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Abstract 

We investigate the effect of several coatings applied in biomedical applications to iron 

oxide nanoparticles on the size, structure and composition of the particles. The four 

structural techniques employed – TEM, DLS, VSM, SAXS and EXAFS  – show no 

significant effects of the coatings on the spherical shape of the bare nanoparticles, the 

average sizes or the local order around the Fe atoms. The NPs coated with 

hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than 

the bare and citrated ones, raising the question whether the former are responsible for 

increasing the valence state of the oxide on the NP surfaces and lowering the overall 

proportion of magnetite in the particles.  VSM measurements show that these two 

coatings lead to a slightly higher saturation magnetization than the citrate.  
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Highlights 

 Several coatings applied in biomedical applications to iron oxide nanoparticles 

show no significant effects on size, or local structure. 

 The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower 

proportion of magnetite than the bare and citrated ones. 

 X-ray synchrotron techniques provide a rapid and definitive determination of size, 

shape, structure, composition and valence distribution of magnetic nanoparticles. 

 

Keywords: Magnetic nanoparticle, coating, valence state, synchrotron x-ray 

 

1. Background  

Magnetic nanoparticles (MNPs) are being exploited for applications in biomedicine, due to 

their many favourable properties (Pankhurst et al., 2003). The synthesis of iron oxide 

nanoparticles is now quite routine, with sizes ranging from ~1 to ~100 nm, comparable to the 

dimensions of cells (10–100 μm), viruses (20–450 nm) and proteins (5–50 nm), allowing 

them to get close to a biological entity of interest. In the last decade, MNPs have been coated 

with various molecules ensuring their stability and biocompatibility with their applications in 

vivo. These assemblies are amenable to manipulation by an external magnetic field gradient to 

deliver a package such as a drug, fluorescent labels or radionuclide atoms to a targeted region 

of the body. A time-varying magnetic field could be used to heat them and transforming them 

into hyperthermia agents, delivering toxic amounts of thermal energy to targeted bodies such 

as tumours or as chemotherapy and radiotherapy enhancement agents, where tissue warming 

results in more effective malignant cell destruction (Shkilnyy et al. 2010). 

 

For most of these applications, it is important that the particles have a single magnetic 

domain, requiring dimensions less that the domain wall thickness, typically 70 nm for the iron 

oxide (IO) particles studied here, and be coated with specific ligands for the biomedical 

application of interest. The size distribution affects the function of iron oxide nanoparticles in 

many biomedical applications including diagnostics (de Montferrand et al., 2013), 

hyperthermia (Fortin et al., 2007) and MRI (Huang et al., 2010; Jung et al., 2014). The 

question then arises as to what extent these coatings affect the size, structure, composition and 

valence distribution, and hence the magnetic properties, of the host nanoparticles. 
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In the present paper we address this issue for IO NPs, the most widely used NPs in 

biomedicine, and investigate the effect of coatings applied in our previous work, 

referenced below, on the size, structure, and composition of the particles. Various  

techniques yield different estimates of size distributions and we use three methods - 

transmission electron microscopy (TEM), dynamic light scattering (DLS) and small-

angle x-ray scattering (SAXS) to determine what effects if any the coatings have on the 

size distribution.  IO NPs are normally composed of a mixture of magnetite (Fe3O4) and 

maghemite (γ-Fe2O3).  These compounds are difficult to distinguish by conventional 

diffraction and therefore we use X-ray absorption near-edge (XANES) and far-edge 

(EXAFS) spectroscopy to determine the effects of coating on the valence distribution and 

local structure around the Fe atoms. We also use vibrating sample magnetometry (VSM) 

to determine the magnetic properties. 

2. Methods 

2.1 Nanoparticle synthesis. Spherical iron oxide (IO) NPs were prepared by 

coprecipitation (Milosevic et al., 2014) by addition (0.0144 mol.min
-1

) of an ammonium 

hydroxide solution (0.36 mol.L
-1

) to an iron chloride solution ([Fe] = 0.12 mol.L
-1

 with a 

stoichiometric ratio Fe(II)/Fe(III) = ½). The entire process was maintained at 30°C. The 

bare NPs were washed several times by magnetic decantation and redispersed in water at 

pH=2 using ultrasound in order to obtained a stable ferrofluid of bare nanoparticles.  

