earth science.

This study presents reflections based on the 10 years of development of an open source river model called
RAPID and highlights three consecutive but distinct phases of the sharing process: (1) opening, (2) exposing,
and (3) consolidating. Each of these phases responds to a users community of increasing size. Phase 1 (opening)
consists in selecting an open source license, cleaning and formatting of the source code associated with pre-
paring a short tutorial, and publishing the source code on a dedicated website. This first phase is the minimal
sharing phase and allows fostering a burgeoning community of users. Phase 2 (exposing) consists in tracking
code changes using Version Control Systems (VCSs), publishing the source code and example files on citable
software and data repositories, and organizing software trainings. This second phase becomes necessary as
the user community grows, in order to facilitate transitions between existing versions of the source code
and to provide example case studies. Phase 3 (consolidating) consists in creating a set of automatic tests
and activating continuous integration of the software. This third phase becomes needed to ease the sharing
process when the frequency of requests for software modifications increases along with the activity of the users
community. Note that while the phases presented here mirror the RAPID development timeline, the order in
which each phase (or its associated steps) is completed can vary among software projects.

The case study herein provides details on the several phases involved in open sourcing of a numerical model
of a component of the Earth system and highlights the many benefits—mutual to developers and to users—
of open source development. In addition to contributing to transparency in science, open source sharing
allows for (1) improvement of software and documentation, (2) temporal savings through letting machines
take over many of the repetitive aspects of software use and development, and (3) academic credit through
citable digital research products. Note that all the services used in this study are available at no cost to open
source developers.

A DECADE OF RAPID 16

@AG U Earth and Space Science 10.1002/2015EA000142

However, the benefits of further sharing also come with a substantial time commitment as the sharing pro-
cess becomes increasingly demanding with a growing user base. This added burden must be managed by
the geoscience community as a whole; and several potential avenues are proposed here. First, the inclusion
of digital scholarship methods in the geoscience curriculum of universities could greatly ease the associated
learning curve. Second, geoscientists need to overcome the self-perceived inferiority of their computer code
and instead embrace the many benefits of peer review for code development. Third, users of open source
software should consider contributing to their own community through helping with the associated docu-
mentation. Fourth, traditional scholarship and digital scholarship should equally weigh in the acknowledg-
ment, evaluation, and promotion of geoscientists, because digital scholarship equally impacts research,
education, and outreach. Finally, the geoscience community might consider including open source
developers in their peer-reviewed manuscripts and research proposals when making substantial use of the
developers’ expertise in their endeavors in order to foster sustainable sharing practices.

Appendix A: On the Apparent Level of Sharing in Selected River Models

The information below was retrieved at time of writing (14 August 2015) for selected river models with applic-
ability from regional to global scale:

The code of Lohmann et al. [1996] is available for download from as part of the North American Land Data
Assimilation System and does not appear to include a license: http://www.nco.ncep.noaa.gov/pmb/codes/
nwprod/nldas.v2.0.3/sorc/nldas_rout.fd/

The website for LISFLOOD-FP [Bates and De Roo, 2000] states, “we are happy to provide a copy of the executable
for noncommercial studies”: http://www.bristol.ac.uk/geography/research/hydrology/models/lisflood/downloads/

RTM [Branstetter, 2001] can be downloaded from the Community Earth system model [Hurrell et al., 2013]
website at http://www.cesm.ucar.edu/models/cesm1.2/, which states that “a short registration is required
to access the repository.”

The website for HRR [Beighley et al., 2009] states that “If you would like the source code, please email Dr.
Beighley”: http://www.northeastern.edu/beighley/hillslope-river-routing-hrr-model/

A similar statement is provided for CaMa-Flood [Yamazaki et al., 2011]: “Please contact to the developer
(Dai Yamazaki) for the password to download the CaMa-Flood package”: http://hydro.iis.u-tokyo.ac.jp/
~yamadai/cama-flood/

Appendix B: Example Programs and Special Characters for Automatic Testing
in Linux

The automation of RAPID testing in this study was made possible through the use of a series of programs and
special characters including some that—despite a few years of experience with programming on Linux—
were not already known to the author. A nonexhaustive summary is provided here in hope that readers might
find these helpful for testing their own geoscience software; merely as a supporting information to compre-
hensive references [e.g., Siever et al., 2005; Jones, 2008].

