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Period spacings in red giants?

IV. Toward a complete description of the mixed-mode pattern

B. Mosser1, C. Gehan1, K. Belkacem1, R. Samadi1, E. Michel1, M-J. Goupil1

LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Pierre et Marie Curie, Université Paris 
Diderot, 92195 Meudon, France; benoit.mosser@obspm.fr

ABSTRACT

Context. Oscillation modes with a mixed character, as observed in evolved low-mass stars, are highly sensitive to the
physical properties of the innermost regions. Measuring their properties is therefore extremely important to probe the
core, but requires some care, due to the complexity of the mixed-mode pattern.
Aims. The aim of this work is to provide a consistent description of the mixed-mode pattern of low-mass stars, based
on the asymptotic expansion. We also study the variation of the gravity offset εg with stellar evolution.
Methods. We revisit previous works about mixed modes in red giants and empirically test how period spacings, rotational
splittings, mixed-mode widths, and heights can be estimated in a consistent view, based on the properties of the mode
inertia ratios.
Results. From the asymptotic fit of the mixed-mode pattern of a large set of red giants at various evolutionary stages,
we derive unbiased and precise asymptotic parameters. As the asymptotic expansion of gravity modes is verified with
a precision close to the frequency resolution for stars on the red giant branch (10−4 in relative values), we can derive
accurate values of the asymptotic parameters. We decipher the complex pattern in a rapidly rotating star, and explain
how asymmetrical splittings can be inferred. We also revisit the stellar inclinations in two open clusters, NGC 6819
and NGC 6791: our results show that the stellar inclinations in these clusters do not have privileged orientation in the
sky. The variation of the asymptotic gravity offset with stellar evolution is investigated in detail. We also derive generic
properties that explain under which conditions mixed modes can be observed.

Key words. Stars: oscillations - Stars: interiors - Stars: evolution

1. Introduction

Probing the cores of stars is difficult since, generally, stel-
lar information arises from their photosphere. Fortunately,
asteroseismology of evolved stars reveals stellar interiors in
a unique and powerful way: gravity waves that propagate
throughout the core couple with pressure waves and con-
struct mixed modes that can be observed (Beck et al. 2011;
Bedding et al. 2011; Benomar et al. 2014). The measure-
ment of the global seismic properties of these mixed modes
then carries unique information on the core structure (e.g.,
Montalbán et al. 2013; Lagarde et al. 2016; Bossini et al.
2015, 2017). Observations with the space missions CoRoT
and Kepler have provided the measurement of the asymp-
totic period spacings (Mosser et al. 2012b; Vrard et al.
2016), of the differential-rotation profile in red giants (Beck
et al. 2012; Deheuvels et al. 2014, 2015), and of the core ro-
tation for about 300 stars analyzed by Mosser et al. (2012c).

Most of the previous studies are based on the measure-
ment and analysis of global seismic parameters, such as the
asymptotic large separation ∆ν and the asymptotic period
spacings ∆Π1 (e.g., Miglio et al. 2017). It is now time to
access the properties of individual frequencies in red giants.
Up to now, most of the studies (e.g., Baudin et al. 2012; Di
Mauro et al. 2016) were limited to stars on the red giant
branch (RGB). Two main reasons explain this restriction:
first, the oscillation spectra benefit from a better relative
frequency resolution for this evolutionary stage; second, the

oscillation spectra remain simple, with rotational splittings
smaller than period spacings. When stars evolve, these fea-
tures become intricate, so that confusion is possible. For the
most evolved stars, mixed modes are no longer observable
(e.g., Baudin et al. 2012; Mosser et al. 2013; Stello et al.
2014).

The understanding of any complicated mixed-mode os-
cillation pattern must be based on an unambiguous identifi-
cation of the modes. Up to now, the most efficient method
has relied on the use of the asymptotic expansion, com-
pleted by a clear description of the influence of rotation
(Mosser et al. 2015). New insights on rotation were pro-
vided by the analysis depicted in Gehan et al. (2016), who
have developed a methodology to measure rotational split-
tings in an automated way; Gehan et al. (2017) and Gehan
et al. (2018) showed how rapid rotation can be addressed
efficiently. This efficiency derives from the use of stretched
oscillation spectra.

