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ABSTRACT

Researchers handle increasingly higher dimensional datasets, with many variables to 
explore.  Such datasets pose several problems, since they are difficult to handle and present 
unexpected features. As dimensionality increases, classical statistical analysis becomes 
inoperative. Variables can present redundancy, and the reduction of dataset dimensionality  
to its lowest possible value is often needed. Principal components analysis (PCA) has proven 
useful to reduce dimensionality but present several shortcomings. As others, forensic 
sciences will face the issues specific related to an evergrowing quantity of data to be 
integrated. Age estimation in living persons, an unsolved problem so far, could benefit from 
the integration of various sources of data, e.g. clinical, dental and radiological data. 
We present here novel multivariate techniques (nonlinear dimensionality reduction 
techniques, NLDR), applied to a theoretical example. Results were compared to those of 
PCA. NLDR techniques were then applied to clinical, dental and radiological data (13 
variables) used for age estimation. The correlation dimension of these data was estimated.
NLDR techniques outperformed PCA results. They  showed that two living persons sharing 
similar characteristics may present rather different estimated ages. Moreover, data presented 
a very high informational redundancy, i.e. a correlation dimension of 2.    
NLDR techniques should be used with or preferred to PCA techniques to analyze complex 
and big data. Data routinely used for age estimation may not be considered suitable for this 
purpose. How integrating other data or approaches could improve age estimation in living 
persons is still uncertain.

Keywords: Nonlinear dimensionality reduction; clustering; age estimation; multivariate 
methods; big data

1. Introduction 

Scientific research and forensic science are – at least partly – about finding associations 
between factors and searching for underlying causal relationships between so-called 
exposure and events of interest. Whether accounting for multiple covariates to control for 
possible biases or not, classical hypothesis testing and linear regression are extensively 
used and have proved to be relevant. However, they may not be sufficient to address all 
issues and analytical needs in forensic sciences [1,2].  Widening the scope of 
experimentation in forensic sciences, a key question can be raised: how close is one 
subgroup of people to another or how different are they? Clustering techniques are used in 
different fields, such as computer vision and imaging [3], genetics [4] and public health [5]. 
The international ENCODE project made extensive use of clustering techniques to 
systematically search for the functionality of “junk” DNA [6]. These methods provide clues for 
identifying homogeneous groups of people, but they share a common limitation: all of them 
operate on a “flat” feature space. In the real world, the neighborhood or proximity between 
two persons may not respect such a geometric assumption and inappropriate shortcuts may 
appear, falsely linking two people who should not be related to each other. Moreover, 
researchers have to handle increasingly large datasets, with dozens of potential outcomes 
and as many explanatory variables of interest. Classical clustering methods and classical 
statistical tools lose their ability to separate two distinct groups as dimensionality increases, 
as well as their ability to reach statistical significance. This is known as the “curse of 
dimensionality” or the “empty phenomenon” [7,8]. According to Lee and Verleysen [8], issues 
with heterogeneous data can appear as soon as we deal with 10 to 20 or more variables. 
Data should then be considered as “big data” in many cases. 

The methods discussed in this paper address two related issues: respecting the intrinsic 
geometry of data and reducing their dimensionality to make them more comprehensive and 
even graphically displayable. These methods are called “nonlinear dimensionality reduction” 
(NLDR) techniques and appeared at the beginning of the 2000s [9,10]. Since then, variants 
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have been proposed [10,11]. In this article, we first presented the importance of preserving 
the intrinsic geometry of data. Second, we provided a brief description of a typical NLDR 
technique and compared its performance with principal components analysis (PCA) and 
multidimensional scaling (MDS) performances on a theoretical example. Third, we applied 
NLDR techniques to age estimation in living persons. Estimating the age of a person based 
on various clinical or non clinical data is an old challenging problem in forensic sciences that 
is standing still, regardless how often it has been explored [12-16]. Even if the way forensic 
physicians deal with this topic can be controversial, most experts agree that combining any 
potential informative data is the best mean to reach accuracy, e.g., combining dental and 
other radiological data [17-19]. The demonstration of a significant linear trend between 
different characteristics of a living person and its chronological age is not dubious, but is also 
poorly contributory to an accurate estimate of the person’s age. We actually have no precise 
idea of how informative are the data usually handled to estimate the age of a living person, 
and how relevant they are to discriminate a person from another one in terms of age, not to 
mention to determine if a person reached the legal majority or not. To date, a single study 
used PCA to estimate the age-at-death [20] and none to estimate the age in living persons. 
Here, we applied NLDR techniques to empirical forensic data, integrating clinical, dental and 
radiological data and investigated whether these data could properly and accurately ground 
age estimation in living people.

