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ABSTRACT

We present a new blind formulation of the Cosmic Microwave Background (CMB) inference problem. The approach relies on a
phenomenological model of the multi-frequency microwave sky without the need for physical models of the individual components.
For all-sky and high resolution data, it unifies parts of the analysis that have previously been treated separately, such as component
separation and power spectrum inference. We describe an efficient sampling scheme that fully explores the component separation
uncertainties on the inferred CMB products such as maps and/or power spectra. External information about individual components
can be incorporated as a prior giving a flexible way to progressively and continuously introduce physical component separation from
a maximally blind approach. We connect our Bayesian formalism to existing approaches such as Commander, SMICA and ILC, and
discuss possible future extensions.
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1. Introduction

Observations of the Cosmic Microwave Background (CMB)
constrain cosmological models. In particular, the CMB fluctu-
ations are very sensitive to the parameters of the current stan-
dard model of cosmology (Jungman et al. 1996). Current and
future experiments designed for CMB analysis are signal dom-
inated (Planck Collaboration et al. 2013d; Schaffer et al. 2011;
Bouchet et al. 2011; Baumann et al. 2009; André et al. 2014).
Therefore the remaining issue in deriving cosmological infor-
mation from CMB is the separation between the CMB signal and
the foregrounds signals. Being able to propagate component sep-
aration uncertainties to final constraints on fundamental physics
is a leading issue in CMB analysis.

Most CMB experiments, such as the ongoing Planck mission
(Planck Collaboration et al. 2013a), observe in the microwave
domain. The CMB is not the only emission that is received
when observing from the solar system at these frequencies. Free-
free, synchrotron and thermal dust emissions emanating from
our galaxy are among the most intense signals in the microwave
domain (Sehgal et al. 2010). An observation of the sky at these
frequencies is therefore a mixture of the photons from the dif-
ferent sources. Therefore the CMB must be extracted through
component separation techniques.

Apart from the assumption that the CMB emission law fol-
lows a black body, the method presented in the present pa-
per makes no assumption about foreground emission. We make
use of Independent Component Analysis (ICA) after assuming
the mutual independence of the different signals constituting
the data. Blind separation of independent sources (e.g. Cardoso
(1998)) is a very general process that finds applications in vari-
ous fields, from telecommunication to biomedical signals. Blind

ICA has previously been applied in cosmology, particularly in
CMB analysis. FastICA (Baccigalupi et al. 2000; Maino et al.
2001) and SMICA (Cardoso et al. 2002, 2008; Delabrouille et al.
2003) are two examples of that class of methods. Other methods,
as GMCA (Starck et al. 2004; Starck et al. 2013), exploit sparsity
rather than independence to discern between different signals. In
this paper we adopt the first approach and we propose a Bayesian
instance of semi-blind ICA.

The different component separation methods are mainly
characterised by two important aspects, the basis in which the
data are expressed and the parametrisation of the data. Current
methods performs the separation in different bases such as pixel
space (Eriksen et al. 2006), spherical harmonic space (Tegmark
1997; Delabrouille et al. 2003) or needlet space (Delabrouille
et al. 2008; Moudden et al. 2005; Fernandez-Cobos et al. 2012).
Their description of the data involves either a non-parametric
model and exploits the independence between the CMB and
the non-CMB component only – e.g. NILC (Delabrouille et al.
2008), SEVEM (Fernandez-Cobos et al. 2012) – or a parametric
model that is fitted to the data – e.g. Commander (Eriksen et al.
2006). Intermediate between this these two, the SMICA method
assumes coherence through frequency and complete indepen-
dence of the components, fitting a non-parametric foreground
model to the data via likelihood maximisation.

One step forward is to chose a generic statistical model of
the components based on generic assumptions (e.g. statistical
independence of the components, spatial coherence between fre-
quencies, spatial or angular scale statistical independence) which
then allow a full Bayesian exploration of the posterior density.
The introduction of a simple but full generative model that ap-
proximates the stochastic model of the component permits prop-
agating the uncertainties within that model. The simplifying as-
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sumptions allow either a numerical marginalisation over all nui-
sance parameters (Gratton 2008) or, as in this paper, a full explo-
ration of the model and a joint sampling of both the component
maps and power spectra. The goal is to infer a CMB map and
power spectrum, not to produce physical maps of the non-CMB
components.

This paper is organised as follows. The method and the sim-
ulations to which it is applied are described in Sect. 2 and 3.
Section 4 presents the results. The robustness of the method is
analysed in Sect. 5. The method is compared to previous compo-
nent separation methods in Sect. 6. We conclude and comment
on future directions for development of these ideas in Sects. 7
and 8.

