J. Houck and S. Wise, Distributed modular architectures linking basal ganglia and the cerebral cortex: their role in planning and controlling action, Cereb Cortex, vol.2, 1995.

D. Hebb, The Organization of Behavior, 1949.

R. Albin, A. Young, and J. Penny, The functional anatomy of basal ganglia disorders, Trends in Neurosciences, vol.12, issue.10, pp.366-75, 1989.
DOI : 10.1016/0166-2236(89)90074-X

W. Schultz, Dopamine neurons and their role in reward mechanisms, Current Opinion in Neurobiology, vol.7, issue.2, pp.191-198, 1997.
DOI : 10.1016/S0959-4388(97)80007-4

M. Ito, The Cerebellum and Neural Control, 1984.

G. Alexander and M. Crutcher, Functional architecture of basal ganglia circuits: neural substrates of parallel processing, Trends in Neurosciences, vol.13, issue.7, pp.266-7110, 1990.
DOI : 10.1016/0166-2236(90)90107-L

E. Hoshi, L. Tremblay, J. Feger, P. Carras, and P. Strick, The cerebellum communicates with the basal ganglia, Nature Neuroscience, vol.15, issue.11, pp.1491-1494, 1544.
DOI : 10.1016/S0959-4388(00)00153-7

A. Bostan, R. Dum, and P. Strick, The basal ganglia communicate with the cerebellum, Proceedings of the National Academy of Sciences, vol.107, issue.18, pp.8452-8458, 2010.
DOI : 10.1073/pnas.1000496107

M. Ito, Historical Review of the Significance of the Cerebellum and the Role of Purkinje Cells in Motor Learning, Annals of the New York Academy of Sciences, vol.80, issue.1 THE CEREBELLU, pp.273-88, 2002.
DOI : 10.1046/j.1460-9568.2002.02094.x

A. Keeler, Intrinsic Synaptic Organization of the Motor Cortex, Cerebral Cortex, vol.3, issue.5, pp.430-471, 1993.
DOI : 10.1093/cercor/3.5.430

G. Hess and J. Donoghue, Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps, J Neurophysiol, vol.71, pp.2543-2550, 1994.

G. Hammond, Correlates of human handedness in primary motor cortex: a review and hypothesis, Neuroscience & Biobehavioral Reviews, vol.26, issue.3, pp.285-92, 2002.
DOI : 10.1016/S0149-7634(02)00003-9

M. Reitz and K. Muller, Differences between `congenital mirror movements' and `associated movements' in normal children: a neurophysiological case study, Neuroscience Letters, vol.256, issue.2, pp.69-72, 1998.
DOI : 10.1016/S0304-3940(98)00748-4

M. Schieber, Constraints on somatotopic organization in the primary motor cortex, J Neurophysiol, vol.86, pp.2125-2168, 2001.

A. Pascaul-leone, D. Nguyet, L. Cohen, J. Brasil-neto, A. Cammarota et al., Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills, J Neurophysiol, vol.74, pp.1037-1082, 1995.

H. Siebner and J. Rothwell, Transcranial magnetic stimulation: new insights into representational cortical plasticity, Experimental Brain Research, vol.148, issue.1, pp.1-16, 2003.
DOI : 10.1007/s00221-002-1234-2

M. Monfils, P. Vandenberg, J. Kleim, and G. Teskey, Long-term Potentiation Induces Expanded Movement Representations and Dendritic Hypertrophy in Layer V of Rat Sensorimotor Neocortex, Cerebral Cortex, vol.14, issue.5, pp.586-93, 2004.
DOI : 10.1093/cercor/bhh020

G. Huntley, Correlation between patterns of horizontal connectivity and the extend of short-term representational plasticity in rat motor cortex, Cerebral Cortex, vol.7, issue.2, pp.143-56, 1997.
DOI : 10.1093/cercor/7.2.143

M. Monfils, E. Plautz, and J. Kleim, In Search of the Motor Engram: Motor Map Plasticity as a Mechanism for Encoding Motor Experience, The Neuroscientist, vol.24, issue.7, pp.471-83, 2005.
DOI : 10.1177/1073858405278015

J. Kleim, R. Bruneau, K. Calder, D. Pocock, P. Vandenberg et al., Functional Organization of Adult Motor Cortex Is Dependent upon Continued Protein Synthesis, Neuron, vol.40, issue.1, pp.167-76, 2003.
DOI : 10.1016/S0896-6273(03)00592-0