2. Methods

2.1 Preserving data geometry and complexity

The difference between a flat space and a more generic, curved space can be likened to the 
difference between considering the earth to be flat and considering it to be spherical. There 
is no universal projection method for creating a flat map of the earth with virtually no 
geometrical distortion, either angular or metric [21]. In the same way, in the absence of 
information about how datasets are “physically” structured, it may be inaccurate to assume 
that they are flat, with no curvature at all. Figure 1 shows how geometry determines whether
two data points are neighbors or not. It also emphasizes why the dimensionality of a dataset 
can be reduced.

2.2 Nonlinear dimensionality reduction techniques versus classical techniques

PCA methods can be used to reduce a dataset dimensionality [10,22] by rearranging the 
feature space by combining variables into factors. These factors are obtained so that they 
are not correlated with one another. While PCA-like techniques are effective in many cases, 
their main limitation lies in their linear assumption. The linearity hypothesis assumes that the 
entire problem to be addressed can be broken down into elementary sub-problems to which 
the correct weightings can be added to reconstitute the entire initial problem. PCA-like 
techniques should not provide fundamentally wrong results, although they may destroy 
evidence for truth or distort more subtle relationships. Therefore, there is room for more 
suitable techniques than PCA-like techniques. In contrast to the linear assumption in PCA, 
these techniques are called “nonlinear dimensionality reduction” (NLDR) techniques. They 
only consider geometrical proximity, apart from statistical considerations. The objective of 
NLDR techniques is to build the most “respectful” space in terms of “true” neighborhood. For 
this, these techniques depend on the construction of geodesic paths. NLDR techniques can 
preserve the nonlinear associations between variables. Data dimensionality is reduced, while 
the potential complexity of the associations between the variables is qualitatively preserved. 
The first NLDR algorithms appeared in the early 2000s, the archetype being ISOMAP [9,10].
Other methods have been proposed, based on the construction of a graph depicting the 
neighbor relationships for each data point. Given an intrinsic dimension and a dataset as 
inputs, the ISOMAP algorithm operates in three steps, as given in Table 1. Another class of 
NLDR techniques preserves the topological complexity and properties of datasets (i.e. their 
neighboring relationships: two individuals close to each other in the initial dataset remain 
close to each other in the reduced dataset), based on neural networks, such as the 
autoencoders [23-25]. 
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2.3 Limitations and comparisons of three algorithms: an empirical approach

We ran the ISOMAP technique on a theoretical example. We also included PCA and MDS 
techniques for comparison. Results are provided by a MATLAB program called MANI (see 
supplementary material). The present theoretical example is usually called the Swiss roll 
dataset [9]. The Swiss roll is a plane that is rolled up with none of its surfaces touching any 
other. Its intrinsic dimension is 2 (data points all belong to a 2-dimensional plane). Using 
dimensionality reduction algorithms, we plan to unfold them to obtain a rectangular plane for 
the Swiss roll. The execution times for the different algorithms are indicated into brackets. 
Performance of other NLDR techniques both applied on the Swiss roll dataset as well as 
applied on two other theoretical datasets can be found in additional data. 