2. Method

2.1. Data model

We model the data as signal plus noise and the observed sig-
nal is assumed to be a linear mixture of several diffuse emis-
sions. Hence the following decomposition for the piece of data
dilm contained in the spherical harmonic coefficient (l,m) of the
observation map at frequency i (over Nf frequencies)

di`m =

Nc∑
k=1

Aik sk`m + ni`m , (1)

where the sum runs over the assumed number of components Nc,
sk = {sk`m; ` = `min . . . `max,m = −` . . . `} is the spherical har-
monic transform of the kth component map, Aik is the amount
of component k at frequency i and ni`m is the amount of instru-
mental noise present in di`m. We suppose the data to be beam-
corrected since debeaming in harmonic space is performed by
just dividing the data by the beam transfer functions. Eq. 1 reads
in matrix form

d`m = As`m + n`m . (2)

The Nc × Nf matrix A, which gathers all the coefficients Aik, is
called the mixing matrix. The noise is assumed to be Gaussian
with zero mean and 〈ni`mni′`′m′〉 = ν2

i`δii′δ``′δmm′ . We use C to
denote the power spectra of the components and 〈sk`msk′`′m′〉 =
Ck`δkk′δ``′δmm′ . The covariance of the data predicted by the
model of Eq. 2 is then

R` = AC`AT + N` , (3)

where (C`)kk′ = δkk′Ck` and (N`)ii′ = δii′ν
2
i` is the noise covari-

ance at multipole `.
The contribution from point sources is neglected in this

work, but is discussed in Sect. 7.

2.2. The SMICA likelihood

SMICA (Cardoso et al. 2008) is a blind method working in har-
monic space that provides an estimate of auto and cross power
spectra and frequency spectra of the various components in the
data. The parameters are determined by fitting the empirical
spectral covariance of the data to the covariance of the model
of Eq. 3. This procedure is equivalent to the maximisation of the
SMICA likelihood LSMICA that is obtained after assuming the
independence and the Gaussianity of the components, and

−2 logLSMICA (d | A,C) =
∑
`,m

log |2πR` | + dT
`mR−1

` d`m . (4)

Links between SMICA and the present method are detailed
in Sect. 6.

2.3. Bayesian formulation

The aim of the method is to provide a joint probability distri-
bution over the mixing matrix A, the component maps s and
component power spectra (A, s,C), knowing the data. If desired,
prior knowledge on the parameters can be added. This formula-
tion can be quantitatively written using Bayes theorem

P (A, s,C | d) ∝ L (d | A, s) P (A, s,C) . (5)

The likelihood L (d | A, s) encodes the model chosen together
with instrumental properties and the prior distribution P (A, s,C)
encodes the information already available about A, s, and C.
The power spectra are hyperparameters of the model since they
parametrize the prior distribution on the component s.

Considering the power spectra as additional stochastic pa-
rameters has two motivations. First, it introduces more flexibil-
ity in the modelling of the components. Second and importantly,
the posterior provides an inference of the power spectra, jointly
with the mixing matrix and the component maps. Thus, errors
introduced by the component separation step are propagated to
the power spectra.

2.3.1. The likelihood and marginalisation

If A and s`m in Eq. 2 are kept fixed then the stochasticity of
d`m relies on the instrumental noise n`m only. Noise properties
of an instrument are usually well determined but complex. Con-
sidering the noise to be Gaussian, independent from frequency
to frequency is a good approximation for the WMAP and Planck
missions (Planck Collaboration et al. 2013d; Jarosik et al. 2011).
Thus the Probability Distribution Function (PDF) for the noise
is taken to be a multivariate normal distribution with zero mean
and covariance N. The noise is supposed to be stationary, which
imply that N is diagonal in harmonic space. Therefore the like-
lihood is a product of Gaussians with mean As`m and covariance
N`, i.e. L(d | A, s) =

∏
`mN(d`m; As`m,N`).

If one wants to recover high resolution maps, then the poste-
rior PDF is defined on a ∼107-dimension parameter space. The
usual sampling schemes used to draw from intractable PDF’s are
then inefficient because of high correlation length in the chains.
One solution is to split the sampling problem into several sam-
pling problems:

P(A, s,C | d) = P(s | A,C, d)P(A,C | d) . (6)

Sampling {A,C} from the marginal P(A,C | d) and then post-
processing these samples to sample the component maps s is
equivalent to sampling {A,C} from P (A, s,C | d). The marginal is
defined on a parameter space with a considerably reduced num-
ber of dimensions, the number of parameters being of the order
of 103, and is therefore simpler to sample from. Besides, sam-
pling the maps is much more time-consuming than sampling the
mixing matrix and the covariance.