The generation of an executable from the software source code (compilation and linking or build) is a convo-
luted and multistep process that can be transformed into a one-line command by using a program called
make of which instructions are in a file called makefile. Word Count (wc) can be used to count the number
of lines in a file. Globally search a Regular Expression and Print (grep) can locate a string of characters in a
text file. The Stream EDitor (sed) can search for a string of characters in a file and replace it by another.
The Basic Calculator (bc) can be used to compare two numbers and provide a Boolean value summarizing
whether or not they are equal. The Worldwide web GET (wget) allows for downloading files from the Internet.

Special characters in a given Linux shell can also ease the automation of software testing. Here we focus on
one of the most common Linux shells used in scientific computing called the Bourne Again Shell (bash).
Helpful values can be obtained at the command line in bash or in a bash script: the number of arguments
provided ($#), the list of all arguments ($ @), the first argument ($1), and the exit code of the previous com-
mand ($?). The text resulting from the execution of one command can be redirected to a text file (>) or used
as the input to another command ().

A DECADE OF RAPID 17

http://www.nco.ncep.noaa.gov/pmb/codes/nwprod/nldas.v2.0.3/sorc/nldas_rout.fd/
http://www.nco.ncep.noaa.gov/pmb/codes/nwprod/nldas.v2.0.3/sorc/nldas_rout.fd/
http://www.bristol.ac.uk/geography/research/hydrology/models/lisflood/downloads/
http://www.cesm.ucar.edu/models/cesm1.2/
http://www.northeastern.edu/beighley/hillslope-river-routing-hrr-model/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/cama-flood/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/cama-flood/

@AG U Earth and Space Science

10.1002/2015EA000142

Acknowledgments

This work was supported by the Jet
Propulsion Laboratory, California
Institute of Technology, under a con-
tract with the National Aeronautics and
Space Administration and by the
University of California Office of the
President Multicampus Research
Programs and Initiatives; both institu-
tions are gratefully acknowledged. This
research was also partially supported by
a Microsoft Azure for Research grant
from Microsoft Research. The practical
application of this study was enabled by
the netCDF, MPICH, PETSc, and TAO
scientific libraries that were all built with
the GNU Compiler Collection installed
on a Community Enterprise Operating
System (CentOS). Version control was
performed using git. This study was also
made possible using the following free
online services: GitHub (code reposi-
tory), Zenodo, (data repository), and
Travis Cl (Continuous Integration).
Comments from the Editor, Associate
Editor, and two anonymous reviewers
on earlier versions of this manuscript
are gratefully acknowledged. The
authors are thankful to Yolanda Gil for
stressing the importance of software
licenses and for continuous support
throughout the research presented in
this paper, to an anonymous reviewer of
a National Science Foundation review
panel for suggesting the use of GitHub,
to Luke A. Winslow for demonstrating
the power of Continuous Integration
and for mentioning Travis Cl, and to Lars
Holm Nielsen of Zenodo for support on
hosting the RAPID input and output
files. Thank you to the EarthCube
OntoSoft leadership team and the advi-
sory committee members for enligh-
tening discussions. The two data sets
used in this paper [David et al., 2011b,
2011c] are openly available through
their respective digital object identifiers
(DOI). The piece of software used herein
includes the scripts to reproduce all
numerical experiments performed in
this paper (hence describing prove-
nance of results) and is openly available
at https://github.com/c-h-david/rapid/
tree/20150906; it will be assigned a DOI
[e.g., David, 2010, 2011a, 2011b, 20133,
2013b] pending publication of this study.

References

Anthes, R. (1986), Summary of workshop on the NCAR Community Climate/Forecast Models 14-26 July 1985, Boulder, Colorado, Bull. Am.
Meteorol. Soc., 67(2), 194-198.

Balay, S., W. D. Gropp, L. C. McInnes, and B. F. Smith (1997), Efficient management of parallelism in object oriented numerical software
libraries, in Modern Software Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen, pp. 163-202, Birkhauser,
Cambridge, Mass.

Balay, S., J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman Mclnnes, B. F. Smith, and H. Zhang (2013),
PETSc Users Manual (Revision 3.3), Argonne Natl. Lab, Argonne, IIl.

Barnes, N. (2010), Publish your computer code: It is good enough, Nature, 467, 753, doi:10.1038/467753a.

Bates, P. D., and A. P. J. De Roo (2000), A simple raster-based model for flood inundation simulation, J. Hydrol., 236(1-2), 54-77.

Beighley, R. E., K. G. Eggert, T. Dunne, Y. He, V. Gummadi, and K. L. Verdin (2009), Simulating hydrologic and hydraulic processes throughout
the Amazon River Basin, Hydrol. Processes, 23(8), 1221-1235, doi:10.1002/hyp.7252.