2.4 Parameters tuning

Most NLDR techniques require parameter setting. Apart from the estimated intrinsic 
dimension, there is usually only one tuning parameter to be inputted. ISOMAP requires 
defining the neighborhood, that is, how many neighbors should be searched for around a 
data point. If the data are relatively sparse, specifying a high number of neighbors may lead 
to register some that are actually far from that point. In other words, it can lead the algorithm 
leaping undesirably from one surface to the next if they are close to each other and if there 
are not enough neighbor data points. 

2.5 Dimensionality reduction with intrinsic geometry preservation 

Before reducing the initial dimensionality of a dataset to its intrinsic one,  this intrinsic 
dimension needs to be estimated without any prior information. The intrinsic dimension of a 
dataset can be defined as the minimum number of independent variables needed to describe 
it without information loss [26]. The approaches to retrieving this number from a dataset are 
based on different conceptions of dimensionality. Camastra proposed the following taxonomy 
for these different methods: local, global and fractal-based [26]. Several techniques exist for 
estimating the intrinsic dimension of a dataset. Reviews of these techniques can be found in 
[26,27]. We give here the example of the correlation dimension, which is also used in system 
dynamics [28]. It is based on the correlation integral Cm(r), which is defined as: 

(Eq. 1)

where Xi  are data points, N the number of data points in the sample, r an arbitrary radius, 
and I the indicator function (i.e., I(condition) = 1 if the condition is true, 0 if it is not).

The correlation dimension D is then defined as

(Eq. 2)

Techniques other than the correlation dimension exist, such as the nearest-neighbor 
estimator [26] or the maximum-likelihood estimator [29]. The results of these types of 
dimensionality estimators applied on four examples of theoretical datasets are reported in 
Table 2. For each example, we give the intrinsic dimensionality, which is the dimensionality 
to be retrieved.

2.6 About outliers

Some NLDR techniques are not data-conservative. If an initial dataset consists of 3,000 
observations, the processed dataset may contain only 2,500 of them (ISOMAP behaves like 
this). The reason lies in the graph construction, where distances are estimated and k
neighbors are searched for. Some points may appear to be not connected to any others and 
are assigned an “infinite” distance to the other points. In such a case, they are isolated and 
eliminated from the dataset since they are seen as outliers.  If all data points must be kept for 
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analysis, then more conservative algorithms should be used, e.g., LTSA or autoencoders
[10,24,25]. 

2.7 Application to age estimation 

2.7.1 Available data

We applied two NDLR techniques on a previously published dataset [16]. This dataset 
included clinical, dental and radiological data. Clinical data included geographical origin 
(country) and sex. Dental data were the eruption of the second and third molars (yes/no for 
each molar, i.e. 8 distinct variables). Radiological data included the readout of the forensic or 
radiologist expert regarding the fusion of the distal radius and ulna epiphyses. Additional data 
were: the alleged age of the person, the estimated age as provided by the Greulich and Pyle 
atlas [30], and the age estimated by the forensic examiner, on the basis of all the elements 
mentioned above. The alleged age was the age provided by the person examined. The 
radiological age was the age estimated based on the fusion of the distal radius and ulna 
epiphyses, according to the Greulich and Pyle atlas. 

Countries were aggregated into 8 levels of one geographical origin variable (Africa, Asia, 
Western Europe, Eastern Europe, Middle East, Oceania, North America, South and Central 
America). Data were obtained over one year, from 1 January to 31 December 2007 in a 
suburban area near Paris, France. The age assessments were requested by the public 
prosecutor’s office of Bobigny (Seine-Saint-Denis) for purposes of criminal or asylum 
proceedings. Examinations were conducted by trained forensic physicians. 

2.7.2 Descriptive analyses 

Median ages with 10th and 90th percentiles were computed for each case whether 2nd or 3rd

molars were present or not; and whether gender was male or female. Differences in medians 
were assessed with Kruskal-Wallis test. Correlations between the age estimated by the 
forensic examiner, the skeletal age and the alleged age were also estimated.