By using the definition of a marginal distribution and the
Bayes theorem of Eq. 5

P(A,C | d) ∝
∫

dsL(d | A, s)P(A, s,C) . (7)

If the A and {s,C} are independent in the prior distribution, and
if the prior on s is taken to be a Gaussian with zero mean and
covariance C, then

P (A,C | d) ∝ LSMICA(d | A,C)P(A)P(C) . (8)

Article number, page 2 of 12
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This marginalisation implicitly assumes that C and N are diag-
onal in the same basis. Thus, exploring the marginal posterior
amounts to explore the SMICA likelihood weighted by prior dis-
tributions on the mixing matrix and the power spectra.

2.3.2. Choice of priors

As stated above, the mixing matrix A and the components s are
independent in the prior PDF, i.e. P(A, s,C) = P(A)P(s |C)P(C).
In this section we describe and justify the choice of the prior dis-
tributions of our analysis. Prior information must be chosen with
care as it can introduce biases. We opted for non-informative or
mildly informative priors in order to keep the analysis as blind as
possible, although the Bayesian formalism does allow inclusion
of further information.

Component maps As a prior on component maps, we put a
zero mean Gaussian PDF uncorrelated from multipole to multi-
pole and from component to component that is parametrized by
its diagonal covariance C.

The simplest inflationary theories predict that CMB fluctu-
ations are very nearly a Gaussian random field (e.g. Mukhanov
(2013)). Therefore, choosing a Gaussian random field as a prior
for the CMB is physically well motivated. The choice of a gaus-
sian prior is for computational reasons. We will assess the impact
of this approximation in Sect. 5.

Mixing matrix The spectral behaviour of the CMB is supposed
to be perfectly known and to follow a black body law, which has
the consequence for the CMB signal to have constant response
through frequencies in the data. Thus, when expressed in ther-
modynamical units, the elements of the column related to the
CMB are fixed to the same unit constant. Regarding the other
columns, the elements are normalised with regard to a reference
frequency. The normalisation is necessary to break a continuous
degeneracy between each column of the mixing matrix and the
corresponding component spectrum. Indeed, the mixing coeffi-
cients, i.e. how much a component is present in the data, and the
standard deviation of this component can be chosen up to an ar-
bitrary factor. In order to fix this degree of freedom, one element
of each column of the mixing matrix is fixed to unity. A flat prior
is applied on the remaining elements, such that P(A) ∝ 1.

Component power spectra All components are uncorrelated
a priori. For all multipole `, C` is diagonal and thus contains
the power spectra of the components on the diagonal. The non-
informative Jeffreys prior is applied on the power spectra, i.e.
P(C) ∝

∏
k,` 1/Ck`.

2.4. Sampling techniques

The marginal posterior in Eq. 8 can not be sampled from di-
rectly and we need to explore the parameter space via sampling.
We adopt the Metropolis-Hastings formalism to draw samples
of {A,C} and then estimate the marginal posterior. Then the full
posterior over {A, s,C} is recovered sampling conditionally on
{A,C} as in Eq. 6.

In practice we let the Metropolis-Hastings sampler evolves
until it converges and draws enough (say Nsam) uncorrelated
samples of {A,C}. The chain {{An,Cn} ; n = 1 . . .Nsam} provides
an estimation of the marginal posterior. Then, for each sample
{An,Cn}, we draw a sample of the component maps sn from the

conditional P(s | A=An,C=Cn, d). The chain {{An, sn,Cn} ; n =
1 . . .Nsam} provides an estimate of the full posterior P(A, s,C | d).

The sampling of the sn is straightforward since the condi-
tional P(s | A,C, d) is a Gaussian distribution, independent from
one harmonic coefficient to another. For each piece of maps s`m
the mean and covariance are

µ`m = Σ`AT N−1
` d`m (9)

Σ` =
(
AT N−1

` A + C−1
`

)−1
. (10)

Thus, the µ`m’s are obtained by Wiener-filtering the data. There
is a loss of power at high multipole in the mean due to the filter.
Sampling the maps corrects this and the samples of the maps
have the correct covariance. Following Wandelt et al. (2004), the
sampling of the maps is done by solving the system

Σ−1
` s`m = AT N−1

` d`m + ξ`m

where ξ`m is i.i.d. for each s`m from a Gaussian distribution with
zero mean and covariance Σ−1

` .

2.5. The explicit posterior

Given the model of Eq. 2 and since we have chosen a flat prior
for the mixing matrix A and a Gaussian prior for the component
maps s and the Jeffreys prior for the power spectra C, the full
posterior we want to sample from is

P(A, s,C | d) ∝∏
`,m

|N` |
− 1

2 exp−
1
2

(d`m − As`m)T N−1
` (d`m − As`m)

∏
`,m

|C` |
− 1

2 exp−
1
2

sT
`mC−1

` s`m (11)∏
k,`

C−1
k` .