Bell, C. G. (1987), The future of scientific computing, Comput. Sci., 1, 4-6.

Bell, G, T. Hey, and A. Szalay (2009), Beyond the data deluge, Science, 323(5919), 1297-1298.

Branstetter, M. (2001), Development of a parallel river transport algorithm and applications to climate studies, PhD Thesis, Univ. of Texas,
Austin.

Bryan, K., and M. D. Cox (1967), A numerical investigation of the oceanic general circulation, Tellus, 19(1), 54-80, doi:10.1111/j.2153-
3490.1967.tb01459.x.

David, C. H. (2010), RAPID v1.0.0, Zenodo, doi:10.5281/zenodo.27239.

David, C. H. (2011a), RAPID v1.1.0, Zenodo, doi:10.5281/zenodo.27241.

David, C. H. (2011b), RAPID v1.2.0, Zenodo, doi:10.5281/zenodo.27242.

David, C. H. (2013a), RAPID v1.3.0, Zenodo, doi:10.5281/zenodo.27243.

David, C. H. (2013b), RAPID v1.4.0, Zenodo, doi:10.5281/zenodo0.24756.

David, C. H,, F. Habets, D. R. Maidment, and Z.-L. Yang (2011a), RAPID applied to the SIM-France model, Hydrol. Processes, 25(22), 3412-3425.

David, C. H,, F. Habets, D. R. Maidment, and Z.-L. Yang (2011b), RAPID input and output files corresponding to “RAPID Applied to the SIM-
France Model”, Zenodo, doi:10.5281/zenodo.30228.

David, C. H,, D. R. Maidment, G.-Y. Niu, Z.-L. Yang, F. Habets, and V. Eijkhout (2011c), RAPID input and output files corresponding to “River
Network Routing on the NHDPlus Dataset”, Zenodo, doi:10.5281/zenodo.16565.

David, C. H., D. R. Maidment, G.-Y. Niu, Z.-L. Yang, F. Habets, and V. Eijkhout (2011d), River network routing on the NHDPIus dataset,

J. Hydrometeorol., 12(5), 913-934.

David, C. H,, Z-L. Yang, and J. S. Famiglietti (2013a), Quantification of the upstream-to-downstream influence in the Muskingum method and
implications for speedup in parallel computations of river flow, Water Resour. Res., 49, 2783-2800, doi:10.1002/wrcr.20250.

David, C. H,, Z-L. Yang, and S. Hong (2013b), Regional-scale river flow modeling using off-the-shelf runoff products, thousands of mapped
rivers and hundreds of stream flow gauges, Environ. Modell. Software, 42, 116-132.

David, C. H., J. S. Famiglietti, Z-L. Yang, and V. Eijkhout (2015), Enhanced fixed-size parallel speedup with the Muskingum method using a
trans-boundary approach and a large sub-basins approximation, Water Resour. Res., 51, 7547-7571, doi:10.1002/2014WR016650.

Dongarra, J., et al. (1994), Special issue—MPI—A Message-Passing Interface standard, Int. J. Supercomput. Appl. High Perform. Comput., 8(3-4),
159-416.

Easterbrook, S. M. (2014), Open code for open science? Nat. Geosci., 7(11), 779-781.

Flipo, N., C. Monteil, M. Poulin, C. de Fouquet, and M. Krimissa (2012), Hybrid fitting of a hydrosystem model: Long-term insight into the
Beauce aquifer functioning (France), Water Resour. Res., 48, W05509, doi:10.1029/2011WR011092.

Hafliger, V., et al. (2015), Evaluation of regional-scale river depth simulations using various routing schemes within a hydrometeorological
modeling framework for the preparation of the SWOT mission, J. Hydrometeorol., 16(4), 1821-1842, doi:10.1175/JHM-D-14-0107.1.

Hey, T. (2010), Science has four legs, Commun. ACM, 53(12), doi:10.1145/1859204.1859206.

Hey, T., and M. C. Payne (2015), Open science decoded, Nat. Phys., 11(5), 367-369.

Hey, T, S. Tansley, and K. Tolle (2009), Jim Gray on eScience: A transformed scientific method, in The Fourth Paradigm. Data Intensive Scientific
Discovery, edited by T. Hey, S. Tansley, and K. Tolle, pp. xvii-xxxi, Microsoft Res, Redmond, Wash.

Holdren, J. P. (2013), Memorandum for the Heads of Executive Departments and Agencies. Increasing Access to the Results of Federally Funded
Scientific Research, Exec. Off. of the Pres., Off. of Sci. and Technol. Policy, Washington, D. C.