B. Picconi, D. Centonze, K. Håkansson, G. Bernardi, P. Greengard et al., Loss of bidirectional striatal synaptic plasticity in L-DOPA???induced dyskinesia, Nature Neuroscience, vol.6, pp.501-507, 1040.
DOI : 10.1038/nn1040

B. Picconi, G. Piccoli, and P. Calabresi, Synaptic Dysfunction in Parkinson???s Disease, Frontiers in Neurology | Movement Disorders, pp.553-72, 2012.
DOI : 10.1007/978-3-7091-0932-8_24

A. Kreitzer and R. Malenka, Striatal Plasticity and Basal Ganglia Circuit Function, Neuron, vol.60, issue.4, pp.543-54, 2008.
DOI : 10.1016/j.neuron.2008.11.005

C. Gerfen and D. Surmeier, Modulation of Striatal Projection Systems by Dopamine, Annual Review of Neuroscience, vol.34, issue.1, pp.441-66, 2011.
DOI : 10.1146/annurev-neuro-061010-113641

M. Delong, Primate models of movement disorders of basal ganglia origin, Trends in Neurosciences, vol.13, issue.7, pp.281-286, 1990.
DOI : 10.1016/0166-2236(90)90110-V

P. Montague, S. Mcclure, P. Baldwin, P. Philips, E. Budygin et al., Dynamic Gain Control of Dopamine Delivery in Freely Moving Animals, Journal of Neuroscience, vol.24, issue.7, pp.1754-1763, 2004.
DOI : 10.1523/JNEUROSCI.4279-03.2004

H. Yin, S. Ostlund, B. Knowlton, and B. Balleine, The role of the dorsomedial striatum in instrumental conditioning, European Journal of Neuroscience, vol.22, issue.2, pp.513-536, 2005.
DOI : 10.1111/j.1460-9568.2005.04218.x

B. Berger, O. Gasoar, and C. Verney, Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates, Trends in Neurosciences, vol.14, issue.1, pp.21-28, 1991.
DOI : 10.1016/0166-2236(91)90179-X

M. Raghanti, C. Simpson, J. Marcinkiewicz, J. Erwin, P. Hof et al., Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: A comparative study, Neuroscience, vol.155, issue.1, 2008.
DOI : 10.1016/j.neuroscience.2008.05.008

K. Molina-luna, A. Pekanovic, S. Röhrich, B. Hertler, M. Schubring-giese et al., Dopamine in Motor Cortex Is Necessary for Skill Learning and Synaptic Plasticity, PLoS ONE, vol.161, issue.9, 2009.
DOI : 10.1371/journal.pone.0007082.g004

D. Arco, A. Mora, and F. , Prefrontal cortex???nucleus accumbens interaction: In vivo modulation by dopamine and glutamate in the prefrontal cortex, Pharmacology Biochemistry and Behavior, vol.90, issue.2, pp.226-261, 2008.
DOI : 10.1016/j.pbb.2008.04.011

R. Hejitz, B. Kolb, and H. Forssberg, Motor inhibitory role of dopamine D1 receptors: Implications for ADHD, Physiology & Behavior, vol.92, issue.1-2, pp.155-60, 2007.
DOI : 10.1016/j.physbeh.2007.05.024

A. Korchounov and U. Ziemann, Neuromodulatory Neurotransmitters Influence LTP-Like Plasticity in Human Cortex: A Pharmaco-TMS Study, Neuropsychopharmacology, vol.148, issue.9, pp.1894-902, 2011.
DOI : 10.1007/s00415-006-0326-5

URL : https://hal.archives-ouvertes.fr/hal-00638138

A. Luft and S. Shwarz, Dopaminergic signals in primary motor cortex, International Journal of Developmental Neuroscience, vol.27, issue.5, pp.415-436, 2009.
DOI : 10.1016/j.ijdevneu.2009.05.004

Y. Ueki, T. Mima, M. Kotb, H. Sawada, H. Saiki et al., Altered plasticity of the human motor cortex in Parkinson's disease, Annals of Neurology, vol.413, issue.1, pp.60-71, 2006.
DOI : 10.1002/ana.20692

M. Ito and M. Kao, Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex, Neuroscience Letters, vol.33, issue.3, pp.253-261, 1982.
DOI : 10.1016/0304-3940(82)90380-9

D. Marr, A theory of cerebellar cortex, The Journal of Physiology, vol.202, issue.2, pp.437-70, 1969.
DOI : 10.1113/jphysiol.1969.sp008820