In order to draw sample from the full posterior, we split the prob-
lem, see Eq. 6 where, in our case,

P(A,C | d) ∝∏
`

|R` |
− 2`+1

2 exp−
1
2

tr
(
(2` + 1)R−1

` V`

)∏
k,`

C−1
k` (12)

P(s | A,C, d) ∝∏
`,m

|Σ` |
− 1

2 exp−
1
2

(s`m − µ`m)T Σ−1
` (s`m − µ`m) (13)

with R`, µ`m and Σ` respectively defined in Eqs. 3, 9 and 10, and
V` = 1

2`+1
∑

m d`mdT
`m.

The method consists in sampling {A,C} from Eq. 12 using
Metropolis-Hastings sampling and then choosing a subset of un-
correlated samples of {A,C} to conditionally draw s from the
Gaussian in Eq. 13. The factorisation in Eq. 6 assures that this
process amounts to sample from the full posterior of Eq. 11.

3. Simulations

For the purpose of this paper, we consider Nc = 3 components
to be separated, observed at Nf = 4 HFI frequency channels,
100GHz, 143GHz 217GHz and 353GHz. The data maps are sim-
ulated according to the linear model of Eq. 2. The set of simu-
lations is a noisy composite of CMB, thermal dust emission and
free-free emission.

Article number, page 3 of 12
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Fig. 1. The simulated data maps at four of the Planck HFI frequencies, from 100GHz to 353GHz, using realistic spatial distributions of free-free
and thermal dust emissions from the PSM. In these simulated data maps the templates of the component maps are scaled through frequency
according to the mixing matrix. We chose to work with this set of channels because the CMB is the least contaminated by foregrounds and noise
in this frequency range. The plot shows the power spectrum of the CMB (black line) and the level of foregrounds at each frequency channel in
color (red to purple is 100GHz to 353GHz).

Fig. 1 shows the four simulated observation maps. The plot
shows the CMB power spectrum in black and the power spectra
of all the foregrounds at each frequency channel in color, from
red to purple being from 100GHz to 353GHz.

3.1. The component maps and their power spectra

The data model of Eq. 2 implies that the components are coher-
ent through frequencies. Therefore, one map only of each com-
ponent is simulated.

The CMB map is simulated using the HEALPix software1

(Górski et al. 2005) from a power spectrum computed by the
CAMB software (Lewis et al. 2000) in a standard ΛCDM model.

The spatial distributions of the foregrounds are simulated
using the publicly available version of the Planck Sky Model
(PSM) (Delabrouille et al. 2012). The free-free map from the
PSM has an electron temperature of 7000K, a power law with
spectral index close to -0.15 and is a composite of maps from
Dickinson et al. (2003) and from the WMAP MEM map (Ben-
nett et al. 2012). The thermal dust map from the PSM is simu-
lated from the Schlegel-Finkbeiner-Davies map, from which the

1 http://healpix.sourceforge.net

Article number, page 4 of 12
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Fig. 2. Posterior PDF marginalised over all parameters but the CMB
power spectrum at multipole ` = 5. The histogram is an estimation of
the PDF and the solid red curve is the best fit of an inverse-gamma
function to the histogram.

ultra-compact HII regions are subtracted. More details can be
found in Delabrouille et al. (2012).

3.2. The mixing matrix

The CMB column of the mixing matrix is fixed to 1, and the nor-
malising elements are also fixed to 1. The other elements agree
with the PSM.

3.3. The noise maps

The noise is simulated at the map level, and is uncorrelated from
pixel to pixel. The noise standard deviation maps are designed
to be consistent with the scanning strategy chosen for the Planck
spacecraft and is therefore anisotropic. In the harmonic domain
the noise is characterized by one white power spectrum per fre-
quency, derived from the noise standard deviation maps. Our in-
ference approximate the noise as isotropic. The impact of this
approximation will be assessed in Sect. 5.

4. Joint inference of CMB map and power spectrum

Considering the power spectra as hyperparameters of the model
to be sampled quantifies the error in the prior model of the com-
ponent maps. Instead of of being static, we let them be con-
strained by the data, free of any informative prior. De facto, the
errors from component separation are encoded in the posterior
distribution because the maps and their power spectra are jointly
inferred with the mixing matrix. Thus, the PDF over the maps
and the power spectra takes into account the systematic errors
due to the presence of multiple components in the data and their
inference.