2.7.3 Mapping techniques

We aimed at mapping every person for whom clinical and radiological data were complete in 
a low-dimensional space, so that the proximity or similarity of each pair of persons would be 
preserved. In such a mapping, if clinical and radiological data were representative of the age 
of a person, then two persons close to each other should have similar or close ages. Since 
data other than ages were categorical, we first applied a conservative transformation using 
multiple correspondence analysis (MCA), so that we obtained continuous variables. MCA is 
equivalent to PCA for discrete variables.

The second step consisted in estimating the intrinsic dimensionality of the dataset. We used 
the correlation dimension estimator. The third step consisted in applying two different NLDR 
techniques on these data, i.e. a conservative one, namely an autoencoder which is a kind of 
neural network [23-25], and a non-conservative one, the ISOMAP algorithm. The final step 
was the labeling of each person in the mapping provided by the NLDR techniques with their 
associated ages, i.e. respectively the alleged age, the estimated age according to the 
Greulich and Pyle atlas and the age estimated by the forensic physician, taken as a clinical, 
dental and radiological synthesis. So that figures could be readable, a random sample of 40 
individuals out of the total number of available individuals was drawn and used for graphical 
display. MCA was performed with the statistical R software, and the ISOMAP and 
autoencoder algorithms run under MATLAB R2009b with the DR toolbox [31].

3. Results

3.1 A theoretical example
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Results are reported in Figure 2. PCA was unable to unfold the Swiss roll dataset and 
behaved like a projection of data on a plane in a certain direction. ISOMAP behaved 
considerably better and was able to correctly unfold the dataset. In terms of computer time 
for execution, ISOMAP was time-consuming, since one of its steps consisted in applying a 
classical MDS algorithm, which was slow. Comparisons with other NLDR techniques and on 
other datasets (see supplementary material, Figures 1-3) all confirmed that NLDR methods 
perform better than PCA or MDS.

3.2 Age estimation data

3.2.1 Descriptive results

The initial dataset contained 499 people. Data were complete for 233 of them (46.7%). 
74.7% were males, and the geographical origins were represented as follows: 96 from Africa 
(41%), 70 from Middle East (30%), 40 from Asia (17%), 18 from Western Europe (8%), 5 
from South America, 3 from Western Europe and 1 from Oceania. The mean alleged age 
was 16.4 years (standard deviation SD: 2.1, median m [min-max]: 16.5 [9-36]). The mean 
estimated age according to the Greulich and Pyle atlas (resp. mean estimated age) was 17.8 
(SD 1.58, m 18 [9-19.5]) (resp. 17.9 SD 2.08, m 18.5 [9-36]).

Table 3 presents the descriptive results. Individually, almost all variables were associated 
with significant differences in terms of median age as estimated by the forensic examiner. It 
was notably the case for the presence of 3rd molars. Estimated ages were strongly correlated 
to skeletal ages (Spearman’s coefficient: 0.92, p<0.001) and alleged ages (0.73, p<0.001).

3.2.2 Results of the NLDR techniques for age estimation

The application of MCA on the data resulted in two principal axes accounting for 15.9% and 
11.2%, respectively, of the total variance of the data. Visually, it appeared that the ages 
according to the Greulich and Pyle atlas, the alleged ages and the ages estimated by the 
forensic examiner were distributed along the principal axes  at random. 

According to the correlation dimension estimator, the intrinsic dimensionality of the dataset 
was 2. The results of the application of the ISOMAP and the autoencoder algorithms are 
displayed in Figures 3 and 4. The non conservative ISOMAP algorithm took into account 101 
people out of 233, i.e. 132 were considered not connected to the 101 considered. 