In this work, we first examine in Section 2 how the dif-
ferent frequency spacings in the asymptotic mixed-mode
expansion can be expressed as a function of the mode in-
ertia. New expressions are proposed for the mixed-mode
spacings and rotational splittings. Case studies are exam-
ined in Section 3 to test and validate these expressions. In
Section 4, we take advantage of the precision of the fits to
derive accurate asymptotic period spacings and gravity off-
sets; for the first time, we can exhibit the global evolution of

1



B. Mosser, C. Gehan, K. Belkacem, R. Samadi, E. Michel, M-J. Goupil: Mixed modes

these gravity offsets as a function of stellar evolution. New
insights on the rotational splittings are proposed in Section
5; in particular, we show how the asymptotic expansion can
be used to provide priors based upon physical assumptions
for any fitting code used later in the analysis. Finally, we
assess the conditions for observing mixed modes, based on
global asymptotic parameters only (Section 6). Section 7 is
devoted to our conclusions.

2. Mixed-mode parameters

Following the work of Shibahashi (1979) and Unno et al.
(1989), we derived asymptotic expansions of mixed modes
for different seismic parameters: eigenfrequencies (Mosser
et al. 2012b), period spacings (Christensen-Dalsgaard
2012), rotational splittings (Goupil et al. 2013; Deheuvels
et al. 2015), and mode widths and mode heights (Grosjean
et al. 2014; Belkacem et al. 2015b,a; Mosser et al. 2017a).
Here, we intend to revisit all these parameters that depict
the mixed-mode spectrum in order to provide a more pre-
cise and unified view.

2.1. Asymptotic expansion

The asymptotic expansion of mixed modes is an implicit
relation between the phases θp and θg of the pressure-
and gravity-wave contributions to the mixed modes, respec-
tively. It reads

tan θp = q tan θg, (1)

where q is the coupling factor (Mosser et al. 2017b). The
phases are related to the large separation ∆ν and the period
spacing ∆Π1. The most convenient expressions of the phase
refer respectively to the pure1 p and g mode spectra

θg = π
1

∆Π1

(
1

ν
− 1

νg

)
, (2)

θp = π
ν − νp

∆νp
, (3)

where νp and νg are the asymptotic frequencies of pure
pressure and gravity modes, respectively, and ∆νp is the
frequency difference between the consecutive pure pressure
radial modes with radial orders np and np +1. In this work,
we consider that the radial modes and pure dipole pres-
sure modes obey the universal red giant oscillation pattern
(Mosser et al. 2011b) and that the dipole gravity modes
follow the asymptotic comb-like pattern

1

νg
= (−ng + εg) ∆Π1, (4)

where ∆Π1 is the period spacing and εg is the gravity offset.
Mosser et al. (2015) derived that the variation of the

oscillation period P with the mixed radial order n writes

dP

dn
= ζ ∆Π1. (5)

1 Pure p (or g) modes are hypothetical modes that could be
formed in the pressure (or gravity) cavity without any coupling
with the other cavity.

A convenient way to write the parameter ζ is (Hekker &
Christensen-Dalsgaard 2017)

ζ(ν) =

[
1 +

q

N
1

q2 cos2 θp + sin2 θp

]−1

, (6)

where N = ∆ν/(ν2∆Π1) is the density of gravity modes
compared to pressure modes, in other words the number
of mixed modes in a ∆ν-wide interval. Compared to the
original form presented in Mosser et al. (2015), the rapidly
varying phase θg has been replaced by a function of θp that
varies in a smooth way.

As demonstrated by Goupil et al. (2013) and used by
subsequent work (Benomar et al. 2014; Deheuvels et al.
2015), the function ζ is connected to the inertia of mixed
modes. Introducing the contributions of the envelope and
of the core,

ζ =
Icore

Ienv + Icore
, (7)

and assuming that the envelope contribution of a mixed
mode is similar to the inertia of the closest radial mode
(Ienv ≡ Inp,0), we find that the inertia of the dipole mode
with mixed radial order n varies as

In,1 =
Inp,0

1− ζ
. (8)

For the sake of simplicity, we use hereafter the abridged
notation In for the inertia of the dipole mixed modes and I0
for the closest radial modes, and follow the same convention
for the mode heights and widths.

2.2. Seismic parameters

With ζ, we now intend to express the different seismic pa-
rameters.