4.1. Power spectrum inference

All elements of one column of the mixing matrix are fixed to
the same arbitrary constant (we chose 1). This prior information
leads the sampler to distribute the information contained in the
data. Any emission that is constant through frequency is trans-
ferred into the power spectrum corresponding to the constant
mixing matrix column, and any other emission is transferred into
the other power spectra. Since the CMB is the only coherent sig-
nal with constant response across all frequencies, our analysis

Fig. 3. Input and inferred power spectra of the CMB (top) and the sum
of the non-CMB components (bottom). In the upper panel of each fig-
ure, the black dots at each multipoles represent the peaks of the marginal
posterior, the grey region shows the asymmetric ±1σ-error bar derived
from the marginal posterior, the red line is the input power spectrum.
The lower panel represents the relative error to the input power spec-
trum. The sampler accurately recovers the power spectra of the CMB.

amounts to a CMB power spectrum inference in the presence of
foregrounds systematics.

Regarding the other components, the unmixing is not unique.
Since there is no physical information on either the power spec-
tra or the frequency spectra, the outcome of these parameters is
a mixture of the input parameters that obtains the most proba-
ble configuration. A priori, we don’t expect the individual input
power spectra of the non-CMB components to be identifiable as
dust and free-free because we force no correlation between the
two spatial distributions.2

Fig. 3 shows the inference of the power spectra, the CMB
on top and the sum of the non-CMB components below. In or-
der to visualise the inference, we plot the peak of the marginal
PDF for each multipole. The peaks are represented by black dots
in the upper panel of the each plot of the figure. As expected
for the CMB, the shape around the peaks at low multipole is
not symmetric. An inverse-gamma distribution fits the individ-
ual marginal distributions well, see Fig. 2, as expected (see e.g.
Wandelt et al. (2004)). The grey region represents the shape as
if the distribution were a two-sided Gaussian distribution: up-

2 Physically, dust and free-free are spatially correlated since both of
them are more prevalent in the galactic disk than at high latitudes
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Fig. 4. Input and residual CMB map. This residual map represents the absolute value of the difference between the sample mean and the input
map. The errors are wider in the galactic plane but the uncertainties in this region of the sky are also larger, as shown on Fig. 5. To show the noise
in the residual map, it is shown on a decimal logarithm scale.

per error is one upper standard deviation and the lower error is
one lower standard deviation. The solid red line shows the input
power spectrum. The lower panel of each plot in the figure shows
the relative error to the input power spectrum. The input power
spectrum of the CMB lies within the error bars and the recovery
is accurate at better than the percent level. For the sum of the
non-CMB components, small biases appear from ` = 1000. The
biases are due to the fact that the correlation between the com-
ponents are not taken into account, as explain in Sect. 5. These
biases are small compared to the CMB power and therefore have
no significant effect on the CMB inference.

4.2. Map inference

Marginalising the posterior over all parameters but one pixel of
one component map leads to a distribution which is consistent
with a Gaussian distribution. We therefore consider the sample
mean of the map samples, which is an estimate of the mean pos-
terior CMB map, as a reference for a recovered CMB map. Fig. 4
shows the input CMB map and the absolute value of the residual
map. There is more residual error in the galactic plane because
of foreground contamination. Pixels are correlated in the poste-
rior but qualitative errors on the recovered map are given by the
sample variance of each pixel.

Article number, page 6 of 12
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Fig. 5. Top: Standard deviation map of the CMB map samples. The posterior distribution is wider in the region of the galactic plane. Bottom:
Standardized error map, all red pixel have value 4 or more. This map is the ratio between the residual map of the CMB and its standard deviation
map (top). Note that the posterior standard deviation map only represents the part of the uncertainty that is uncorrelated from pixel to pixel while
the Bayesian analysis returns a fully correlated error model for the recovered map shown in Fig. 4. Standardizing with the uncorrelated errors
reveals two things: the isotropic noise approximation leads to overestimated uncertainties in low noise regions; and an uncorrelated error model
does not capture the uncertainties in regions where foregrounds dominate. See Fig. 6 for a visualization of correlated uncertainties.

Fig. 5 shows a map containing the sample standard devia-
tion of each pixel of the CMB map. As stated above, the errors
on the CMB map include the uncertainty due to the presence of
galactic emission. We also plot in Fig. 5 the standardized error
map, i.e. the ratio between the residual map and the standard
deviation map. The isotropic noise approximation leads to an
overestimation of the error bars in the regions of low noise. The
per-pixel error is underestimated in highly contaminated regions.
The residuals have strong spatial correlations, see Fig. 6. An-
other explanation could be that the Gaussian model is too coarse

an approximation in regions where the foregrounds are the most
intense and highly non-Gaussian. If it is the case, we could use
these results to construct masks from the sample variance map to
mask the observation maps where necessary, since these regions
are correlated to the regions of high variances in the sample vari-
ance map (top of Fig. 5).