J. Albus, A theory of cerebellar function, Mathematical Biosciences, vol.10, issue.1-2, pp.25-6190051, 1971.
DOI : 10.1016/0025-5564(71)90051-4

P. Gilbert, A theory of memory that explains the function and structure of the cerebellum, Brain Research, vol.70, issue.1, pp.1-18, 1974.
DOI : 10.1016/0006-8993(74)90208-X

M. Ito, Mechanisms of motor learning in the cerebellum11Published on the World Wide Web on 24 November 2000., Brain Research, vol.886, issue.1-2, pp.237-282, 2000.
DOI : 10.1016/S0006-8993(00)03142-5

E. Galliano, Z. Gao, M. Schonewille, B. Todorov, E. Simons et al., Silencing the Majority of Cerebellar Granule Cells Uncovers Their Essential Role in Motor Learning and Consolidation, Cell Reports, vol.3, issue.4, pp.1239-51, 2013.
DOI : 10.1016/j.celrep.2013.03.023

A. Belmeguenai, E. Hosy, F. Bengtsson, C. Pedroarena, C. Piochon et al., Intrinsic Plasticity Complements Long-Term Potentiation in Parallel Fiber Input Gain Control in Cerebellar Purkinje Cells, Journal of Neuroscience, vol.30, issue.41, pp.13630-13673, 2010.
DOI : 10.1523/JNEUROSCI.3226-10.2010

H. Jontell and C. Hasel, Synaptic Memories Upside Down: Bidirectional Plasticity at Cerebellar Parallel Fiber-Purkinje Cell Synapses, Neuron, vol.52, issue.2, pp.227-265, 2006.
DOI : 10.1016/j.neuron.2006.09.032

G. Ohstuki, C. Piochon, and C. Hansel, Climbing fiber signaling and cerebellar gain control, Front Cell Neurosci, 2009.

V. Penhune and C. Steele, Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning, Behavioural Brain Research, vol.226, issue.2, pp.579-91, 2012.
DOI : 10.1016/j.bbr.2011.09.044

P. Gilbert and W. Thach, Purkinje cell activity during motor learning, Brain Research, vol.128, issue.2, pp.309-337, 1977.
DOI : 10.1016/0006-8993(77)90997-0

J. Medina and S. Lisberger, Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys, Nature Neuroscience, vol.6, issue.10, pp.1185-92, 2008.
DOI : 10.1038/nn.2197

N. Bentaib, M. Manto, M. Pandolfo, and J. Brotchi, Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat, J Physiol, vol.567, pp.293-300, 2005.

X. Chen and J. Wolpaw, Ablation of cerebellar nuclei prevents H-reflex downconditioning in rats, Learn Mem, vol.12, pp.28-54, 2005.

P. Nixon, The role of the cerebellum in preparing responses to predictable sensory events, The Cerebellum, vol.2, issue.2, pp.114-2210, 1080.
DOI : 10.1080/14734220309410

J. Gao, L. Parsons, J. Bower, J. Xiong, J. Li et al., Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control, Science, vol.272, issue.5261, pp.545-552, 1996.
DOI : 10.1126/science.272.5261.545

P. Dean and J. Porrill, The cerebellum as an adaptive filter: a general model, Funct Neurol, vol.25, pp.173-80, 2010.

T. Popa, B. Velayudhan, C. Hubsch, S. Pradeep, R. E. Vidailhet et al., Cerebellar Processing of Sensory Inputs Primes Motor Cortex Plasticity, Cerebral Cortex, vol.23, issue.2, pp.305-319, 2013.
DOI : 10.1093/cercor/bhs016

O. Hornykiewicz, Basic Research on Dopamine in Parkinson???s Disease and the Discovery of the Nigrostriatal Dopamine Pathway: The View of an Eyewitness, Neurodegenerative Diseases, vol.5, issue.3-4, pp.114-121, 2008.
DOI : 10.1159/000113678

H. Braak, D. Tredici, K. Rub, U. De-vos, R. et al., Staging of brain pathology related to sporadic Parkinson???s disease, Neurobiology of Aging, vol.24, issue.2, pp.197-211, 2003.
DOI : 10.1016/S0197-4580(02)00065-9

A. Kreitzer and R. Malenka, Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models, Nature, vol.277, issue.7128, pp.643-650, 2007.
DOI : 10.1038/nature05506

M. Filion and L. Tremblay, Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism, Brain Research, vol.547, issue.1, pp.142-51, 1991.
DOI : 10.1016/0006-8993(91)90585-J

N. Mallet, B. Ballion, L. Moine, C. Gonon, and F. , Cortical Inputs and GABA Interneurons Imbalance Projection Neurons in the Striatum of Parkinsonian Rats, Journal of Neuroscience, vol.26, issue.14, pp.3875-84, 2006.
DOI : 10.1523/JNEUROSCI.4439-05.2006

J. Obeso, M. Rodriguez-oroz, M. Rodriguez, R. Macias, L. Alvarez et al., Pathophysiologic basis of surgery for Parkinson's disease, Neurology, vol.5512, issue.6, pp.7-12, 2000.

