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Résumé

La méthode pararéelle pour les options américaines. Dans cette note la méthode pararéelle est introduite
pour l’algorithme LSMC de Longstaff-Schartz pour calculer des options américaines sur une machine parallèle.
Dans une section numérique les performances de la méthode sont données dans le cas scalaire à deux niveaux
d’abord puis multi-niveaux. Un théorème de convergence est aussi énoncé lorsque la méthode d’Euler explicite
est utilisée avec un pas de temps ∆t > δt le pas de temps de la grille fine. Une estimation est obtenue qui permet
d’analyser la méthode pararéelle multi-niveaux. Pour citer cet article : G. Pagès, O. Pironneau, G. Sall, C. R.
Acad. Sci. Paris, Ser. I ? ? ? (2016).

Abstract

The Parareal Algorithm for American Options. This note provides a description of the parareal method,
a numerical section to assess the performance of the method for American contracts in the scalar case computed
by LSMC and parallelized by parareal time decomposition with two or more levels. It contains also a convergence
proof for the two levels parareal Monte-Carlo method when the coarse grid solution is computed by an Euler
explicit scheme with time step ∆t > δt, the time step used for the Euler scheme at the fine grid level. Hence
the theorem provides a tool to analyze also the multilevel parareal method. To cite this article: G. Pagès, O.
Pironneau, G. Sall, C. R. Acad. Sci. Paris, Ser. I ??? (2016).
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1. Introduction

In quantitative finance risk assessment is computer intensive and expensive and there is a market for
cheaper and faster methods as seen from the large literature on parallelism and GPU implementation of
numerical methods for option pricing [1,6,7,10,11,13,14,15,20].

American contracts are not easy to compute on a parallel computer; even if a large number of them
have to be computed at once, an embarrassingly parallel problem, still the cost of the transfer of data
makes parallelism at the level of one contract attractive. But the task is not easy, especially when the
number of underlying assets is large [3,21], ruling out the PDE approach [2]. Furthermore the most popular
sequential algorithm is the Least Square Monte-Carlo (LSMC) method of Longstaff and Schwartz [18].
Exploiting parallelism by allocating blocks of Monte-Carlo paths to different processors is not convincingly
efficient [7] because the backward regression is essentially sequential and needs all Monte-Carlo paths in
the same processor.

In this note we investigate the parareal method, introduced in [17], for the task. An earlier study by Bal
and Maday [4] has paved the way but it is restricted to Stochastic Differential Equations (SDE) without
LSMC. Yet it contains a convergence proof for the two levels method in the restricted case where the
solution is computed exactly at the lowest level [4].

This note provides a description of the method, a numerical section to assess the performance of the
method for American contracts in the scalar case computed by LSMC and parallelized by parareal time
decomposition. It contains also a convergence proof for the two levels parareal Monte-Carlo method when
the coarse grid solution is computed by an Euler explicit scheme with time step ∆t > δt, the time step
used for the Euler scheme at the fine grid level. Hence the theorem provides a tool to analyze also the
multilevels parareal method.

Convergence of LSMC for American contracts has been proved by Clement, Lamberton and Protter [9];
it is not unreasonable to expect an extension of their estimates for the parareal method but this note
does not contain such a result, only a numerical assessment.

2. The Problem

With the usual notations [16] consider a probability space (Ω,A,P), and functions b, σ, f : [0, T ]×R 7→
R, uniformly Lipschitz continuous in x, t.

Let W = (Wt)t∈[0,T ] be a standard Brownian motion on (Ω,A,P). Let X = (Xt)t∈[0,T ], Xt ∈ R, be a
diffusion process, strong solution of the SDE

dXt = b (t,Xt) dt+ σ(t,Xt)dWt, X(0) = X0 ∈ R. (1)

A (vanilla) European contract on X is defined by its maturity T and its payoff E[f(T,XT )], typically
f(t, x) = er(T−t)(κ − x)+ in the case of a put of strike price κ and interest rate r. An American style
contract allows the owner to claim the payoff f(t,Xt) at any time ∈ [0, T ]. So a rational strategy to

Email addresses: gilles.pages@upmc.fr (Gilles Pagès), olivier.pironneau@upmc.fr (Olivier Pironneau),
guillaume.sall@upmc.fr (Guillaume Sall).
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maximize the average profit V at time t is to find the [t, T ]-valued F-stopping time solution of theSnell
envelope problem:

V(t,Xt) := E[e−r(τt−t)f(τt, Xτt)|Ft] = P-ess supτ∈T Ft E[e−r(τ−t)f(τ,Xτ )|Ft]

where F = (Ft)t∈(0,T ) is the (augmented) filtration of W and T Ft denotes the setof [t, T ]-valued F-
stopping times. Such an optimal stopping times exists (see [8]).We do not specify b, σ or f to stay in
a general Optimal Stopping framework. In practice American style options are replaced by so-called
Bermuda options where the exercise instants are restricted to a time grid tk = kh, k = 0 : K where
h = T

K (K ∈ N∗). Owing to the Markov property of {Xtk}Kk=0, the corresponding Snell envelope reads
(V (tk, Xtk))k=0:K and satisfies a Backward Dynamic Programming recursion on k:

V (T,XT ) = f(T,XT ), V (tk, Xtk) = max{f(tk, Xtk), e−rhE[V (tk+1, Xtk+1
)|Xtk ]}, k = K−1, . . . , 0. (2)

The optimal stopping times τk (from time tk) are given by a similar backward recursion:

τK = T, τk = tk if f(tk, Xtk) > e−rhE[V (tk+1, Xtk+1
)|Xtk ], τk = τk+1 otherwise, k = K − 1, . . . , 0 (3)

When (Xtk)k=0:K cannot be simulated at a reasonable computational cost, it can be approximated by
the Euler scheme with step h, denoted (X̄h

tk
)k=0:K , which is a simulable Markov chain recursively defined

by
X̄h
tk+1

= X̄h
tk

+ b(tk, X̄
h
tk

)h+ σ(tk, X̄
h
tk

)∆W, X̄h
0 = X0, k = 0, . . . ,K − 1, (4)

where ∆W := Wtk+1
−Wtk =

√
hZk so that {Zk}K−1

k=0 are i.i.d. N (0, 1)-distributed random variables.
From now on we switch to the Euler scheme, its Snell envelope, etc.

In LSMC for each k, the conditional expectation E[V (tk+1, X̄
h
tk+1

)|X̄h
tk

] as a function of x = X̄h
tk

, is

approximated by its projection on the linear space spanned by the monomials {xp}Pp=0 from the values

{e−rhV (tk+1, X̄
h,(m)
tk+1

)}Mm=1 generated by M Monte-Carlo paths using (4); then each path has its own
optimal stopping time at each k∈ {0, . . . ,K − 1} given by (for the stopping problem starting at k)

τ
(m)
K = T, τ

(m)
k = tk if f(tk, X̄

h,(m)
tk

) > e−rh
P∑
0

āpk (X̄
h,(m)
tk

)p, τ
(m)
k = τ

(m)
k+1 otherwise

where

{āok, . . . , āPk } = arg min
{(a0,...,aP )∈RP+1}

M∑
1

(
V
(
tk+1, X̄

h,(m)
tk+1

)
−

P∑
0

ap
(
X̄
h,(m)
tk

)p)2

.