Horsburgh, J. S., M. M. Morsy, A. M. Castronova, J. L. Goodall, T. Gan, H. Yi, M. J. Stealey, and D. G. Tarboton (2015), Hydroshare: Sharing diverse
environmental data types and models as social objects with application to the hydrology domain, J. Am. Water Resour. Assoc., doi:10.1111/
1752-1688.12363.

Hurrell, J. W. (2013), NCAR in the 21st Century Building on a Distinguished Record of Achievement, Leadership and Service.

Hurrell, J. W,, et al. (2013), The community Earth system model: A framework for collaborative research, Bull. Am. Meteorol. Soc., 94(9),
1339-1360, doi:10.1175/BAMS-D-12-00121.1.

Ince, D. C, L. Hatton, and J. Graham-Cumming (2012), The case for open computer programs, Nature, 482(7386), 485-488, doi:10.1038/
nature10836.

Intergovernmental Panel on Climate Change (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group | to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 1-1535, Cambridge Univ. Press,
Cambridge, U. K.

Jones, M. T. (2008), GNU/Linux Application Programming, 2nd ed., Course Technol.,, Cengage Learn., Boston, Mass.

Kattge, J., S. Diaz, and C. Wirth (2014), Of carrots and sticks, Nat. Geosci., 7(11), 778-779.

Kratz, J. E, and C. Strasser (2015), Researcher perspectives on publication and peer review of data, PLoS One, 10(2), 0117619, doi:10.1371/
journal.pone.0117619.

Lin, P., Z-L. Yang, X. Cai, and C. H. David (2015), Development and evaluation of a physically-based lake level model for water resource
management: A case study for Lake Buchanan, Texas, J. Hydrol., 4(Part B), 661-674, doi:10.1016/j.ejrh.2015.08.005.

Lohmann, D., R. NolteHolube, and E. Raschke (1996), A large-scale horizontal routing model to be coupled to land surface parametrization
schemes, Tellus, Ser. A, 48(5), 708-721.

Lohmann, D., et al. (2004), Streamflow and water balance intercomparisons of four land surface models in the North American Land Data
Assimilation System project, J. Geophys. Res., 109, D07591, doi:10.1029/2003JD003517.

Maidment, D. R. (2015), A Conceptual Framework for the National Flood Interoperability Experiment, CUAHSI.

A DECADE OF RAPID 18

http://dx.doi.org/10.1038/467753a
http://dx.doi.org/10.1002/hyp.7252
http://dx.doi.org/10.1111/j.2153-3490.1967.tb01459.x
http://dx.doi.org/10.1111/j.2153-3490.1967.tb01459.x
http://dx.doi.org/10.5281/zenodo.27239
http://dx.doi.org/10.5281/zenodo.27241
http://dx.doi.org/10.5281/zenodo.27242
http://dx.doi.org/10.5281/zenodo.27243
http://dx.doi.org/10.5281/zenodo.24756
http://dx.doi.org/10.5281/zenodo.30228
http://dx.doi.org/10.5281/zenodo.16565
http://dx.doi.org/10.1002/wrcr.20250
http://dx.doi.org/10.1002/2014WR016650
http://dx.doi.org/10.1029/2011WR011092
http://dx.doi.org/10.1175/JHM-D-14-0107.1
http://dx.doi.org/10.1145/1859204.1859206
http://dx.doi.org/10.1111/1752-1688.12363
http://dx.doi.org/10.1111/1752-1688.12363
http://dx.doi.org/10.1175/BAMS-D-12-00121.1
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.1371/journal.pone.0117619
http://dx.doi.org/10.1371/journal.pone.0117619
http://dx.doi.org/10.1016/j.ejrh.2015.08.005
http://dx.doi.org/10.1029/2003JD003517
https://github.com/c-h-david/rapid/tree/20150906
https://github.com/c-h-david/rapid/tree/20150906

@AG U Earth and Space Science 10.1002/2015EA000142

Manabe, S. (1969), Climate and the ocean circulation: 1. The atmospheric circulation and the hydrology of the Earth's surface, Mon. Weather
Rev., 97(11), 739-774.

McCarthy, G. T. (1938), The unit hydrograph and flood routing.

Miller, J. R., G. L. Russell, and G. Caliri (1994), Continental-scale river flow in climate models, J. Clim., 7(6), 914-928, do0i:10.1175/1520-0442
(1994)007 <0914:CSRFIC>2.0.CO;2.