R. Costa, S. Lin, T. Sotnikova, M. Cyr, R. Gainetdinov et al., Rapid Alterations in Corticostriatal Ensemble Coordination during Acute Dopamine-Dependent Motor Dysfunction, Neuron, vol.52, issue.2, pp.359-69, 2006.
DOI : 10.1016/j.neuron.2006.07.030

W. Shen, M. Flajolet, P. Greengard, and D. Surmeier, Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity, Science, vol.321, issue.5890, pp.845-51, 2008.
DOI : 10.1126/science.1160575

A. Moustafa, R. Krishna, A. Eissa, and D. Hewedi, Factors underlying probabilistic and deterministic stimulus-response learning performance in medicated and unmedicated patients with Parkinson???s disease., Neuropsychology, vol.27, issue.4, pp.498-510, 2013.
DOI : 10.1037/a0032757

D. Muslimovic, B. Post, D. Speelman, and B. Schmand, Motor procedural learning in Parkinson's disease, Brain, vol.130, issue.11, pp.2887-97, 2007.
DOI : 10.1093/brain/awm211

J. Beeler, Z. Cao, M. Kheirbek, Y. Ding, J. Koranda et al., Dopamine-dependent motor learning: Insight into L-dopa's long-duration response, Annals of Neurology, vol.67, pp.639-686, 2010.
DOI : 10.1002/ana.21947

P. Calabresi, A. Pisani, N. Mercuir, and G. Bernardi, The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia, Trends in Neurosciences, vol.19, issue.1, pp.19-24, 1996.
DOI : 10.1016/0166-2236(96)81862-5

I. Prescott, J. Dostrovsky, E. Moro, J. Hodaie, A. Lozano et al., Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson's disease patients, Brain, vol.132, issue.2, pp.309-327, 2009.
DOI : 10.1093/brain/awn322

A. Kishore, T. Joseph, B. Velayudhan, T. Popa, and S. Meunier, Early, severe and bilateral loss of LTP and LTD-like plasticity in motor cortex (M1) in de novo Parkinson???s disease, Clinical Neurophysiology, vol.123, issue.4, pp.822-830, 2012.
DOI : 10.1016/j.clinph.2011.06.034

A. Suppa, L. Marsili, D. Belvisi, A. Conte, E. Iezzi et al., Lack of LTP-like plasticity in primary motor cortex in Parkinson's disease, Experimental Neurology, vol.227, issue.2, pp.296-301, 2011.
DOI : 10.1016/j.expneurol.2010.11.020

F. Morgante, A. Espay, C. Gunraj, A. Lang, and R. Chen, Motor cortex plasticity in Parkinson's disease and levodopa-induced dyskinesias, Brain, vol.129, issue.4, pp.1059-69, 2006.
DOI : 10.1093/brain/awl031

A. Kishore, T. Popa, B. Velayudhan, T. Joseph, A. Balachandran et al., Acute dopamine boost has a negative effect on plasticity of the primary motor cortex in advanced Parkinson's disease, Brain, vol.135, issue.7, pp.2074-88, 2012.
DOI : 10.1093/brain/aws124

M. Kojovic, M. Bologna, M. Kassavetis, N. Murase, F. Palomar et al., Functional reorganization of sensorimotor cortex in early Parkinson's disease, Neurology, vol.78, 2012.