Finally the price of the American contract is computed by

V (0, X0) ≈ max{f(0, X0),
1

M

M∑
m=1

e−rτ
(m)
1 f(τ

(m)
1 , X̄

h,(m)

τ
(m)
1

)}.

Note that
∑P

0 ā
p
k (X̄h

tk
)p is the best approximation of E[V (tk+1, X̄

h
tk+1

)|X̄h
tk

] in least square sense in the

vector subspace〈(X̄h
tk

)p, p = 0 : P 〉 of L2(P).

3. A Two Level Parareal Algorithm

3.1. The Parareal Method

Consider an ODE
ẋ = f(x, t), x(0) = x0, t ∈ [t0, tK ] = ∪K−1

0 [tk, tk+1].
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Assume that Gδ(xk, tk) is a high precision integrator which computes x at tk+1 from xk at tk. Assume
GM is a similar integrator but of low precision. The parareal algorithm is an iterative process with n =
0, . . . , N − 1 above a forward loop in time, k = 0, . . . ,K − 1

xn+1
k+1 = G∆(xn+1

k , tk) +Gδ(x
n
k , tk)−G∆(xnk , tk). (5)

So the coarse grid solution is corrected by the difference between the fine grid prediction computed from
the old value on that interval and the coarse grid old solution. In this analysis Gδ and GM are Euler
explicit schemes with time step δt < ∆t respectively.

The same method can be applied to an SDO in the context of the Monte-Carlo method provided the
random variables {Zmk,j}m=1:M

j:=1:J−1,k:=1,K defining ∆W in (4) are sampled once and for all in the initial
phase of the algorithm and reused for all n (see the initializaton step in algorithm 3.2 for the notations).

The iterative process (5) is applied on each sample path with G∆ a single step of (4) with h = ∆t and
Gδ the result of J steps of (4) with h = δt. An error analysis is available in [4] for the stochastic case in
the limit case δt = 0, i.e. when the fine integrator is the exact solution. For other problems with parareal
see [17] and [12]. In this note we also extend the result of [4] to the case 0 < δt < ∆t.
Theorem 3.1 Assume b, σ : [0, T ] × R continuous, C2 in x with spatial derivatives uniformly Lipschitz
in t ∈ [0, T ]. Then there exist C, independent of k,∆t and n, such that for k = 0 : K, n = 0 : N

‖X̂n
tk
− X̄δ

tk
‖L2(P) ≤ (C∆t)

n

√√√√√
k
n

‖X̄∆
tk
− X̄δ

tk
‖L2(P) ≤ (C∆t)

n

√√√√√
k
n

√∆t. (6)

Furthermore X̂n
tk

= X̄δ
tk

for all n ≥ k.
Corollary 3.2 For a fixed δt and n parareal iterations, the final and uniform errors satisfy

‖X̂n
T − X̄δ

T ‖L2(P) ≤ (C∆t)
n
2

√
∆t

n!
and

∥∥∥ max
k=0:K

|X̂n
tk
− X̄δ

tk
|
∥∥∥
L2(P)

≤ (C∆t)
n
2√

(n+ 1)!
(7)

respectively where C only depends on the Lipschitz constants and norms of b, b′, b′′, σ, σ′, σ′′ and on T.

This estimate shows that when ∆t is smaller than C the method converges exponentially in n and
geometrically in ∆t.
Remark 1 The estimate (3.1) indicates that a recursive use of parareal with each sub-interval redivided
into J = O(∆t−1) smaller intervals, the so-called multilevels parareal, is better than many iterations at the
second level only. Indeed, as the error decreases proportionally to (∆t)

n
2 at each level and as ∆t becomes

∆t2 at the next grid level, the error after L levels is decreased by (∆t)
nL
2 .

3.2. Algorithm

We denote by Vk a realization of V (tk, Xtk), k = 0 : K = T
∆t ; consider a refinement of each interval

(tk, ttk+1
) by a uniform sub-partition of time step δt = ∆t

J , for some integer J > 1.Then

[tk, tk+1] = ∪J−1
j=0 [tk,j , tk,j+1] with tk,j+1 = tk,j + δt, j = 0, . . . , J − 1, so that tk = tk,0 = tk−1,J .

Denote by Pf the projection of f on the monomials 1, x, . . . , xP .
Let n = 0, . . . , N − 1 be the iteration index of the parareal algorithm.

Initialization Generate {Zmk,j}m=1:M
k=1:K,j=1:J for the M paths of the Monte-Carlo method with the coarse

and fine mesh.
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Compute recursively forward all Monte-Carlo paths {X̂0
tk

(ωm)}Mm=1 from X̂0
0 = X0 by using (4) with

h = ∆t and then recursively backward V̂ 0
k = max{f(tk, X̂

0
tk

), e−r∆tPE[V̂ 0
k+1|X̂0

tk
]}, k = K − 1 : 0

from V̂ 0
K(ωm) = e−rT f(T, X̂0

T (ωm)), m = 1 : M .

for n=0:N-1

for all M paths,

for k=0:K-1 (forward loop):

(i) Compute the fine grid solution {X̃δ,n
tk,j
}Jj=0 of (4) with refined step h = δt = ∆t

J , started at

tk,0 = tk from X̂n
tk

.

(ii) Compute the coarse grid solution at tk+1: X̄M
tk+1

= X̂n+1
tk

+ b(tk, X̂
n+1
tk

)∆t+ σ(tk, X̂
n+1
tk

)∆W .

(iii) Set X̂n+1
tk+1

= X̄M
tk+1

+ X̃δ,n
tk,J
− X̂n

tk+1
.

end k-loop

end M-loop.

initialization : Compute V̄ n+1
K = V̂ n+1

K = f(T, X̂n+1
T )

for k=K-1,. . . ,0 (backward loop):

(i) On each (tk, tk+1), from Ṽ δ,nk,J = PE(V̂ nk+1 | X̃
δ,n
k,J), compute by a backward loop in j

Ṽ δ,nk,j = max
{
f(tk,j , X̃

δ,n
tk,j

), e−rδtPE[Ṽ δ,nk,j+1|X̃
δ,n
tk,j

]
}
, j = J − 1 : 0.

(ii) Compute V̄ n+1
k = max

{
f(tk, X̂

n+1
tk

), e−r∆tPE[V̄k+1|X̂n+1
tk

]
}

.