Starting from 13 variables routinely used to estimate age in clinical forensic settings, we 
ended up with an intrinsic data dimensionality of 2. A closer examination of the data obtained 
either with the ISOMAP or the autoencoder algorithms showed that in fact only 1 dimension  
seems to suffice to characterize data. Indeed, some areas of the 2 dimensional plane 
showed a linear arrangement of data points,  suggesting that only one dimension  may be 
sufficient  to describe data . 

In the 2-dimensional case, i.e. outside the particular subgroup of people that fitted a line, 
(figure 4), we found a high dispersion of the individuals across the plane, and no specific 
portion of this plane seemed to gather people according to a homogeneous age profile, e.g., 
a region of the plane gathering more specifically individuals aged between 14 and 17 years. 
Visually, the alleged ages, the radiological ages and the ages estimated as a synthesis of the 
forensic examination seemed to be randomly  distributed  across the plane.

3.2.3 Implications for the classification of individuals between adults and non-adults

The results yielded by both the Isomap and the autoencoder algorithms showed that ages 
under and above 18 years were intertwined with each other (data not shown). Otherwise 
stated, no straight or simple line seemed to be able to separate people younger than 18 from 
people older than 18 or give a clear linear and ordered trend for ages across the plane.
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4. Discussion 

We have presented the fundamental issues raised by the increase in dataset dimensionality, 
as well as the need to preserve the intrinsic data geometry as much as possible, in order to 
avoid mistakes in analysis. On one hand, it seems necessary to collect more and more data, 
but on the other, doing so will entail some unexpected pitfalls if we do not change our habits 
regarding conventional analysis. One way to cope with these issues might be to use NLDR 
techniques. Although  NDLR techniques are recent, they have acquired some maturity and 
diversity, which allow making comparisons, especially with linear dimensionality reduction 
techniques. We can assume that they will be increasingly used in many fields, as has been 
shown with a few available examples [11,32,33] and forensic sciences should be no 
exception. Considering more data sources to estimate age will lead to bigger datasets that 
should be handled and analyzed carefully. Age estimation in living persons can be an 
opportunity to introduce more appropriate techniques like NLDR techniques. 

These methods have limitations. First, like many other techniques, the user has to specify 
some parameters, which can be a  matter of concern if there is no prior information on the 
intrinsic structure of data. However, only two parameters usually need to be specified, one of 
which is the estimated intrinsic dimension. Second, there is presently no consensus as to 
what the best intrinsic dimension estimator is for each situation and objective when these 
estimators can be used. The correlation dimension estimator is widely used and  is usually 
recommended over other estimators, especially in physics, since it is correctly theoretically 
grounded [26,28]. The PCA eigenvalues estimator can only compute a dimension as an 
integer, i.e. 1, 2, 3… Unlike the other estimators we presented, it does not return a dimension 
between 1 and 2. For this reason, it is more prone to miss the correct dimension by one unit: 
if the correct dimension is 2, it could easily return 1, 2 or 3. Additionally, the value returned by 
this estimator is determined by the cut-off criterion for selecting the number of eigenvalues. 
Depending on this criterion, the returned value can also be rounded either up or down. We 
presented also the nearest neighbors dimension estimator. Although popular, this estimator 
is known for being flawed and unreliable: it is biased, sensitive to outliers and to edges and 
does not perform well, even in very simple examples [26]. Finally, there is still a lack of 
comparisons between NLDR techniques and classical techniques on real data. However, 
NLDR manifested its superiority on synthetic datasets [34,35] as well as in the first 
experiments on real data [32-34]. 