Pixels in the posterior are correlated and the sample vari-
ance map only is not sufficient to fully describe the error on the
reconstructed CMB map. To show the correlation, we compute
the correlation matrix of the CMB map samples on a lower res-

Article number, page 7 of 12
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Fig. 6. The figure shows two rows of the posterior correlation matrix for the 2 pixels marked by a black cross in each map at HEALPix resolution
parameter Nside = 16. The inferred uncertainties due to foreground removal are highly correlated in the galactic plane and must be taken into
account in a meaningful statistical interpretation of the recovered CMB map.

olution map. The correlation matrix has a row for every pixel
showing the correlation of this pixel to all other pixels. Figure
6 shows the correlation maps of two pixels in the galaxy plane.
The pixels in the galactic plane are highly correlated, which ex-
plains at least part of the excess of χ2 in the galactic plane of
Fig. 5. An eigenvalue analysis of the correlation matrix shows
that, in addition to noise uncertainties on small scales, the fore-
ground subtraction uncertainties are dominated by a few, highly
correlated modes, see Fig. 7.

5. Model checking

In Fig. 3, the uncertainties on the reconstruction directly rely on
the shape of the posterior. Therefore the errors are correctly es-
timated if the a priori model correctly describes the data. It is
therefore important to asses the quality of the fit achieved by the
model through model checking (Gelman & Meng 1996). In or-
der to check for biases in the reconstruction due to assumptions
on the statistical properties of the components, we measure the
mismatch between the empirical covariance of the data and the
covariance of the data model of Eq. 3. Following the analysis of
Delabrouille et al. (2003), we examine for each ` the quantity

D` = (2` + 1)
[
tr

(
R̂`R−1

`

)
− log

∣∣∣R̂`R−1
`

∣∣∣ − Nf

]
Article number, page 8 of 12
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Fig. 7. The hundred largest eigenvalues of the posterior correlation ma-
trix of the low resolution CMB map. Two modes dominate.

with R̂` the estimation of the data covariance at multipole `. D`

is simply the log-likelihood, rewritten as twice the Kullback-
Leibler divergence between the two PDF p`(d | R̂`) and p`(d |R`)
with

p`(d |Σ) =
∏̀
m=−`

|2πΣ|−1/2 exp−
1
2

dT
`mΣ−1d`m .

The posterior PDF on the CMB power spectrum approaches a
Gaussian as ` increases, such that D` has the properties of the
chi-squared distribution for sufficiently large `.

The number of degrees of freedom of the distribution is ob-
tained by subtracting the number of stochastic parameters per
multipole from the number of degrees of freedom of a symmet-
ric matrix Nf × Nf . Nc spectra are sampled per multipole and
the mixing matrix is sampled once for all multipoles. Thus, if
the number of degrees of freedom within a mixing matrix is dis-
tributed over all multipoles, the number of degrees of freedom
of the chi-squared distribution followed by each D` is

Ndof = Nf (Nf + 1) /2 −
[
Nc +

(Nf − 1)(Nc − 1)
(`max − `min + 1)

]
' Nf (Nf + 1) /2 − Nc .

In particular E [D`] = Ndof , which does not depend on `. In our
test case Ndof = 7.

In Fig 8 we plot the D`’s for R` containing the inferred value
of {A,C}. For comparison, we also plot the D`’s in the case where
A and C are set to their input values. Although the input param-
eters are the true parameters to be recovered, the inferred values
have lower mismatch because the components are correlated in
the data but not in the model and the sampler finds uncorrelated
components that fit the data better. If the foreground modelling
matches the statistical properties of the input foregrounds, the
D`’s should follow a chi-squared distribution with a number of
degrees of freedom Ndof , whose mean Ndof is represented by the
horizontal red line on Fig. 8.

We performed a separation where the cross power spectra
of the component are taken into account during the sampling.
We do not sample the cross power spectra but we use the co-
variance of the input components instead, i.e. each C` is a non-
diagonal matrix but only the diagonal is stochastic. In Fig 9 we
plot the D`’s with the output values of {A,C} of such a run. Tak-
ing the correlation of the input component maps into account
erases the discrepancy at low `. A chi-squared distribution fits

Fig. 8. Mismatch between the data and the data modelling. Top - Di-
vergence between the data covariance and input parameters. The large
mismatch at low ` is due to correlations between the input component
maps. Bottom - Divergence between the data covariance and the re-
covered parameters. During sampling, we impose no cross-correlation.
Thus the sampler converges towards components that are uncorrelated
but whose power spectra are almost capable of capturing the covariance
of the input component maps. The red line is the mean of the expected
chi-squared distribution that the D`’s should approximate.

the histogram of the D` for ` large enough (` > 700 for this plot).
In the figure, the fit is shown by three blue solid lines, the solu-
tion of the fit and the ±1σ error on the fit. The red dashed line
represents the chi-squared distribution with the expected num-
ber of degrees of freedom Ndof and it lies within the error bars.
The remaining deviations from an `-independent distribution are
due to the differences between the data model and the data ac-
tually used. Indeed, the mismatch is completely flat and has the
appropriate degree of freedom if a set of simulations completely
consistent with the data model is used. Also, taking the correla-
tions between components into account erases the biases in the
inference of the power spectrum of the sum of the components.