(iii) Set V̂ n+1
k = V̄ n+1

k + Ṽ δ,nk,0 − V̂ nk .

end backward k-loop

end n-loop

Remark 2 Note that all fine grid computations are local and can be allocated to a separate processor for
each k, for parallelization;
The following partial results can be established for algorithm 3.2bis obtained from 3.2 by changing the
first step into Ṽ δ,nk,J = PE(V̄ nk+1 | X̃

δ,n
k,J) and the last step into: V̂ n+1

k = V̄ n+1
k + Ṽ δ,nk,0 − V̄ nk .

Proposition 3.3 (a) Let

Ṽ ∆,n
tk

= P-ess supτ∈T Ftk
E[e−r(τ−tk)f(τ, X̂n

τ )|Ftk ], V̄ ∆,δ
tk

= P-ess supτ∈T Ftk
E[e−r(τ−tk)f(τ, X̄δ

τ )|Ftk ]

where T Ftk denotes the set of {tk, tk+1, . . . , tK}-valued F-stopping times. Then, for some constant C,∥∥∥ max
k=0:K

∣∣Ṽ ∆,n
tk
− V̄ ∆,δ

tk

∣∣∥∥∥
L2(P)

≤ [f ]Lip
(C∆t)

n
2√

(n+ 1)!
.

(Note that (V̄ ∆,δ
tk

)k=0:K is but the coarse Snell envelope of the refined Euler scheme). At a fixed time tk
we have the better estimate

∥∥Ṽ ∆,n
tk
− V̄ ∆,δ

tk

∥∥
2
≤ [f ]Lip(C∆t)n+ 1

2

√√√√√
K + 1

n+ 1

−
 k

n+ 1

. (8)

(b) Let (V̄ δtk)k=0,K denote the “fine” Snell envelope of the refined Euler scheme at times tk defined by

Ṽ δtk = P-ess supτ∈T Ftk
E[e−r(τ−tk)f(τ, X̄δ

τ )|Ftk ]

Then, for some constant C ′, ∥∥Ṽ δ,ntk,0
− V̄ δtk

∥∥
L2(P)

≤ C
√

∆t.
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Remark 3 A result similar to (a) can be obtained for (V̄ ntk)k=0:K i.e. when Ftk is replaced by X̂n
tk

in the

expectation defining V ntk at the cost of losing a
√

∆t in the error estimate. Both quantities Ṽ ∆,n
tk

and V̄ ntk
do not coincide as X̂n is not Markovian (it also depends on X̂n−1).

4. Numerical Tests

We have chosen an underlying asset which satisfies the Black-Scholes SDE, i.e. b = rXt and σ = σ0Xt

The payoff is f(t, x) = er(T−t)(κ − x)+ with X0 = 36, κ = 40, σ0 = 0.2, r = 0.05, b = r, T = 1,M =
100.000 as in Longstaff-Schwartz [18]. The interpolation used in the LSMC is on the basis {1 x x2}, i.e.
P = 2. The American payoff is then 4.478 at an early exercise τ = 0.634.

4.1. Convergence of the Parareal Algorithm

We have chosen a fine grid with δt = T/32 . The free parameters are ∆t which governs the number of
points on the coarse grid and n the number of parareal algorithm. The error between the American payoff
computed on the fine grid by LSMC and the same computed by the parareal algorithm is displayed on
Table 1 for both algorithms 3.2 and 3.2bis.

K J ∆t n = 1 n = 2 n = 3 n = 4

2 16 0.666667 0.60338 0.152339 0.0171122 0.000833293

4 8 0.4 0.237451 0.0437726 0.00217885 0.000725382

8 4 0.222222 0.0854814 0.0156243 0.000735309 0.000515332

16 2 0.117647 0.0257407 0.00120513 0.000439038 0.000262921

2 16 0.666667 0.5912463 0.1434691 0.0418341 0.0414722

4 8 0.4 0.2245711 0.0743709 0.0225051 0.0224303

8 4 0.222222 0.0740923 0.0205441 0.0072178 0.0072066

16 2 0.117647 0.0194701 0.0021758 0.0021592 0.0021509

Table 1

Absolute error from the American payoff computed on the fine grid by a sequential LSMC standard algorithm and the same
computed using the parareal iterative algorithms 3.2 and 3.2bis. The coarse grid has K intervals; the coarse time step is

∆t/K; the fine grid has a fixed number of points hence each interval (tk, ttk+1 ) it has J sub-intervals. The top 4 lines of
numbers corresponds to Algorithm 3.2 while the last 4 lines correspond to Algorithm 3.2bis for which a partial convergence
estimate can be obtained but which does not work as well numerically.

The same information about convergence is now displayed in the two graphs on figure 1 for the errors
versus ∆t and the errors versus n.

4.2. Multilevels Parareal Algorithm

The previous construction being recursive one can again apply the two-levels parareal algorithm to
LSMC on each interval [tk, ttk+1

]. The problem of finding the optimal strategy for parallelism and com-
puting time is complex, because of there are so many parameters; in what follows the number of levels
is L = 4; furthermore, when an interval with J + 1 points is divided into sub-intervals each is endowed
with a partition using J + 1 points as well. So if the coarse grid has K intervals, the 4th grid has K4

6
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Figure 1. Errors on the payoff versus ∆t on the left for several values of n and versus n on the right for several values of

∆t. Both graphs are for Algorithm 3.2 in log-log scales and indicate a general behavior of the error ε not incompatible with
(3.1). The difficulty is that the method converges very fast making a numerical asymptotic error analysis hard.

intervals. The results are compared with the reference value of Longstaff-Schwartz, 4.478, and shown on
table 2 and figure 2.

The number of parareal iterations is 4 but the error is displayed at each n. We have also carried out

K K4 n = 1 n = 2 n = 3 n = 4

2 16 0.353319 0.118118 0.0477764 0.0276106

3 81 0.208997 0.0390674 0.0225218 0.0186619

4 256 0.141692 0.0259727 0.0192504 0.0136437

5 625 0.105196 0.0220218 0.0179706 0.0129702

Table 2

Absolute error between the computed payoff with the multilevels parareal method and the reference value of Longstaff-

Schwartz. The number of levels is L=4, each level is subdivided into K intervals; K4 is the number of intervals at the
deepest level.

some tests with sub-partitions using J 6= K. Thus each level has its own number of points per intervals,
Jl. These errors are also shown on Figure 2 for n = 2. It seems to be O(K4) for K small and O(K2) for K

Time-step Absolute-error

J1 J2 J3 J4 Total n = 1 n = 2 n = 3 n = 4

6 5 4 3 360 0.108593 0.0305688 0.0202016 0.0142071

3 4 5 6 360 0.35365 0.0316707 0.0167488 0.0135151

20 2 2 2 160 0.0231221 0.0163731 0.0155624 0.013314

2 20 2 2 160 0.354477 0.0835047 0.0231243 0.0121775

2 2 20 2 160 0.351854 0.115285 0.015826 0.0137373

2 2 2 20 160 0.355166 0.119577 0.0444797 0.0110232

Table 3
Absolute error between the computed payoff with the multilevel parareal method and the reference value of

Longstaff&Schwartz. There are L = 4 levels; at level l − 1 to obtain level l each interval is divided into Jl intervals.

