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Abstract In this article, one gives a classification of the
solutions to the one dimensional nonlinear focusing
Schrodinger equation (NLS) by considering the modulus of
the solutions in the (x, ) plan in the cases of orders 3 and 4.
For this, we use a representation of solutions to NLS
equation as a quotient of two determinants by an expo-
nential depending on ¢. This formulation gives in the case
of the order 3 and 4, solutions with, respectively 4 and 6
parameters. With this method, beside Peregrine breathers,
we construct all characteristic patterns for the modulus of
solutions, like triangular configurations, ring and others.
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Introduction

The rogue waves phenomenon currently exceed the strict
framework of the study of ocean’s waves [1-4] and play a
significant role in other fields; in nonlinear optics [5, 6], Bose—
Einstein condensate [7], superfluid helium [8], atmosphere [9],
plasmas [10], capillary phenomena [11] and even finance [12].
In the following, we consider the one-dimensional focusing
nonlinear equation of Schrodinger (NLS) to describe the
phenomena of rogue waves. The first results concerning the
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NLS equation date from the Seventies. Precisely, in 1972
Zakharov and Shabat solved it using the inverse scattering
method [13, 14]. The case of periodic and almost periodic
algebro-geometric solutions to the focusing NLS equation was
first constructed in 1976 by Its and Kotlyarov [15, 16]. The first
quasi rational solutions of NLS equation were constructed in
1983 by Peregrine [17]. In 1986 Akhmediev, Eleonskii and
Kulagin obtained the two-phase almost periodic solution to the
NLS equation and obtained the first higher order analogue of
the Peregrine breather [18-20]. Other analogues of the Pere-
grine breathers of order 3 and 4 were constructed in a series of
articles by Akhmediev et al. [21-23] using Darboux trans-
formations. The present paper presents multi-parametric
families of quasi rational solutions of NLS of order N in terms
of determinants of order 2N dependent on 2N — 2 real
parameters. The aim of this paper was to try to distinguish
among all the possible configurations obtained by different
choices of parameters, one those which have a characteristic in
order to try to give a classification of these solutions.

Expression of solu-tions of NLS equation in terms
of a ratio of two determinants

We consider the focusing NLS equation
iv,+vxx+2|v|2v:(). (1)

To solve this equation, we need to construct two types of
functions fj; and g;; depending on many parameters.
Because of the length of their expressions, one defines the
functions f, , and g, , of argument A, and B, only in the
appendix. We have already constructed solutions of equa-
tion NLS in terms of determinants of order 2N which we
call solution of order N depending on 2N — 2 real param-
eters. It is given in the following result [24-27]:
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Fig. 5 Solution 1R5+ 1 to NLS, N=3, @, =0, b; =0, d =0,
by = 10°

djl = gj,l(-x7 1, O>7

H-2g
dy = ?k—é (x,1,0),
55 - = djNJrl = gj,N+1(x7 I8 O)a
- - 0 Pgini
Fig. 3 Solution 176 to NLS, N=3, a4, =0, b; =10*, 4, =0,b, =0  djyx = 627’:—2 (x,1,0),
€
Theorem 1  The functions v defined by 2<k=<N,1<j<2N (3)
det((njk)jke[l 2N]) —_ The functions f and g are defined in (9), (10), (11), (12).
V(X, t) _ » ) it—igp (2)
det((djr) i ke[12N] )
are quasi-rational solution of the NLS Eq. (1) depending  Patterns of quasi rational solutions to the NLS
on 2N — 2 parameters aj, ij, 1<j<N —1, where equation
njt = fj1(x,1,0), The solutions vy to NLS Eq. (2) of order N depending on
. 2k—2 i (x,1,0) 2N — 2 parameters dj, I;j (for 1 <j<N — 1) have been
B pekr already explicitly constructed and can be written as
min+1 = fin+1(x,2,0), n(x, 1)
522 vn(x, 1) = d0) exp(2ir)

j,N+1
NNtk = 662’°—2 (X, t, 0)7
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Fig. 6 Solution 1A3 + 173 to NLS, N=3, d; = 0, by = 10*, 4, = 0,
by =5x10°

Fig. 7 Solution 143+ 173 to NLS, N=3,
@ =10 b, =0

(i, Gn(2x,4t) + iHy(2x, 41) 2t
o N QN(2x7 4t)

with

Gu(X.7) = S350 au(1X",

Hy(X,T) = S0 e(T)XF,

1

on(x,T) = 335 ()X~
For order 3 these expressions can be found in [28]; in the
case of order 4, they can be found in [29]. In the following,
based on these analytic expressions, we give a classifica-

tion of these solutions by means of patterns of their mod-
ulus in the plane (x; f).