Considering a Gaussian model for the components and ne-
glecting the correlations between the components do not affect
the reconstruction of the CMB power spectrum since the CMB
is not correlated to the foregrounds. On another hand, neglecting
the correlation between the non-CMB components is too coarse
an approximation if one also wants to recover the galactic com-
ponents.
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Fig. 9. Mismatch between the data and the result of a sampler that in-
cludes the input correlations between the components during the sam-
pling process (top) and its PDF (bottom). In the upper panel the red line
represents the mean of the expected chi-squared distribution that the
D`’s should follow. In the bottom panel, the blue lines are the best χ2-fit
to a chi-squared curve and the ±1 standard deviation error from the fit.
The red dashed line represents the chi-squared distribution with the ex-
pected number of degrees of freedom Ndof = 7. The introduction of the
correlation between the input component erases the large discrepancy
at low multipole.

6. Comparison to previous component separation
methods

6.1. Comparison to Commander

As our method, Commander (Eriksen et al. 2006, 2008) is a
Bayesian formulation of the joint component separation and
CMB power spectrum inference problem. The main difference
between the two approaches is the parametrisation of the prob-
lem.

Commander makes intensive use of parametric models to
describe the physical emissions while we adopt a quasi-blind
and a phenomenological description of the different components.
Thus Commander infers maps and CMB power spectrum within
a constraining physical model, and therefore the most probable
values of the parameters and their errors depends on this model.
We do not rely on any physical assumption, except for the con-
stant response of CMB signal across frequencies. The drawback
is that only the recovered map and power spectrum of the CMB

have a physical meaning but the non-trivial difference is that our
results do not depend on physical modelling assumptions.

In addition, Commander works at the map level whereas our
method works at the multipoles level. Thus, our sampler is fast
and allows treatment of high resolution data maps.

6.2. Comparison to SMICA

Spectral Matching Independent Component Analysis (SMICA)
(Cardoso et al. 2008) is a method that provides component power
spectra and mixing coefficients. The parameters are estimated by
finding the best match between an A- and C-dependent covari-
ance and an empirical data covariance. Depending on the binning
of the power spectrum, and following the original formulation
of SMICA, the method is equivalent to a maximisation with re-
spect to {A,C} of the SMICA likelihood of Eq. 4. One among
several applications of this method is to apply a Wiener filter to
the data with the solution of the maximisation in order to recover
the component maps.

We can understand SMICA analysis from a Bayesian per-
spective as follows:

1. Begin with the Bayesian formulation, Eq 5,
2. Choose Gaussian priors for the components, flat priors for

the mixing matrix and the power spectra,
3. Marginalise the posterior over all component maps,
4. Maximise the obtained marginal distribution with respect to

A and C.

In the Bayesian formulation, maximising the marginal poste-
rior P(A,C | d) in Eq. 8 is equivalent to maximising the likeli-
hood in Eq. 4. Thus, instead of just finding the peak of the dis-
tribution like SMICA does, the Bayesian sampler explores the
whole distribution over A and C, and therefore returns an error
model for the cleaned CMB map that includes foreground clean-
ing uncertainties. In addition, the power spectrum inference is
marginalised over foreground cleaning uncertainties.

6.3. Comparison to standard ILC

The Internal Linear Combination (ILC) method (Bennett et al.
1992) provides a map of a component, given its frequency de-
pendence. The method involves a weighted average of the ob-
servation maps in order to cancel all components but the one of
interest. Usually, ILC is derived by minimizing the variance of a
linear combination of the observation maps. The remaining fluc-
tuations are the CMB anisotropies.

ILC can also be derived by adopting a Bayesian point of
view:

1. Begin with the Bayesian formulation, Eq 5,
2. Choose Gaussian priors for the component, flat priors for the

mixing matrix and the power spectra,
3. Marginalise the posterior over all component maps but the

CMB map,
4. Maximise the obtained marginal distribution with regard to

the CMB map.