The errors are given versus the number of parareal iterations n = 1, 2, 3, 4. Note that all subdivisions give more or less the
same precision; computationally and for parallelism the last one is the best.

bigger. The method was implemented in parallel; each interval is allocated to a processor, at each level in
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Figure 2. Comparison between a standard LSMC solution and the parareal solution for the same number of time intervals

at the finest level. The 4 points have respectively 1,2,3,4 levels; the first data point has one level and 4 intervals, the second
has 2 levels and 16 intervals, the third 3 levels and 64 intervals, the fourth 4 levels and 256 intervals . The total number

of time steps is on the horizontal axis, in log scale and the error at n = 2 is on the vertical axis in log scale as well.

a round-robin order. Almost perfect parallelism is obtained in our tests on a machine with 32 processors,
as shown on Figure 3.

 0
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Figure 3. Speed-up versus the number of processors, i.e. the parareal CPU time on a parallel machine divided by the parareal
CPU time on the same machine but running on one processor. There are two levels only; the parameters are K = 1, 2.., 32,

n = 2 and J = 100 so as to keep each processor fully busy.
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sér. I Math., 332:661–668, 2000.

[18] F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: a simple least squares approach. Review

of Financial Studies, 14:113–148, 2001.

[19] G. Pagès. Introduction to numerical probability for finance. 2016. Available at http://www.proba.jussieu.fr/dw/lib/
exe/fetch.php?media=users:pages:probnum_gilp_pf16.pdf, 354p.

[20] G. Pagès and B. Wilbertz. GPGPUs in computational finance: massive parallel computing for American style options.

Concurrency and Computation: Practice and Experience, 24(18):837–848, 2012.

[21] J. Wan, K. Lai, A. Kolkiewicz, and K. Tan. A parallel quasi-Monte Carlo approach to pricing American options on

multiple assets. International Journal of High Performance Computing and Networking, 4:321–330, 2006.

9

http://www.proba.jussieu.fr/dw/lib/exe/fetch.php?media=users:pages:probnum_gilp_pf16.pdf
http://www.proba.jussieu.fr/dw/lib/exe/fetch.php?media=users:pages:probnum_gilp_pf16.pdf


10



5. Proofs for the reviewers. Will not be part of the Compte-Rendu.

5.1. Proof of Theorem 3.1 and Corollary 3.2

For the sake of simplicity we detail the proof in the homogeneous case b(t, x) ≡ b(x) and σ(t, x) = σ(x)
and we assume that b and σ are bounded. Let (Xt)t∈[0,T ] be the solution of the diffusion process

dXt = b(Xt)dt+ σ(Xt)dWt, X0∈ R. (9)

We assume that b and σ are uniformly Lipschitz in x. The dependency on t of b and σ has been dropped
for clarity. Consider the Euler scheme with a coarse time step ∆t = T

K and a fine time step δt = ∆t
J = T

KJ

X̄M
tk+1

= X̄M
tk

+ ∆t b(X̄M
tk

) + σ(X̄M
tk

)(Wtk+1
−Wtk), k = 0, . . . ,K, tk = k∆t

X̄δ
tk,j+1

= X̄δ
tk,j

+ δt b(X̄δ
tk,j

) + σ(X̄δ
tk,j

)(Wtk,j+1
−Wtk,j ), j = 0, . . . , J, ttk,j = tk + jδt. (10)

We associate to these their continuous counterpart:

dX̄M
t = b(X̄M

t
δ
)dt+ σ(X̄M

tM
)dWt, tM = b t

∆t
c∆t,

dX̄δ
t = b(X̄δ

t
δ
)dt+ σ(X̄δ

t
δ
)dWt, tδ = b t

δt
cδt. (11)

The parareal scheme is: X̂0
tk

= X̄M
tk
, k = 1, . . . ,K,

X̂n+1
tk+1

=GM

(
X̂n+1
tk

,
1√
∆t

(Wtk+1
−Wtk)

)
+G

(J)
δ

(
X̂n
tk
, { 1√

δt
(Wtk,j+1

−Wtk,j )}
J−1
j=0

)
−GM

(
X̂tk ,

1√
∆t

(Wtk+1
−Wtk)

)
(12)

where
GM(x, z) = ∆tb(x) + σ(x)

√
∆t z and Gδ(x, z) = δtb(x) + σ(x)

√
δt z

We denote by Zk+1 = {Zk,j}Jj=1 a J-dimensional white noise with an N (0, IJ) distribution. As a conse-

quence, setting Zk,j = 1√
δt

(Wtk,j+1
−Wtk,j ) and Zk+1 =

∑J
j=1 Zk,j = Wtk+1

−Wtk , we have

X̂n+1
tk+1
− X̄δ

tk+1
= GM(X̂n+1

tk
, Zk+1)−GM(X̄δ

tk
, Zk+1) +G

(J)
δ (X̂n

tk
,Zk+1)−G(J)

δ (X̄δ
tk
,Zk+1)

= GM(X̂n+1
tk

, Zk+1)−GM(X̄δ
tk
, Zk+1) + φM,δ(X̂

n
tk
,Zk+1)− φM,δ(X̄δ

tk
,Zk+1) (13)

with

φM,δ(x,Zk+1) = G
(J)
δ (x,Zk+1)−GM(x, Zk+1) = X̄δ,x

∆t − X̄
M,x
∆t (14)

where X̄δ,x
t denotes the solution of the δ-Euler scheme at t starting from x at 0, and similarly with X̄M.