Patterns of quasi-rational solutions of order 3 with 4
parameters

P3 breather

If we choose all parameters equal to 0, d; =b; = ...
=day_| :l;N_1 =0, we obtain the classical Peregrine
breather given by

-2

Fig. 9 Solution 1710 to NLS, N=4, d; = 10%,b; = 0,d, = 0, b, = 0,
d3=0,b;=0

Triangles

To shorten, the following notations are used: for exam-
ple, the sequence 143 4 173 means that the structure has
one arc of 3 peaks and one triangle of 3 peaks. If we
choose a; or 151 not equal to 0 and all other parameters
equal to 0, we obtain triangular configuration with 6
peaks.

Rings

If we choose d, or by not equal to 0, all other parameters
equal to 0, we obtain ring configuration with peaks.

Arcs

If we choose a; and a, not equal to O and all other
parameters equal to O (and vice versa, by and b, not equal
to 0 and all other parameters equal to 0), we obtain
deformed triangular configuration which we can call as arc
structure.

* @ Springer
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Fig. 10 Solution 2R5 /5 to NLS, N=4, @, =0, b; =0, d = 103,
by=0,d3=0,b3=0

Fig. 11 Solution 1R7+ P, to NLS, N=4, 4, =0, b; =0, d, =0,
by=0,a3 =108, b3=0

Patterns of quasi rational solutions of order 4 with 6
parameters

P, breather

If we ~choose all parameters equal to O,
a, = 51 =...=dy_1 = EN,I = 0, we obtain the classical

Peregrine breather given in the following figure.
Triangles

To shorten, we use the notations defined in the previous

section. If we choose a; or 151 not equal to O and all other
parameters equal to 0, we obtain triangular configuration
with 10 peaks.

Rings

If we choose a, or asz not equal to 0 and all other param-
eters equal to 0 (or vice versa b, or b not equal to 0 and all

other parameters equal to 0), we obtain ring configuration
with 10 peaks.

Arcs

If we choose two parameters non equal to 0, @; and a,, or
a; and as not equal to O, or a, and a3 and all other

* @ Springer

= . TS
S BSamuat= | Ranntes - AASS-SREL SRS

Fig. 12 Solution 2A43/4I + T3 to NLS, N=4, d, = 10%, b =0,
G =105 by =0,d3=0,b3 =0

Fig. 13 Solution 2A3/4 + T3 to NLS, N=4, d; = 10°, b; =0,
@ =108, by =0, a3 = 0, by = 0, sight top

parameters equal to O (or vice versa for parameters b), we
obtain arc configuration with 10 peaks.'

Triangles inside rings

If we choose three parameters non equal to 0, a;, a, and a3
and all other parameters equal to O (or vice versa for
parameters b), we obtain ring with inside triangle.

Conclusion

We have presented here patterns of modulus of solutions to
the NLS focusing equation in the (x, ) plane. This study
can be useful at the same time for hydrodynamics as well
for nonlinear optics; many applications in these fields have
been realized, as it can be seen in recent works of Chab-
choub et al. [30] or Kibler et al. [31]. This study tries to
bring all possible types of patterns of quasi-rational solu-
tions to the NLS equation. We see that we can obtain 2V~!
different structures at the order N. Parameters a or b give
the same type of structure. For a; # 0 (and other param-
eters equal to 0), we obtain triangular rogue wave; for
a; # 0 (j # 1 and other parameters equal to 0) we get ring
rogue wave; in the other choices of parameters, we get in
particular arc structures (or claw structure). This type of
study has been realized in preceding works. Akhmediev