The absence of documented chronological ages is a major limitation of our forensic study 
and prevents our method to be fully validated on these data. Since many NLDR techniques 
enable the construction of maps that locate individuals according to their similarities, a first 
step to further standardize and validate our approach would be to check that individuals 
sharing both the same characteristics and the same documented chronological age are 
closer to each other than to individuals with different characteristics. This should be executed 
in the most controlled way possible, which means using data uniformly and evenly distributed 
in terms of each characteristic (the same number of individuals for each age, for each 
geographical origin, for each gender, and so on), all examinations and measurements being 
performed according to the same protocol. For the classifying problem (adult vs non-adult), 
the sample to consider should be narrower in age ranges (for example: 10 to 25 years), with 
more precise age data (expressed in months rather than in years, especially around 18 years 
of age). Approximatively about 500 individuals of each gender and origin should be 
considered if age is given in months (10 individuals of each age) and about 125 of each 
gender and origin if age is given in trimester. For both cases (age estimation and adulthood 
estimation), it seems important to consider the alleged age since this available information 
cannot be completely ignored and the patient’s voice unheard. Obviously, the main obstacle 
remains the difficulty – not to say the impossibility - to rely on documented chronological age 
for migrants who are usually subjects to age estimation procedures.

In our forensic age estimation study, clinical, dental and radiological data that are routinely 
used to estimate one person's age failed to sort out people so that their similarity according 
to these characteristics translates into similar estimated ages. It appeared that a problem 
described by 13 distinct variables was collapsible to a one- or two-dimensional problem, 
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although the classical approach, i.e. with MCA, suggested that two dimensions only 
accounted for 27.1% of the total variance. This suggests a high redundancy – or equivalently 
a poor informational value – of the data. Moreover, the locally one-dimensional 
representation of data implies the possibility of a perfect linear regression. Unfortunately, 
figure 3 demonstrated that if this part of data could be depicted by a line, it failed to sort out  
the different ages in a correct order. This combination of clinical, dental and radiological data 
could not explain the ages that we registered. Worse, their addition or integration seemed to 
be useless. It therefore questions the  relevance of searching for more variables to integrate 
and compare. This new insight to the age estimation problem highlights the fact that the 
existence of a linear correlation between some characteristics such as radiological features 
and the chronological age is one kind of evidence, but  it has limited value for the accurate 
estimation of one particular person’s age. Besides, explaining and predicting facts are 
distinct, rarely compatible tasks [36]. Our findings do not contradict that such a correlation 
exists. They merely illustrate that this correlation is  not an efficient way to estimate the age 
of a person or to decide whether a person is less or more than 18 years old. 

The goals we aim at – estimating the age, classifying persons with respect to being above 18 
years – must not be confounded with our will to understand as accurately as possible the 
physiology of ageing. Even high standards in molecular analysis have failed short to predict a 
physiological age more accurately than a characteristic time of one year [37]. If integrating 
data of different natures to estimate age is laudable, the linear regression techniques used 
so far [19] are inappropriate since they are above all explanatory techniques (i.e. they 
distribute the overall variance of data among the variables of interest according to their 
respective contribution to this variance). They are in no way predictive methods although 
they are abusively called  so. They are useful in a risk factor approach, to identify and 
quantify independent factor risks. Such modeling approaches cannot be satisfactory in age 
estimation unless they are very accurate. In the case of deciding whether a person is above 
18 years old, we should focus on the best available techniques that present the best 
performances in terms of classification, and try them on available data. Highly effective 
techniques exist that should be challenged in the field of forensics, such as the Support 
Vector Machine (SVM) algorithms [24]. However, such techniques require the previous 
knowledge of the real chronological age of a subsample of the people of whom we want to 
estimate the age. The performances of SVM algorithms far exceed the results that can be 
expected from linear techniques, such as regression techniques previously presented in age 
estimation [9] and have been acknowledged in various settings [38,39]. So far, they are 
gaining a wider acceptance in clinical fields, particularly for improving diagnostic tests [39]. 