Our aim is to establish an induction propeerty for
∥∥X̂n+1

tk+1
− X̄δ

tk+1

∥∥2

2
. To thsi end we first deal with teh

last two terms of (13). Note that

φM,δ(x,Zk+1)− φM,δ(y,Zk+1) = X̄δ,x
∆t − X̄

M,x
∆t − (X̄δ,y

∆t − X̄
M,y
∆t )

= −
(
b(x)∆t+ σ(x)∆W

)
+

∫ ∆t

0

b(X̄δ,x
sδ

)ds+

∫ ∆t

0

σ(X̄δ,x
sδ

)dWs

+
(
b(y)∆t+ σ(y)∆W

)
−
∫ ∆t

0

b(X̄δ,y
s
δ

)ds−
∫ ∆t

0

σ(X̄δ,y
s
δ

)dWs

11



= −
∫ ∆t

0

(
b(x)− b(y)−

(
b(X̄δ,x

sδ
− b(X̄δ,y

sδ
)
))
ds

−
∫ ∆t

0

(
σ(x)− σ(y)−

(
σ(X̄δ,x

s
δ
− σ(X̄δ,y

s
δ

)
))
dWs (15)

The first integral will be called A. The last integral B can be bounded as follows

E[B2] =

∫ ∆t

0

E
[(
σ(x)− σ(y)−

(
σ(X̄δ,x

s
δ
− σ(X̄δ,y

s
δ

)
))2]

ds (16)

Applying Ito’s formula to X̄δ,x yields for any s ∈ [0,∆t]

σ(X̄δ,x
s ) = σ(x) +

∫ s

0

σ′(X̄δ,x
u )σ(X̄δ,x

uδ
)dWu

+

∫ s

0

(
σ′(X̄δ,x

u )b(Xδ,x
uδ

) +
1

2
σ”(Xδ,x

u )σ2(Xδ,x
uδ

)
)
du (17)

The same holds with y instead of x and so

σ(X̄δ,x
s )− σ(X̄δ,y

s )− (σ(x)− σ(y)) =

∫ s

0

Sx,yu du+

∫ s

0

Hx,y
u dWu (18)

with

Sx,yu =
1

2

[
σ′′(Xδ,x

u )σ2(Xδ,x
u
δ

)− σ′′(Xδ,y
u )σ2(Xδ,y

u
δ

)
]

+ σ′(X̄δ,x
u )b(Xδ,x

u
δ

)− σ′(X̄δ,y
u )b(Xδ,y

u
δ

)

Hx,y
u = σ′(Xδ,x

u )σ(Xδ,x
uδ

)− σ′(Xδ,y
u )σ(Xδ,y

uδ
). (19)

Hence, denoting ‖f‖2 := ‖f‖L2(P) and using general Minkowski and Doob inequalities, we get

‖σ(X̄δ,x
s )− σ(X̄δ,y

s )− (σ(x)− σ(y))‖2 ≤
∫ s

0

‖Sx,yu ‖2du+
∥∥∥∫ s

0

Hx,y
u dWu

∥∥∥
2

≤
∫ s

0

‖Sx,yu ‖2du+
[
E[

∫ s

0

(Hx,y
u )2du]

] 1
2 ≤

∫ s

0

‖Sx,yu ‖2du+
[ ∫ s

0

(‖Hx,y
u )‖22du]

] 1
2

. (20)

Now σ′ bounded and σ Lipschitz leads to

‖Hx,y
u ‖2 ≤ ‖σ′‖∞[σ]Lip‖X̄δ,x

uδ
− X̄δ,y

uδ
‖2 + ‖σ‖∞[σ′]Lip)‖X̄δ,x

u − X̄δ,y
u ‖2. (21)

A classical result (see e.g. [19]) on the Euler scheme says that for all v ∈ [0, T ], uniformly in δ,

‖X̄δ,x
v − X̄δ,y

v ‖2 ≤ sup
t∈[0,T ]

‖X̄δ,x
t − X̄δ,y

t ‖2 ≤ Cb,σ|x− y|. (22)

Consequently

sup
u∈[0,T ]

‖Hx,y
u ‖2 ≤ Cb,σ,σ′ |x− y|. (23)

As for Sx,yu , assuming σ′′ Lipschitz, a similar computation leads to

sup
u∈[0,T ]

‖Sx,yu ‖2 ≤ Cb,σ,σ′,σ′′ |x− y|. (24)

Note by the way that all these terms vanish if σ is constant.
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Plugging these bounds in (20) leads to

‖σ(X̄δ,x
s )−σ(X̄δ,y

s )− (σ(x)− σ(y))‖2
≤ max{Cb,σ,σ′ , Cb,σ,σ′,σ′′}(

√
s+ s)|x− y] ≤ C̃

√
s|x− y| (25)

which implies in turn,

E[B]2 ≤
∫ ∆t

0

C̃2s|x− y|2ds =
1

2
C̃2(∆t)2|x− y|. (26)

The term A in (15) can be treated likewise:

b(X̄δ,x
s )− b(x) =

∫ s

0

b′(X̄δ,x
u )σ(X̄δ,x

u
δ

)dWu +

∫ s

0

[
b′(X̄δ,x

u )b(X̄δ,x
u
δ

) +
1

2
b′′((X̄δ,x

u ))σ2((X̄δ,x
u
δ

)
]
du. (27)

In the end, provided b′′ is Lipschitz continuous,

E[A2]≤ ∆t

∫ ∆t

0

(E[b(x)− b(y)− [b(X̄δ,x
uδ

)− b(X̄δ,y
uδ

)])2du

≤ ∆t
1

2
C̃b,b′,b′′,σ(∆t)2|x− y|2 =

1

2
C̃b,b′,b′′,σ(∆t)3|x− y|2. (28)

So we have proved that

‖φ∆,δ(x,Zk+1)− φ∆,δ(y,Zk+1)‖22 ≤ C(∆t)α|x− y|2 with α = 2 or 3 if σ constant (29)

Let us bound the two other terms in (13)

‖G∆(x, Z)−G∆(y, Z)‖22 ≤
(

1 + ∆t([b]Lip +
1

2
[σ]2Lip) +

∆t2

2
[b]2Lip

)
|x− y|2

≤
(
1 + C ′b,σ∆t

)2|x− y|2. (30)

As one must raise (13) to the square, a cross term appears,

C := E
[(
G∆(X̂n+1

tk
, Zk+1)−G∆(X̄δ

tk
, Zk+1)

)(
φM,δ(X̂

n
tk
,Zk+1)− φM,δ(X̄δ

tk
,Zk+1)

)]
= E

[(
(x− y) + ∆t(b(x)− b(y)) + (σ(x)− σ(y))∆W

)(
A′ +B′

)]
(31)

where A′ and B′ are as in the last two integrals in (15) except that x is changed to x′.
Note that E[B′] = 0 because it is a stochastic integral, hence

C = [(x− y) + ∆t(b(x)− b(y))]E[A′] + (σ(x)− σ(y))E[(A′ +B′)∆W ].