R. Nandhagopal, L. Kuramotor, M. Schulzer, E. Mak, J. Cragg et al., Longitudinal evolution of compensatory changes in striatal dopamine processing in Parkinson's disease, Brain, vol.134, issue.11, pp.3290-3298, 1093.
DOI : 10.1093/brain/awr233

E. Santini, E. Valient, A. Usiello, M. Carta, A. Borgkvist et al., Critical Involvement of cAMP/DARPP-32 and Extracellular Signal-Regulated Protein Kinase Signaling in L-DOPA-Induced Dyskinesia, Journal of Neuroscience, vol.27, issue.26, pp.6995-7005, 2007.
DOI : 10.1523/JNEUROSCI.0852-07.2007

T. Wu and M. Hallett, The cerebellum in Parkinson???s disease, Brain, vol.136, issue.3, pp.696-709, 2013.
DOI : 10.1093/brain/aws360

A. Rolland, M. Herrero, V. Carcia-martinez, M. Ruberg, E. Hirsch et al., Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism, Brain, vol.130, issue.1, pp.265-75, 2007.
DOI : 10.1093/brain/awl337

P. Heman, C. Barcia, A. Gómez, C. Ros, R. -. Bernal et al., Nigral degeneration correlates with persistent activation of cerebellar Purkinje cells in MPTP-treated monkeys, Histol Histopathol, vol.27, pp.89-94, 2012.

O. Rascol, U. Sabtini, N. Fabre, C. Brefel, I. Loubinous et al., The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients, Brain, vol.120, issue.1, 2007.
DOI : 10.1093/brain/120.1.103

T. Wu and M. Hallett, A functional MRI study of automatic movements in patients with Parkinson's disease, Brain, vol.128, issue.10, pp.2250-2259, 2005.
DOI : 10.1093/brain/awh569

H. Yu, D. Sternad, D. Corcos, and D. Vaillancourt, Role of hyperactive cerebellum and motor cortex in Parkinson's disease, NeuroImage, vol.35, issue.1, pp.222-255, 2007.
DOI : 10.1016/j.neuroimage.2006.11.047

C. Kelly, G. De-zubicaray, D. Martino, A. Copland, D. Reiss et al., L-Dopa Modulates Functional Connectivity in Striatal Cognitive and Motor Networks: A Double-Blind Placebo-Controlled Study, Journal of Neuroscience, vol.29, issue.22, pp.7364-78, 2009.
DOI : 10.1523/JNEUROSCI.0810-09.2009

F. Delis, A. Mitsacos, and P. Giompres, Lesion of the cerebellar paravermis increases dopamine D1 receptor levels in the contralateral striatum, Journal of Chemical Neuroanatomy, vol.47, pp.35-41, 2013.
DOI : 10.1016/j.jchemneu.2012.10.004

T. Wichmann and M. Delong, Models of basal ganglia function and pathophysiology of movement disorders, Neurosurg Clin N Am, vol.9, pp.223-259, 1998.

A. Kishore, T. Popa, A. Balachandran, S. Chandran, S. Pradeep et al., Cerebellar sensory processing alteration impact motor cortex plasticity in Parkinson's disease: clues from dyskinetic patients Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease, Cereb Cortex Arch Neurol, vol.61, pp.1307-1320, 2004.

G. Koch, L. Brusa, F. Carrillo, L. Gerfo, E. Torriero et al., Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease, Neurology, vol.73, issue.2, pp.113-122, 2009.
DOI : 10.1212/WNL.0b013e3181ad5387

L. Brusa, R. Ceravola, L. Kiferle, F. Monteleone, C. Iani et al., Metabolic changes induced by theta burst stimulation of the cerebellum in dyskinetic Parkinson???s disease patients, Parkinsonism & Related Disorders, vol.18, issue.1, pp.59-62, 2012.
DOI : 10.1016/j.parkreldis.2011.08.019

Z. Ni, A. Pinto, A. Lang, and R. Chen, Involvement of the cerebellothalamocortical pathway in Parkinson disease, Annals of Neurology, vol.346, issue.suppl, pp.816-840, 2010.
DOI : 10.1002/ana.22221

M. Lewis, G. Du, S. Sen, A. Kawaguchi, Y. Truong et al., Differential involvement of striato- and cerebello-thalamo-cortical pathways in tremor- and akinetic/rigid-predominant Parkinson's disease, Neuroscience, vol.177, pp.230-239, 2011.
DOI : 10.1016/j.neuroscience.2010.12.060

R. Helmich, M. Halett, G. Deuschl, I. Toni, and B. Bloem, Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?, Brain, vol.135, issue.11, pp.3206-3232, 2012.
DOI : 10.1093/brain/aws023

S. Kim, K. Udupa, C. Gunraj, F. Mazella, E. Moro et al., Effect of subthalamic nucleus stimulation on paired associated plasticity in Parkinson's disease, Abstract Book of 38th Annual Meeting of the Society for Neuroscience, 2009.