In this suggested way to improve performances in age estimation, not knowing the real age 
of the examined individuals is a limitation to our work. Therefore, we strongly encourage 
researchers to duplicate our findings on their own data. Similarly, we had no basic 
characteristics such as weight and height, nor more sophisticated imaging methods, such as 
clavicle CT scans or Magnetic Resonance Imaging [40,41]. There is nonetheless another 
way to cope with age estimation in the case where the real age remains unknown, which can 
be provided by Bayesian approaches [42,43]. Recently, they also proved promising for 
classifying individuals based on dental evidence and relying on soft evidence [44,45]. 
Moreover, Bayesian approaches could take into account the age alleged by the person, 
which would provide a more ethical approach to this problem. However, whether SVM or 
Bayesian approaches are chosen, both cases require that researchers gain confidence into 
these now well-known techniques, can handle and criticize them, and if they prove efficient, 
use them in their daily practice.

5. Conclusion

The integration of various sources of information to improve accuracy in estimating the age 
of living persons may be considered cautiously and in accordance to the goal we aim to: 
estimating the age or classifying persons according to a threshold age. The increase of data 
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amounts present specific issues that a forensic scientist should be aware of and that must be 
dealt with using adequate techniques.
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Table 1: The three steps of the ISOMAP algorithm

Table 2: Intrinsic dimensionality estimators applied to four theoretical examples. 

GMST: geodesic minimum spanning tree. Correlation dimension and maximum likelihood 
estimators succeed in approaching the intrinsic dimension in most, if not all, the examples. 
Estimators are described in [25,27,28,S2-S4]

A dimension is not necessarily an integer, it can be fractal [S5,S6]. Lines drawn on a sheet of 
paper can present qualitative differences in terms of their aspects, and yet they share the 
common property of being one-dimensional objects. Whether  a specific point has to be 
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located on a straight line or on a line consisting of many zigzags, only one unique coordinate 
is necessary because these two lines are both one-dimensional. The straight line will not fill 
space significantly, while the zigzag line will occupy more space. It is then possible to define 
a fractal dimension to characterize these two lines, which will be between 1 and 2, depending 
on their ability to fill 2-dimensional space. 

Table 3: Median ages estimated by the forensic examiner, for each variable (gender, 2nd and 
3rd molars).

*: p<0.01, **: p<0.001. Median age estimated by the forensic examiner is given for each case 
whether a 2nd or 3rd molar is present or absent, with the 10th and 90th percentiles into brackets 
and whether the person is male or female. 

Legends of figures

Figure 1: Distances over two different spaces: flat space and curved space. 

Changes in proximity relationships for a, b and c. Distances that appear to be correct and 
relevant in the case of a nonstructured space (case A) will turn out to be incorrect if the 
space is structured and is described by a lower intrinsic dimension (case B): cars cannot go 
through buildings; they have to use roads. 

In case A, the closest person to “b” is “c” because the ambient space is flat (i.e., 2-
dimensional), with no specific structure. In case B, the closest person to “b” is “a” because 
data are intrinsically structured as a spiral. Considering that “b” and “c” belong to the same 
group on the basis of their proximity leads to a wrong statement if it is measured the same 
way in both cases. Proximity in case B should be measured in the way in which the dot style 
distance approximates it. By definition, a distance that measures the shortest path between 
two points belonging to a specific curved space is called a geodesic distance. In case A, we 
need a 2-dimensional space to describe data. Two coordinates are needed to locate 
someone. In case B, when we respect the intrinsic spiral geometry, we only need one degree 
of freedom: it is merely a line with curvature, and only one coordinate along that line is 
enough to locate someone. 

Figure 2: A theoretical example (Swiss roll) and its expected unfolding, in which a NLDR 
technique (ISOMAP) is compared with PCA and MDS.

Top: Example of the Swiss roll (left) and its expected unfolding (right)

Bottom: PCA (left), MDS (middle) and ISOMAP (right) unfoldings. Execution times are given 
in seconds or minutes.

Figure 3: The ISOMAP algorithm applied to age estimation: radiological ages and ages 
estimated by the forensic examiner are seemingly randomly distributed along a line.