Now, using Schwartz’ inequality,

|E[C]| ≤ (1 + ∆t[b]Lip)‖A′‖2|x− y|+ [σ]Lip|x− y|‖∆W‖2‖A′ +B′‖2
≤ (1 + ∆t[b]Lip)‖A′‖2|x− y|+ [σ]Lip|x− y|

√
∆t
(
‖A′‖2 + ‖B′‖2

)
. (32)

We recall our previous bounds on A and B,

‖B′‖2 ≤ C̃∆t|x′ − y|, ‖A′‖2 ≤ C̃(∆t)
3
2 |x′ − y|? (33)

Consequently, with 2C̄ = C̃(1 + ∆t[b]Lip + [σ]Lip),
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|E[C]| ≤ 2C̄(∆t)
3
2 |x′ − y||x− y|. (34)

We are now in a position to patch the pieces together; C denotes a generic constant:

E
[(
G∆(X̂n+1

tk
, Zk+1)−G∆(X̄δ

tk
, Zk+1) + φM,δ(X̂

n
tk
,Zk+1)− φM,δ(X̄δ

tk
,Zk+1)

)2]
= E

[(
G∆(X̂n+1

tk
, Zk+1)−G∆(X̄δ

tk
, Zk+1)

)2]
+ E

[(
φM,δ(X̂

n
tk
,Zk+1)− φM,δ(X̄δ

tk
,Zk+1)

)2]
+2E

[(
G∆(X̂n+1

tk
, Zk+1)−G∆(X̄δ

tk
, Zk+1)

)(
φM,δ(X̂

n
tk
,Zk+1)− φM,δ(X̄δ

tk
,Zk+1)

)]
≤ (1 + C∆t)2|x− y|2 + C∆t2|x′ − y|2 + 2C(∆t)

3
2 |x− y||x′ − y|

≤ (1 + C∆t)2|x− y|2 + C∆t2|x′ − y|2, (35)

since 2(∆t)
3
2 |x− y||x′ − y| ≤ ∆t|x− y|2 + ∆t2|x′ − y|2.

As x = X̂n+1
tk

, x′ = X̂n
tk
, y = X̄δ

tk
are independant of Zk+1, integrating (35) with respect to the

distribution of the triplet P(X̂n+1
tk

,X̂ntk
,X̄δtk

)(dx, dx
′, dy) yields by Fubini’s theorem

‖X̂n+1
tk+1
− X̄δ

tk+1
‖22 ≤ (1 + C ′∆t)‖X̂n+1

tk
− X̄δ

tk
‖22 + C ′∆t2‖X̂n

tk
− X̄δ

tk
‖22. (36)

Let εnk := ‖X̂n
tk
− X̄δ

tk
‖22. Then,

εn+1
k+1 ≤ (1 + C ′∆t)εn+1

k + C ′∆t2εnk . (37)

We will now show that
Lemma 5.1 The recurrence (37) together with εn0 = 0 implies, for some constant C,

εnk ≤ CC ′
n

k
n

 (∆t)2n+1, k = 0, . . . ,K, n = 0, . . . , N (38)

and also εnk = 0, ∀n ≥ k.

Proof. Introduce ε̃nk = (1 + C ′∆t)n−kC ′−n(∆t)−2nεnk It is easy to see that it satisfies

ε̃n+1
k+1 ≤ ε̃

n+1
k + ε̃nk . (39)

Notice now that by the convergence estimates for the Euler scheme,

ε̃0k ≤ ε0k = ‖X̂M
tk
− X̄δ

tk
‖2 ≤ ‖X̂M

tk
−Xtk‖2 + ‖Xtk − X̄δ

tk
‖2

≤ (
√

∆t+
√
δt)2(1 + |X0|)2Cb,σ,T ≤ C1∆t. (40)

It implies in turn that ε̃nk = 0, ∀n ≥ k. Indeed by (39)

ε̃n+1
k+1 ≤ ε̃

n+1
k ≤ . . . ≤ ε̃n+1

0 = 0.

Finally if the lemma holds for k, n it holds for k + 1, n+ 1 because by (37) and (40)

ε̃n+1
k+1 ≤ C1∆t

[ k

n+ 1

+

k
n

] = C1∆t

k + 1

n+ 1

 . (41)
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5.2. Proof of Proposition 3.3

For every k∈ {0, . . . ,K},

|Ṽ ∆,n
tk
− V̄ ∆,δ

tk
|=
∣∣∣P-ess supτ∈T Ftk

E[e−r(τ−tk)f(τ, X̂n
τ )|Ftk ]− P-ess supτ∈T Ftk

E[e−r(τ−tk)f(τ, X̄δ
τ )|Ftk ]

∣∣∣
≤ P-ess supτ∈T Ftk

∣∣∣E[e−r(τ−tk)f(τ, X̂n
τ )− e−r(τ−tk)f(τ, X̄δ

τ )|Ftk
]∣∣∣

≤ E
[
P-ess supτ∈T Ftk

∣∣∣f(τ, X̂n
τ )− f(τ, X̄δ

τ )
∣∣∣ ∣∣∣Ftk]

≤ [f ]LipE
[

max
l=k,...,K

∣∣∣X̂n
tl
− X̄δ

tl

∣∣∣ ∣∣∣Ftk] . (42)

Consequently, owing to Doob’s inequality∥∥∥ max
k=0:K

∣∣Ṽ ∆,n
tk
− V̄ ∆,δ

tk

∣∣∥∥∥2

2
≤ 4[f ]2Lip

∥∥∥ max
l=0:K

∣∣X̂n
tl
− X̄δ

tl

∣∣∥∥∥2

2
≤ 4[f ]2Lip

K∑
l=0

∥∥X̂n
tl
− X̄δ

tl

∥∥2

2

≤ 4[f ]2Lip(C∆t)2n+1
K∑
l=n

 l

n


= 4[f ]2Lip(C∆t)2n+1

K + 1

n+ 1

 ≤ [2[f ]Lip
(C ′∆t)

n
2√

(n+ 1)!

]2

(43)

where we used in the second line that Xn
tl

= X̄δ
tl

for l ≤ n− 1.

If we are only interested in
∥∥Ṽ ∆,n

tk
− V̄ ∆,δ

tk

∥∥2

2
, we obtain starting again from (42)

∥∥Ṽ ∆,n
tk
− V̄ ∆,δ

tk

∥∥2

2
≤ [f ]2Lip

K∑
l=k∨n

∥∥X̂n
tl
− X̄δ

tl

∥∥2

2
≤ [f ]2Lip(C∆t)2n+1

K∑
l=k∨n

 l

n


= [f ]2Lip(C∆t)2n+1

K + 1

n+ 1

−
 k

n+ 1

 (44)

with the usual convention on the binomial coefficient when k ≤ n.

5.3. Correcting Markovian deficiency

In fact the LSMC method approximates by regression E
(
f(X̂n

tk+1
)|X̂n

tk

)
, not E

(
f(X̂n

tk+1
)|Ftk

)
, since

(X̂tk)k=0:K is not a Markov chain as emphasized by its very definition. The quantity of interest is in fat
Ṽ regtk

satisfying the Backward Dynamical Programming formula:

Ṽ regtk
= f(T, X̂n

T ), Ṽ regtk
= max

(
f(tk, X̂

n
tk

),E
(
Ṽ regtk

|X̂n
tk

))
, k = 0 . . . ,K − 1.