Munson, T., J. Sarich, S. Wild, S. Benson, and L. Curfman McInnes (2012), TAO User Manual (Revision 2.1), Math. and Comput. Sci. Div., Argonne
Natl. Lab, Argonne, lll. [Available at http://www.mcs.anl.gov/tao.]

Nature (2014), Code share, Nature, 514, 536.

Nature Geoscience (2014), Towards transparency, Nat. Geosci., 7(11), 777.

Oleson, K., et al. (2013), Technical Description of Version 4.5 of the Community Land Model (CLM), Tech. Note NCAR/TN-503+STR, NCAR,
Boulder, Colo.

Peckham, S.D., E. W. H. Hutton, and B. Norris (2013), A component-based approach to integrated modeling in the geosciences: The design of
CSDMS, Comput. Geosci., 53, 3-12.

Peng, R. D. (2011), Reproducible research in computational science, Science, 334(6060), 1226-1227, doi:10.1126/science.1213847.

Phillips, N. A. (1956), The general circulation of the atmosphere: A numerical experiment, Q. J. R. Meteorol. Soc., 82(352), 123-164, doi:10.1002/
qj.49708235202.

Rew, R, and G. Davis (1990), NetCDF—An interface for scientific-data access, IEEE Comput. Graphics Appl., 10(4), 76-82.

Rew, R, D. Heimbigner, and W. Fisher (2013), Announcing a transition to GitHub.

Rosen, L. E. (2005), Open Source Licensing: Software Freedom and Intellectual Property Law, 2nd ed., Prentice Hall, Upper Saddle River, N. J.

Saleh, F., N. Flipo, F. Habets, A. Ducharne, L. Oudin, P. Viennot, and E. Ledoux (2011), Modeling the impact of in-stream water level fluctua-
tions on stream-aquifer interactions at the regional scale, J. Hydrol., 400(3-4), 490-500.

Scientific Data (2014), More bang for your byte, Sci. Data, 1, 140010.

Siever, E.,, A. Weber, S. Figgins, R. Love, and A. Robbins (2005), Linux in a Nutshell, 5th ed., O'Reilly Media, Inc., Sebastopol, Calif.

Tavakoly, A. A, C. H. David, D. R. Maidment, Z-L. Yang, and X. Cai (2012), An upscaling process for large-scale vector-based river networks
using the NHDPIlus dataset.

Tavakoly, A. A, D. R. Maidment, J. McClelland, T. Whiteaker, Z.-L. Yang, C. Griffin, C. H. David, and L. Meyer (2015), A GIS framework for regional
modeling of Riverine nitrogen transport: Case study, San Antonio and Guadalupe basins, J. Am. Water Resour. Assoc., 52,1-15,doi:10.1111/
1752-1688.12355.

Thierion, C, et al. (2012), Assessing the water balance of the Upper Rhine Graben hydrosystem, J. Hydrol., 424-425, 68-83.

US Congress (1976), The copyright act of 1976.

Vardi, M. (2010a), Author’s response, Commun. ACM, 53(12), 6-7, doi:10.1145/1859204.1859206.

Vardi, M. (2010b), Science has only two legs, Commun. ACM, 53(9), 5, doi:10.1145/1810891.1810892.

Williamson, D. L. (1983), Description of NCAR Community Climate Model (CCMOB), NCAR Tech. Note, Natl. Cent. for Atmos. Res., Boulder, Colo.

Xia, Y., et al. (2012), Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System
project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow, J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

Yamazaki, D., S. Kanae, H. Kim, and T. Oki (2011), A physically based description of floodplain inundation dynamics in a global river routing
model, Water Resour. Res., 47, W04501, doi:10.1029/2010WR009726.

Zhao, T, B.S. Minsker, J. S. Lee, F. R. Salas, D. R. Maidment, and C. H. David (2014), Real-time water decision support services for droughts, Pap.
77, pp. 1-10.

A DECADE OF RAPID 19

http://dx.doi.org/10.1175/1520-0442(1994)0072.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1994)0072.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1994)0072.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1994)0072.0.CO;2
http://www.mcs.anl.gov/tao
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1002/qj.49708235202
http://dx.doi.org/10.1002/qj.49708235202
http://dx.doi.org/10.1111/1752-1688.12355
http://dx.doi.org/10.1111/1752-1688.12355
http://dx.doi.org/10.1145/1859204.1859206
http://dx.doi.org/10.1145/1810891.1810892
http://dx.doi.org/10.1029/2011JD016051
http://dx.doi.org/10.1029/2010WR009726

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (ECI-RGB.icc)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