The ISOMAP algorithm identified 101 individuals significantly connected with each other out 
of 233. The more similar two individuals are in terms of clinical, dental and radiological data, 
the closer they are to each other. Despite this, two identical or similar individuals can have 
rather different radiological ages (top) or different ages as estimated by the forensic 
examiner (bottom). No order seems to be identified along the line. 40 individuals out of 101 
have been randomly chosen and reported here.
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Figure 4: The autoencoder algorithm applied to age estimation: alleged ages (A), radiological 
ages (B) and ages estimated by the forensic examiner (C) are seemingly randomly 
distributed across the whole plane. 

The autoencoder algorithm is a conservative algorithm that keeps all 233 initial individuals 
and dispatches them across a 2-dimensional space that preserves their topological 
relationships. The more similar two individuals are in terms of clinical, dental and radiological 
data, the closer they are to each other. Despite this, two identical or similar individuals can 
have rather different alleged ages (A). No specific age clustering seems to prevail across the 
whole plane. The same observation can be done for radiological (B) or forensic estimated 
ages (C). 50 individuals out of 233 have been randomly chosen and reported here. Only 
selected points are labelled to ensure readability. 
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Steps Description

Step 1: construction of a neighborhood 
graph 

For each data point, the algorithm builds the 
graph (i.e. the connection) between it and its 
k-nearest neighbors. The graph is distance-
weighted. This means that each edge is 
associated with a Euclidean distance, which 
is measured between the two points (also 
called “vertices”).

Step 2: computation of geodesic paths 
for the purpose of building the geodesic 
distances matrix:

For each pair of points, the geodesic distance 
is approximated in two ways. For direct 
neighbors, the geodesic distance is 
approximated by the Euclidean distance. 
Otherwise, the shortest path between two 
points is computed through a classical graph 
algorithm, such as the Dijkstra algorithm.

Step 3: use of a classical 
multidimensional scaling (MDS) 
algorithm to reduce dimensionality:[S1]

The MDS is run on the geodesic distance 
matrix and delivers the dimensionally 
reduced dataset.
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Dataset examples

Swiss roll
Toroïdal 

helix
Twin 

peaks Infinite

Intrinsic dimension to retrieve 2 1 2 2

Estimators :
Correlation dimension 1.94 1.47 2.02 2.29
Nearest neighbor dimension 0.56 0.7 0.51 0.44
GMST dimension 1.77 1.38 2.57 2.5
Packing numbers dimension 2.22 1.11 1.31 0.91
PCA eigenvalues dimension 2 2 2 2
Maximum likelihood dimension 1.94 1.5 2.14 2.53
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2nd molars 17** 27** 37* 47*

Present 18.5 [15.5; 19.0] 18.5 [15.5; 19.0] 18.5 [15.5; 19.0] 18.0 [15.5; 19.0]

Absent 15.8 [10.5; 19.0] 15.5 [10.0; 17.5] 17.0 [11.0; 19.0] 16.0 [10.0; 19.0]

3rd molars 18** 28** 38** 48**

Present 19.0 [17.5; 19.0] 19.0 [17.5; 19.0] 19.0 [17.5; 19.0] 19.0 [17.5; 19.0]

Absent 17.5 [14.5; 19.0] 17.5 [14.5; 19.0] 17.5 [14.5; 19.0] 17.3 [14.5; 19.0]

Gender**

Male 19.0 [15.5; 19.0]

Female 17.5 [15.0; 19.0]



Page 17 of 21

Acc
ep

te
d 

M
an

us
cr

ip
t

1 

 

 

  

b 

c 

a 

 

b 

c 

a 

Case A Case B 

A 

Figure



Page 18 of 21

Acc
ep

te
d 

M
an

us
cr

ip
t

 

  

 

   

 

Figure



Page 19 of 21

Acc
ep

te
d 

M
an

us
cr

ip
t

 
 
 

 
 

Figure



Page 20 of 21

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 
 
 
 

 
 

 

(A) 

(B) 

Figure



Page 21 of 21

Acc
ep

te
d 

M
an

us
cr

ip
t

 
 
 

(C) 