What is the error induced by considering Ṽ reg rather than Ṽ ?
Proposition 5.2 Let (Ṽ regtk

)k=0:K be defined as above. Then there exists a real constant C > 0 only
depending on b, σ, [f ]Lip and T such that

max
k=0:K

∥∥Ṽ regtk
− Ṽtk

∥∥
2
≤ Cn−1 (∆t)

n−1
2√

(n+ 1)!
.
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Proof. Starting from both backward definitions we get

|Ṽ regtk
− Ṽtk | ≤

∣∣∣E(Ṽ regtk+1

∣∣X̂n
tk

)
− E

(
Ṽtk+1

∣∣Ftk)∣∣∣.
Now, using that X̂n

tk
is Ftk -measurable, one has

E
(
Ṽ regtk+1

∣∣X̂n
tk

)
− E

(
Ṽtk+1

∣∣Ftk) = E
(
Ṽ regtk+1

− Ṽtk+1

∣∣X̂n
tk

) ⊥
+ E

(
E
(
Ṽtk+1

∣∣Ftk)∣∣X̂n
tk

))
− E

(
Ṽtk+1

∣∣Ftk)
where

⊥
+ denotes orthogonality in L2(P). Consequently, also using that conditional expectations an L2-

contraction ∥∥Ṽ regtk
− Ṽtk

∥∥2

2
≤
∥∥Ṽ regtk+1

− Ṽtk+1

∥∥2

2
+
∥∥E(E(Ṽtk+1

∣∣Ftk)∣∣X̂n
tk

))
− E

(
Ṽtk+1

∣∣Ftk)∥∥2

2
.

Conditional expectation being an orthogonal projector, for every Borel function ϕ : R → R such that
ϕ(X̂n

tk
)∈ L2(P) ∥∥E(E(Ṽtk+1

∣∣Ftk)∣∣X̂n
tk

))
− E

(
Ṽtk+1

∣∣Ftk)∥∥2

2
≤
∥∥ϕ(X̂n

tk
)− E

(
Ṽtk+1

∣∣Ftk)∥∥2

2
.

Now, let us consider the Snell envelope of the payoff
(
f(tk,j , X̄

δ
k,j)
)
k,j

associated to the global refined

Euler scheme with step δt, denoted (V̄ δtk,j )k,j .∥∥ϕ(X̂n
tk

)− E
(
Ṽtk+1

∣∣Ftk)∥∥2

2
≤
(∥∥Ṽtk+1

− V̄ δtk+1

∥∥
2

+
∥∥ϕ(X̂n

tk
)− E

(
V̄ δtk+1

∣∣Ftk)∥∥2

)2

.

As the Euler scheme is a Markov chain, we now that V̄ δtk,j = vk,j(X̄
δ
tk,j

) (with vK,J = f(T, .) and

vk,J = vk+1,0) and, see [5], the propagation of Lipschitz continuity holds so that [vk,j ]Lip ≤ C = Cb,σ,f,T ,
k = 0, . . . ,K, j = 0, . . . , J . Consequently

E
(
Ṽtk+1

∣∣Ftk) = E
(
vtk+1,0

(X̄δ
tk+1

)
∣∣Ftk) = E

(
vtk+1,0

◦G(J)
δ (X̄δ

tk
,Zk+1)

∣∣X̄δ
tk

)
= wk(X̄δ

tk
)

so that [wk]Lip ≤ (1+C ′δt)J [vk+1,0]Lip ≤ (1+C ′δt)C. Setting ϕ = wk finally yields, owing to Theorem 3.1
and Equation (8) in the proof of Corollary 3.2, we get the recursion

∥∥Ṽ reg
tk
− Ṽtk

∥∥2
2
≤
∥∥Ṽ reg

tk+1
− Ṽtk+1

∥∥2
2

+ 2

[
[f ]2Lip(C∆t)2n+1

[(
K + 1

n+ 1

)
−

(
k

n+ 1

)]
+ [wk]2LipC

2n

(
k

n

)
(∆t)2n+1

]

≤
∥∥Ṽ reg

tk+1
− Ṽtk+1

∥∥2
2

+ C′ (C∆t)2n+1

[(
K + 1

n+ 1

)
−

(
k

n+ 1

)
+

(
k

n

)]

≤
∥∥Ṽ reg

tk+1
− Ṽtk+1

∥∥2
2

+ C′ (C∆t)2n+1

(
K + 1

n+ 1

)
.

Having in mind that Ṽ regT = ṼT = f(T, X̂n
T ), we derive

∥∥Ṽ regtk
− Ṽtk

∥∥2

2
≤ C ′ (C∆t)2n+1(K − k)

K + 1

n+ 1

 ≤ (C ′′)n−1 (∆t)n−1

(n+ 1)!
. (45)

6. With a modified algorithm

If we change the algorithm, we may have a theoretcial convergence result. The amendment is as follows :
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6.1. Modified algorithm

One modifies the first and the last line backward loop for k=K-1,. . . ,0 (backward loop):

(i) On each (tk, tk+1), from Ṽ δ,nk,J = PE(V̄ nk+1 | X̃
δ,n
k,J), compute by a backward loop in j

Ṽ δ,nk,j = max
{
f(tk,j , X̃

δ,n
tk,j

), e−rδtPE[Ṽ δ,nk,j+1|X̃
δ,n
tk,j

]
}
, j = J − 1 : 0.

(ii) Compute V̄ n+1
k = max

{
f(tk, X̂

n+1
tk

), e−r∆tPE[V̄k+1|X̂n+1
tk

]
}

.

(iii) Set V̂ n+1
k = V̄ n+1

k + Ṽ δ,nk,0 − V̄ nk .

We assuem oin what follwos taht P = Id.

6.2. Statements and proofs

First, we introduce our “target object”: let (V̄ δtk,j )k,j be the (P,Ftk,j )k=0:K,j=0:J -Snell envelope of(
f(tk,j , X̄

δ
tk,j

)
)
k,j

where (X̄δ
tk,j

)k=0:K,j=0:J denotes the (global) Euler scheme with step δt (starting from

x0 at time t = 0).

Then, we recall that (X̃δ,n
tk,j

)j=0,...,J denotes the Euler scheme with step δ starting from X̂n
tk

at time

tk = tk,0. Let
(
Ṽ δ,ntk,J

)
j=0,J

denote the (P,Ftk,j )j=0,...,K-Snell envelope of

f̃tk,J = Ṽ δ,ntk,J
and f̃tk,` = f(tk,`, X̃

δ,n
tk,`

), ` = 0, . . . , J − 1.

where
Ṽ δ,ntk,J

= E
(
V̄ nk+1 | X̃

δ,n
tk,J

).

Having in mind that, owing to the “pre-conditioning”, the Markov property implies by induction that
Ṽ δ,nk,j+1 is a function of X̃δ,n

tk,j+1
so that

E
(
Ṽ δ,nk,j+1|Ftk,j

)
= E

(
Ṽ δ,nk,j+1|X̃

δ,n
tk,j

)
, j = J − 1, . . . , 0.