2.2 Nanoparticle surface functionalization. The NPs were coated with 

hydroxylmethylene bisphosphonate (Bolley et al., 2013a; Lalatonne et al., 2008; Motte et 

al., 2011), catechol (Richard et al., 2015; Bolley et al., 2013b; Guénin et al , 2014) and 

citrate (Lalatonne et al., 2014) with methods previously described. For the 

hydroxylmethylene bisphosphonate  (HMBP: pKa= 0.8, 2.2, 6.3, 10.9 for P-OH/P-O- and 

4.8 for COOH/COO-) coating, 10 mL of an aqueous HMBP solution (15 mg mL
−1

) at pH 

2 was directly mixed with 10 mL of bare IO nanoparticle suspension (6 mg mL
−1

) at pH 

2. After 2 h at room temperature, the excess HMBP was removed from the coated 

particles using a magnet at pH 2. The coated NPs were dispersed in distilled water and 

adjusted to pH 7.  

For the catechol (CA: pKa=8.6,11.5 cathecol functions and 4.4 for COOH/COO-) 

coating, the NP surfaces were directly functionalized with caffeic acid: 10 mL of aqueous 

caffeic acid solution (10 mg mL
-1

) at pH 10 were mixed with 10 mL of bare NP 

suspension (6 mg mL
-1

) at pH 10. After mixing for 2 h at room temperature, the 
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functionalized NPs were washed five times by magnetic separation at pH 2. The coated 

NPs were dispersed in distilled water and adjusted to pH 7.  

For the citrate (Cit: pKa= 5.2, 4.3 et 2,9 for COOH/COO-)( coating, the NP surfaces were 

functionalized with citrate ions: 10 mL of aqueous sodium citrate solution (20 mg mL
-1

) 

at pH 2 were mixed with 10 mL of bare NP suspension (10 mg mL
-1

) at pH 2. After 

sonicating for 10 minutes at room temperature and additional mixing for 2 h, the 

functionalized NP were washed five times by magnetic separation at pH 2. The coated 

NPs were dispersed in distilled water and adjusted to pH 7.  

2.3 TEM. Bright-field imaging and electron diffraction studies were carried out with a 

Philips FEI CM10 microscope operating at 200 kV. The samples were prepared by 

deposition on a carbon film supported by a copper grid placed on a filter paper. Average 

particle diameters were obtained by fitting the diameter distribution with a log-normal 

function. 

2.4 DLS. The hydrodynamic diameter and the zeta potential of nanoparticles were 

determined with a Nano-ZS ZEN 3600 device (Malvern Instruments, Malvern, UK).  

2.5 VSM. A vibrating sample magnetometer  (VSM, Quantum Design, Versalab) was 

used for magnetic characterization.  VSM measures the magnetization M by cycling the 

applied field H from −30 to + 30 kOe with a step rate of 100 Oe.s
−1

 for two times. 

Measurements of M(H) were performed on liquid samples at 50 K. ZFC curves were 

obtained by first cooling the system in zero field from 300 to 50 K and then a 100-Oe 

field was applied and M(H) recorded while gradually increasing the temperature. The FC 

curves were measured by decreasing the temperature in the same applied field. 

2.6 SAXS. The scattering intensity I(Q) was measured as a function of scattering vector 

Q (=4π sin/λ, where is the Bragg angle and the wavelength) and analysed with a 

spherical model fit: 

, 

where d is the diameter of the particle and Δρ is the electron density difference between 

the particle and the medium. The average particle size was calculated from the diameter 

distribution function D(d). 

2.7 XANES and EXAFS. Experiments were performed at the 20-BM-B beamline at the 

Advanced Photon Source at Argonne National Laboratory. These are sensitive to the 

electronic structures and local geometries of the absorbing atoms in a sample, so that 
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changes in the oxidation state and coordination geometry of the iron atoms on decreasing 

the particle size and the interactions with molecules adsorbed on the NP surface can in 

principle be extracted. (Iwasawa, 1996; Chen et al., 2002). In particular, the presence of 

FeII in Fe3O4 and only FeIII in γ-Fe2O3 can be discriminated (Auffan et al., 2008).  The 

ratios of the different Fe oxide phases present in the nanoparticles were determined by 

fitting the XANES spectrum to a linear combination of iron oxide phases with the Athena 

software package (Ravel and Newville, 2005). 

 

3. Results 

3.1 TEM. The TEM images and electron diffraction patterns showed well-crystallized 

NPs (Fig. 1). These can be either magnetite or maghemite NP, or a combination of the 

two, since these phases cannot be distinguished by electron diffraction. The coating did 

not change the shape or the size of the particles. Fig. 1B shows a typical distribution of 

particle diameters, corresponding to a mean diameter dav = 7 nm with a distribution 

between 4 and 16 nm.  