The solution is

ŝcmb,`m =
eT

(
N` + AC`AT

)−1

C−1
cmb,` + eT (

N` + AC`AT )−1 e
d`m (14)

where here the Nf × (Nc − 1) mixing matrix A has no column
dedicated to the CMB, C` is the covariance of all components
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but the CMB at multipole ` and e = (1 . . . 1)T , i.e. the frequency
response of the CMB. The standard ILC formula is

ŝcmb,`m =
eT C−1

d

eT C−1
d e

d`m (15)

where Cd is an estimate of the data covariance

Cd`m = Ccmb,`eeT + AtrueCtrue,`mAT
true + N`m . (16)

If the CMB fluctuations are neglected in the ILC formula, and
if the prior variance of the CMB is infinite (i.e. flat prior) in
the Bayesian formula 14 then the two approaches are equivalent.
The ILC method naturally chooses an estimation of the true mix-
ing matrix and the true power spectra of the components. That is
why, despite its very simple formulation and its approximations,
the ILC method is physically consistent.

7. Discussion and future works

The fact that the sampler can not distinguish between non-CMB
emissions is due to a additional degrees of freedom. Without
any information about the physical emissions, all the recovered
components others than CMB are a mixture of the true signals.
Putting a prior either on the mixing matrix, i.e. import knowl-
edge about the frequency spectra, or on the shapes of the com-
ponent power spectra would break the degeneracies. Although
the constraints of the priors can be controlled, the blindness of
the method would be lost with this introduction of a priori in-
formation. Furthermore, in this paper we impose decorrelation
between the component maps. The foregrounds could be mod-
elled in more detail to get a full component separation method,
but the focus here is on CMB reconstruction.

The next step is to apply the method to real data. The main
problem is the instrumental noise. In this paper we assume a
simple noise model. To deal with real data noise requires devel-
oping a more realistic noise model. A full model of correlated
noise involves very large covariance matrices. Therefore alterna-
tive ways to deal with noise like half-ring half difference maps
or noise simulations should be considered.

Unresolved point sources appear as extra power at small an-
gular scales of the inferred CMB power spectrum. Masking the
listed point sources and inpainting in the mask would be a way to
address the point sources issue. In addition allowing the compo-
nents to mix differently in different regions of the sky or in differ-
ent angular scale ranges by allocating different mixing matrices
in each range would reduce mismatch due to lack of coherence.
Also, foregrounds that are not fully coherent from frequency to
frequency may be modelled by increasing the number of com-
ponents in our model.

In this work we reconstructed the CMB maps on the full sky.
It remains to be seen if this is achievable on realistic data. Since
our approach is similar to the one by SMICA, which provides
a clean map on a large fraction of the sky in Planck analysis
(Planck Collaboration et al. 2013b), treatment of almost full sky
data should be feasible. Since we work under the assumption of
diagonal covariances in `-space the effect of a small mask needs
to be tested. It may be possible to avoid masking using inpaint-
ing. If necessary a Wiener filter method such as Elsner & Wan-
delt (2013) could be used to implement a full Gibbs sampling
approach.

If joint modelling of foregrounds allows working with a large
part of the sky, we may be able to ignore mode coupling effects
due to the mask with high accuracy.

Although in this paper we chose to address component sep-
aration with a blind analysis, we can use the flexibility of the
Bayesian formalism in order to introduce physical parametri-
sation of the problem. The current understanding of physical
galactic and extra-galactic phenomena can be progressively in-
troduced by a more detailed data model and by assigning a
parametrized prior PDF on the foregrounds. The CMB power
spectrum is also highly parametrizable since its shape depends
on a small number of cosmological parameters (Planck Collab-
oration et al. 2013c). Thus a joint inference of cleaned CMB
map, CMB power spectrum and cosmological parameters is con-
ceivable, thanks to fast and accurate Boltzmann code emulators
like PICO (Fendt & Wandelt 2007). A less parametric approach
would be to exploit the smoothness of the power spectra through
binning or representation in terms of smooth basis function, such
as splines.

Also, as in other component separation methods, the
Bayesian formulation presented in this paper can be extended
to infer the CMB polarisation power spectrum.

We leave these further explorations to future work.

8. Conclusion

We have presented a new formulation for the CMB foreground
cleaning. In our analysis, we avoid physical parametrisations,
except that the CMB behaves like a black body and we model
the components as Gaussian random fields. The CMB is then
cleaned by jointly inferring CMB, galactic residuals, and point
source power spectra and frequency spectra. This Bayesian
method provides an evaluation of a posterior PDF for the CMB
power spectrum which thus takes into account uncertainties due
to the removal of foreground contamination. Full maps of CMB
anisotropies are recovered with their own PDF which reveals
that the dominant foreground residuals are captured in terms of
a small number of error modes. We also showed that previous
component separation methods can be derived as special cases
of our Bayesian formulation, which thus provides a unified ap-
proach for semi-blind foreground cleaning from multi-frequency
CMB data.
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