This second case justifies the use of LSMC in the sense that there is no Markov default in that phase like
for the coarse component of the parareal scheme.
Proposition 6.1 When Ṽ δ,ntk,J

= E
(
V̄ nk+1 | X̃

n,δ
tk,J

).∥∥∥ max
j=0,...,J

∣∣V̄ δtk,j − Ṽ δ,ntk,j

∣∣∥∥∥
2
≤ 2[f ]LipC

√
∆t

Proof. (a) As the P-Snell envelope with horizon ∆t of (f̃tk,j )j , starting at tk with timestep δt, the sequence

(Ṽtk,j )j reads

Ṽ δ,ntk,j
= P-ess sup

{
E
(
f̃θ|Ftk,j

)
, θ∈ T F,δtk,j ,tk,J

}
where T F,δtk,j ,tk,J

denotes the set of {tk,`, ` = j, . . . , J}-valued (Ftk,`)`-stopping times and

f̃tk,J = E
(
V̄ nk+1 | X̃

n,δ
tk,J

) and f̃tk,` = f(tk,`, X̃
n,δ
tk,`

), ` = 0, . . . , J − 1.

The Markov property shared by the Euler scheme (X̄δ
tk,j

)k,j implies that (V̄ δtk,j )k,j classically satisfies a
Backward Dynamic Programing formula, which in turn implies the following local representation

V̄ δtk,j = P-ess sup
{
E
(
f̄θ|Ftk,j

)
, θ∈ T F,δtk,j ,tk,J

}
where f̄tk,J = V̄ δtk,J and f̄tk,` = f(tk,`, X̄

δ
tk,`

), ` = 0, . . . , J − 1.
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Consequently, as seen in the proof of the former proposition,∣∣V̄ δtk,j − Ṽ δ,ntk,j

∣∣ ≤ E
[

max
`=j,...,J

∣∣f̃tk,` − f̄tk,` ∣∣∣∣∣Ftk,j]
so that, owing to conditional Jensen’s Inequality∣∣V̄ δtk,j − Ṽ δ,ntk,j

∣∣2 ≤ E
[

max
`=0,...,J

∣∣f̃tk,` − f̄tk,` ∣∣2∣∣∣Ftk,j] .
It follows form the conditional Doob’s Inequality that

E
[

max
j=0,...,J

∣∣V̄ δtk,j − Ṽ δ,ntk,j

∣∣2∣∣∣Ftk,0] ≤ 4E
[

max
`=0,...,J

∣∣f̃tk,` − f̄tk,` ∣∣2∣∣∣Ftk,0] .
Now, f being Lipschitz continuous in x uniformly in t∈ [0, T ], we get

max
`=0,...,J

∣∣f̃tk,` − f̄tk,` ∣∣2 ≤ |E(V̄ nk+1 | X̃n
tk,J

)
− V̄ δtk,J |

2 ∨
[
[f ]2Lip max

j=0,...,J−1
|X̃n

tk,j
− X̄δ

tk,j
|2
]

≤
∣∣E(V̄ nk+1 | X̃n

tk,J

)
− V̄ δtk,J

∣∣2 + [f ]2Lip max
j=0,...,J−1

∣∣X̃n
tk,j
− X̄δ

tk,j

∣∣2. (46)

Conditional expectation given X̃n
tk,J

being an orthogonal projector, one has by the Pythagoras Theorem∥∥E(V̄ nk+1 | X̃n
tk,J

)
− V̄ δtk,J

∥∥2
=
∥∥E(V̄ nk+1 − V̄ δtk,J | X̃

n
tk,J

)∥∥2
+
∥∥E(V̄ δtk,J | X̃n

tk,J

)
− V̄ δtk,J

∥∥2
.

The functions f(tk,j , .) being [f ]Lip-Lipschitz, we derive from the Markov property that V̄ δtk,J = vk,J(X̄δ
tk,J

)

where (see [5]) vk,J is Lipschitz continous with [vk,J ]Lip ≤ C = Cb,σ,T . Conditional expectation given X̃n
tk,J

is the best quadratic approximation by a function of X̃n
tk,J

, consequently∥∥V̄ δtk,J − E
(
V̄ δtk,J | X̃

n
tk,J

)∥∥2 ≤ [vk,J ]Lip

∥∥X̄δ
tk,J
− X̃n

tk,J

∥∥2

2
≤ C

∥∥X̄δ
tk,J
− X̃n

tk,J

∥∥2

2

whereas, as an L2-contraction,∥∥E(V̄ nk+1 − V̄ δtk,J | X̃
n
tk,J

)∥∥2 ≤
∥∥V̄ nk+1 − V̄ δtk,J

∥∥2
=
∥∥V̄ nk+1 − V̄ δtk+1

∥∥2
.

On the other hand, the (pseudo-)flow property for the Euler scheme yields

E
[

max
j=0,...,J

∣∣X̃n
tk,j
− X̄δ

tk,j

∣∣2∣∣∣Ftk,0] ≤ C∣∣X̂n
tk
− X̄δ

tk

∣∣2.
still for a real constant C = Cb,σ,T . Taking the expectation in (46) and in the above equation, then using
the bounds established in (6) of Theorem 3.1 and in (8), we derive that

E
[

max
j=0,...,J

∣∣V̄ δtk,j − Ṽ δ,ntk,j

∣∣2]≤ 4
[
[f ]2LipCb,σ,TE

[∣∣X̂n
tk
− X̄δ

tk

∣∣2]+ E
[∣∣V̄ δtk+1

− V̄ nk+1

∣∣2]]
≤ 4

[f ]2LipC
2n+1

k
n

 (∆t)2n+1 + E
[∣∣V̄ δtk+1

− V̄ nk+1

∣∣2]
by Theorem 3.1. Now, if we denote by (V̄ δtk)k=0:K the (P,Ftk)-Snell envelope of the Euler scheme of

f(tk, X̄
δ
tk

)k=0:K (exercise are possible only attires tk), then∥∥V̄ δtk+1
− V̄ nk+1‖2 ≤

∥∥V̄ δtk+1
− V̄ ∆,δ

k+1‖2 +
∥∥V̄ ∆,δ

k+1 − V̄
n
k+1‖2.
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It is elementary to show on the very definition of Snell envelope, the uniform Lipschitz continuity of
the functions f(tk, .) and the fact that the Euler scheme is an Itô process that∥∥V̄ δtk+1

− V̄ ∆,δ
k+1‖2 ≤ Cb,σ,T

√
∆t.

On the other hand, by Proposition 3.3, as (V̄k)k = Ṽ δ,ntk
)k coincide, we derive that∥∥V̄ ∆,δ

k+1 − V̄
n
k+1‖2 ≤ [f ]Lip

(C ′∆t)
n
2√

(n+ 1)!
.

So, we have convergence but we are note able to highlight the parareal speeding up of the procedure.
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