 

 

 

Fig. 1: (A) TEM micrograph, (B) distribution of particle diameters d and (C) electron 

diffraction patterns of an assembly of bare IO NPs. 
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3.2 FTIR. To elucidate the interactions between the NP surfaces and the HMBP, CA and 

Cit ligands, we performed FTIR spectroscopic measurements. 

 

 

 

Fig. 2: FTIR spectra (absorption vs. wavelength) for 7 nm (A) bare IO, (B) IO@HMBP, 

(C) IO@CA and (D) IO@Cit NPs.  The insets in B and C show the spectra of the free 

molecules.  

 

Figure 2A shows a characteristic FTIR spectrum of bare IO NPs with a strong Fe-O 

stretching vibration band of the spinel phase at 585 and 635 cm
-1

. The bands in this 

region also suggest the IR features of maghemite crystallites (Tartaj et al., 2003). The 

band at 620 cm
-1

 is assigned to hydroxide and water physisorbed on the IO surface (Belin 

et al., 2004). In addition to the bands of the bare IO NPs, the coated NPs have some 

specific features. The spectrum of IO@HMBP NPs, Fig. 2B, shows the bands of 

phosphonic vibrations between 900 and 1200 cm
-1

, indicating the linkage of the 

bisphosphonic moiety to the surface of the IO (Lalatonne et al., 2008, Guénin et al., 

2012, Benyettou et al., 2009; 2011, Guénin et al., 2014). Stronger characteristic vibration 

bands in the carboxylate region (1700–1400 cm
-1

) are observed due to grafting of the 

molecule to the surface. In Fig. 2C, the spectrum of IO@CA NPs shows a strong 
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characteristic band between 1650 and 1600 cm
-1

, in accordance with previous 

observations (Guénin 2014 et al.,, Bolley et al., 2013b). This band is attributed to the 

asymmetric ν(C=O) stretching vibration of the carboxylate function coupled with the 

ν(C=C) vibration of the alkene function, which is related to the formation of a coordinate 

bond between the NP surface and the catecholic aromatic ring (Shultz et al., 2007, Bolley 

et al., 2013b). The vibration bands corresponding to C=C stretching between 1550 and 

1650 cm
-1

 as well as vibration bands corresponding to C-O stretching and bending 

(between 950 and 1300 cm
-1

) appear to be changed due to the surface modification, 

compared with the spectrum of free molecules shown in the inset.. The IO@Cit spectrum 

in Fig 2D shows some modifications in the carboxylate region attributable to the C=O 

vibration from the citrate COOH group characterized by a shift from 1625cm
-1

 in the free 

citrate to 1600 cm
-1

 in the complexed IO@Cit. This shift can be attributed to the binding 

of citrate ions to the IO surface by chemisorption of their carboxylate group 

(Cheraghipour et al., 2012). 

 

3.3 DLS. Results for the bare IO NP and coated nanoparticles are shown in Figs. 3 and 4, 

respectively. The colloidal behaviour – hydrodynamic diameter and surface charge – was 

determined by DLS in water for bare IO NPs and for coated NPs from pH 2 to 12.  This 

technique gives an indication of surface charge on a particulate species, which plays an 

important role in determining colloidal stability and susceptibility to aggregation and 

precipitation problems, as well as protein and cellular surface binding in vivo. The 

isoelectric point (IEP) of bare IO NP is around pH 7 and they precipitate at physiological 

pH, being positively and negatively charged at acid and basic pH, respectively (Fig. 3). 
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Fig. 3. Top: Charge distributions on bare NPs as a function of pH. Bottom: hydrodynamic 

diameter (DH) and zeta potential as a function of pH for bare NPs. 

 

Figure 4 shows the evolution of hydrodynamic diameter and surface charge versus pH for 

the various coatings. The NPs form a highly stable ferrofluid at pH between 4 to 11. The 

zeta potential at physiological pH is negative for the coated NPs, indicating the efficiency 

of the coating. The zeta potential at physiological pH is negative for the coated NPs, 

indicating the efficiency of the coating. The negative charges of the coated NPs are due to 

the presence of carboxylate end functions. The coatings showed no significant effects on 

the hydrodynamic diameter. 
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Fig 4. Hydrodynamic diameter (DH) and zeta potential for the various coatings as a 

function of pH. 
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Fig. 5. Left: ZFC (lower) and FC (upper) magnetization curves of bare IO NPs. Right: 

Magnetization curves measured at 50K for bare IO NPs (black) and IO@HMBP (red), 

IO@CA (green) and IO@Cit (blue) coated NPs. The inset shows an enlarged view of the 

hysteresis loops at 50K. 