' In the following notations 244 / 31, I meaning Reversed.
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Fig. 14 Solution 244/3 + 173 to NLS, N=4, a, = 103, I;l =0,

G =0,by=0,a;=5x%x 107, b3 =0

-10
30 -20

Fig. 15 Solution 244/3 + 173 to NLS, N=4, G, = 10°, b, =0,
G =0,by=0,d3 =5 x 107, by = 0, sight top

Fig. 16 Solution 243/4 + 173 to NLS, N=4, a, =0, b =0,
=109 by =0,d3 =3 x 108, b3 =0

et al, study the order N = 2 in [32], N = 3 in [33]; the case
N = 4 was studied in particular (N = 5, 6 were also stud-
ied) in [34, 35] showing triangle and arc patterns; only one
type of ring was presented. The extrapolation was done
until the order N = 9 in [36]. Ohta and Yang [37] presented
the study of the case cas N = 3 with rings and triangles.
Recently, Ling and Zhao [38] presented the cases N =
2, 3, 4 with rings, triangle and also claw structures.

In the present study, one sees appearing richer struc-
tures, in particular the appearance of a triangle of 3 peaks
inside a ring of 7 peaks in the case of order N = 4; to the
best of my knowledge, it is the first time that this config-
uration for order 4 is presented. In this way, we try to bring
a better understanding to the hierarchy of NLS rogue wave
solutions. It will be relevant to go on this study with higher
orders.

30 -20

Fig. 17 Solution 243/4 + 173 to NLS, N=4, a4, =0, b, =0,
G =10°, by =0, a3 =3 x 108, by = 0, sight top

Fig. 18 Solution 147 + 173 to NLS, N=4, a4, =103, b =0,
G =10% b, =0,a3=10°, b3 =0

Fig. 19 Solution 147+ 173 to NLS, N=4, a4, =10°, b =0,
a =103, by =0, a3 = 10°, b3 = 0, sight top

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creative
commons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

Appendix: Parameters and functions

We consider the terms A, satisfying the relations for
1<j<N

0<}.j<17 )yNJFj = —ﬂj,

lj =1- 262j2,

with € a small number intended to tend towards 0. The
terms x,, Jy, ), are functions of the parameters A4,,

* @ Springer
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1 <v<2N. They are given by the following equations,
I<j<N:

K =20/1=74, &=k

ONyj = —0j,

KN+j = Kj,
v+ = /7

The terms x,, r = 3, 1 are defined by
y— i

Y i

TNy~

TNy T

xj=(r—1)In

XrN+j = (r — 1) In

The parameters e, are given by
Ej = laj — bj 3N+j = laj + bj,

where a; and b; are chosen in the form
N-1
_2 : = 2k+1 2kt
aj = aye€ J y
k=1

N—1
_ = 2k+12k+1
b; = E b ,
k=1

1<j<N,

for

with a;, b},, 1<j<N —1, 2N — 2, arbitrary real numbers.

The functions f,; and g, 1, 1 <v<N are defined by
fyrin =77 'sinAy,

4j
Jajro1 =7 cosAy,

— Yt gnA (9)
Sajrz1 = =y, sinAy,
42
Jajran = =y COsAy,
IN-4j-2
Jarine1r =% COSANy1,
IN-4j-3 .
Jairont1 = =) sinAy.1, 10
_ 2N (10)
Sy = =% COSANL1,
IN-4j-5 .
Jajran+1 =% SinAyy1,
4-1 .
84j+1,1 =7y, sinBy,
4j
84j+2,1 = Y} cos By, 1
_ _Wtlgnp (11)
84j+31 = —), S Dy,
442
84j+41 = —Y, ~cos By,
_ N2 p
84j+1,N+1 = Vi COSDN41,
IN-4j-3 .
84j+2N+1 = Vg sin By.t1, 1
_ N4 op (12)
84j+3N+1 = — Vg COSDN+1,
_ NS G
84j+4N+1 = Yy SINDLy41-

Y4
ﬁ @ Springer

The arguments A, and B, of these functions are defined by

1<v<2N:
Ay = K6,x/2 4 0yt — ix3, /2 — iey /2,
By, = 16,x/2 + i0yt — ix1 /2 — iey /2.
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