 

3.4 VSM. Figure 5 (left) shows the ZFC and FC M(T) curves measured at 100 Oe for 

bare IO NPs. In the ZFC curve the magnetization increases gradually up to the blocking 

temperature of 150K and then a 1/T Curie-type decrease is observed. Thus, the NPs are 

superparamagnetic at room temperature. Figure 5 (right) shows the hysteresis curve for 

M(H) at 50 K for the bare and coated IO NPs. No significant effects appear in the 

coercivity field due to surface modification (see inset). Nevertheless, we observe a 

decrease of the saturation magnetization related to the different coatings, with NPs coated 

with stronger coordination ligands (bisphosphonate and catechol) showing a slightly 

higher saturation magnetisation of approximately 58 A.m
2
.kg

-1
 compared with those 

stabilized by citrate ions (54 A.m
2
.kg

-1
). 

 

These values are lower than the theoretical value of bulk magnetite (92 emu g
-1

) even for 

the bare IO NPs (61 A.m
2
.kg

-1
). It is usually attributed to surface effects: spin canting, 

surface disorder and/or adsorbed species (Daou et al., 2006).  

 

3.5 SAXS. Typical plots of scattering intensity I(Q) for the bare NPs and the 

corresponding distribution of diameters D(d) obtained from fits of Eq. (1) are shown in 

Fig. 6. The goodness of fits with Eq. (1) indicated so significant deviation from spherical 

shape. A bimodal distribution was observed in each sample, with one diameter smaller 

than 2 nm and another around 12 nm. The average diameter was found to be 11 nm in 

every case. The particle size obtained using SAXS analysis was thus larger than that 

observed by TEM.  This is not unusual and results from the different weightings in the 

two techniques. 
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Fig. 6. (Left) SAXS intensity I(Q) and (right) the corresponding distribution of diameters 

D(d) for the bare NPs 

 

3.6 XANES and EXAFS.   Spectra for the bare and coated nanoparticles are shown in 

Fig. 7, and the magnetite – maghemite proportions obtained by XANES with linear 

combination fits of model spectra are given in Table 1.  

 

 

 

Fig. 7. (Left) XANES and (right) EXAFS spectra for bare and coated nanoparticles. 

 

The BP- and CS-coated NPs have less magnetite than the bare and citrated ones. The fact 

that bisphosphonate and catechol are strong chelators, with strong affinity for iron, raises 

the question whether these are responsible for increasing the valence state of the oxide on 
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the NP surfaces, and/or enlarging the maghemite shell, and hence lowering the overall 

proportion of magnetite in the particles. 

Table 1. Magnetite(Fe3O4) / maghemite(-Fe2O3) proportions obtained by XANES with 

linear combination fitting.  

 

 Fe3O4 -Fe2O3 R factor 

Bare IO NP 0.29±0.01 0.71 3.10
-4 

IO@Cit 0.275±0.02 0.725 1.10
-3

 

IO@HMBP 0.225±0.02 0.775 6.10
-4

 

IO@CA 0.23±0.01 0.77 4.10
-4

 

 

A recent study of hollow NPs (Khursid et al., 2015) also showed a high proportion (0.82) 

of maghemite. 

The local order around the Fe atoms probed by the EXAFS measurement appeared 

generally similar in the bare and coated NPs, with some slight differences at high k for 

the citrate-coated particles. 

4. Conclusions 

The four structural techniques employed – TEM, DLS, SAXS and EXAFS  – show no 

significant effects of the coatings on the spherical shape of the bare nanoparticles, the 

average sizes or the local order around the Fe atoms.  Diameters derived from SAXS are 

slightly higher than those from TEM, a not uncommon result, and the hydrodynamic 

diameters obtained from DLS appreciably higher as expected. 

One unexpected result from the XANES measurements is that the NPs coated with 

hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than 

the bare and citrated ones. The fact that these are strong chelators, with strong affinity for 

iron, raises the question whether they are responsible for increasing the valence state of 

the oxide on the NP surfaces and lowering the overall proportion of magnetite in the 

particles.  Also, the VSM studies show that these two coatings lead to a slightly higher 

saturation magnetization than the citrate.  
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As a guide to future work, these results demonstrate that X-ray synchrotron techniques 

can provide a rapid and definitive determination of size, shape, structure, composition 

and valence distribution of magnetic nanoparticles. 
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Highlights 

 Several coatings applied in biomedical applications to iron oxide nanoparticles show no 

significant effects on size, or local structure. 

 The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of 

magnetite than the bare and citrated ones. 

 X-ray synchrotron techniques provide a rapid and definitive determination of size, shape, 

structure, composition and valence distribution of magnetic nanoparticles. 