2.2.1. Period spacing

Following Christensen-Dalsgaard (2012) and Mosser et al.
(2015), period spacings can be expressed as

∆P = Pn − Pn+1 = ζ ∆Π1. (9)

This expression is however ambiguous, since ζ may vary
significantly between the periods Pn+1 and Pn (> Pn+1).
Therefore, we prefer to consider the expression resulting
from the integration of Eq. (5)

∆P = Pn − Pn+1 = ∆Π1

∫ n+1

n

ζ(ν) dn = ∆Π1 〈ζ〉n, (10)

where we consider that the mixed-mode radial order n is
a continuous variable defined by dn = dτ/∆Π1, where τ
is the stretched period introduced by Mosser et al. (2015);
i.e.,

dτ =
dν

ζ ν2
. (11)

In fact, n takes consecutive integer values for each mixed
mode. In this work, we use an estimate of n = np + ng

derived from the pressure and gravity radial orders; np
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is derived from the universal red giant oscillation pattern
(Mosser et al. 2011b), whereas ng is given by

ng = −
⌊

1

ν∆Π1
− 1

4

⌋
on the RGB, (12)

ng = −
⌊

1

ν∆Π1
+

1

4

⌋
in the red clump, (13)

where the correcting terms ±1/4 that depend on the evo-
lutionary stage are justified in Section 4.4. They differ by
1/2, as depicted by the asymptotic relation (e.g., Tassoul
1980; Benomar et al. 2013). In red giants, the high den-
sity N of mixed modes implies that |ng| � np, so that the
mixed-mode orders are negative.

From the definition of the stretched period, Eq. (10)
reduces to

∆P =

∫ νn+1

νn

dν

ν2
. (14)

This evident relation justifies the relevance of Eq. (10) in-
stead of Eq. (9): using 〈ζ〉n is necessarily more accurate
than using ζ for computing period spacings.

2.2.2. Rotational splitting

As introduced by Goupil et al. (2013), the function ζ is
used to express the mixed-mode rotational splitting as a
function of the mean rotational splittings related to pure
gravity or pure pressure modes:

δνrot = ζ δνrot,g + (1− ζ) δνrot,p. (15)

As shown by subsequent works (e.g., Deheuvels et al. 2014;
Di Mauro et al. 2016; Triana et al. 2017), it is difficult to
derive from the observed rotational splittings more than
these two mean quantities.

Again, we have to solve the ambiguity of the meaning of
ζ in Eq. (15), since we can either consider the value2 ζ(νn,0),
in the framework of the perturbation of the non-rotating
frequency νn,0, or ζ(νn,m), considering that the inertia to
be considered corresponds to the actual frequency νn,m. By
analogy with the equation dealing with the period spacing,
we propose to rewrite the rotational splitting δνrot = νn,m−
νn,0, in the limit case where the mean envelope rotation is
negligible compared to the mean core rotation, as

δνrot = δνrot,core

∫ νn,m

νn,0

ζ dm = δνrot,core 〈ζ〉m, (16)

where δνrot,core ≡ δνrot,g. As for the radial order n in
Eq. (10), we consider the azimuthal order m as a continu-
ous variable varying from 0 to ±1. So, we have introduced
two mean values of ζ,

〈ζ〉n =

∫ n+1

n

ζ dn =

∫ νn+1,m

νn,m

dν

∆Π1 ν2
, (17)

〈ζ〉m =

∫ ±1

0

ζ dm =

∫ νn,±1

νn,0

dν

∆Π1 ν2
, (18)

to account for the period spacings and rotational splittings.
The relevance of 〈ζ〉n is already proven by Eqs. (10) and

2 Since we consider dipole modes only, we use a simplified
notation νn,m instead of νn,`,m.

Fig. 1. Description of the radial order closest to νmax of the
oscillation power spectrum of a typical RGB star. Frequencies,
widths, and heights are estimated according to the function ζ.
Quadupole and radial modes are plotted in gray, dipole mixed
modes in dark blue (m = −1), light blue (m = 0), or purple
(m = 1), respectively.

(11), whereas the relevance of 〈ζ〉m has yet to be demon-
strated. If we succeed, we will also have understood the
relevance of the use of stretched periods for analyzing the
mixed modes (Eq. 11).

2.3. Mixed-mode width, height, and amplitude

The work performed by the gas during one oscillation cycle
is the same for all modes, associated with surface damping,
when the radiative damping in the Brunt-Väisälä cavity is
considered as negligible. Hence, Benomar et al. (2014) have
estimated that the mode width of the mixed modes writes

Γn = Γ0
I0
In

= Γ0 (1− ζ). (19)

From this relation, we verify that mixed modes have smaller
mode widths than radial modes. However, we recall that a
family of stars behave differently, when mixed modes are
depressed because of an extra damping in the radiative in-
ner region (Mosser et al. 2012a; Garćıa et al. 2014; Mosser
et al. 2017a).

From Belkacem et al. (2015a) we also derive that the
amplitude of a resolved dipole mixed mode is

A2
n = A2

0 (1− ζ), (20)

when the geometrical factor that conducts to a visibility of
about 1.54 for red giant dipole modes (Mosser et al. 2012a,
2017a) is omitted. Such amplitudes correspond to similar
heights for radial and dipole modes since A2 = πΓH/2.
When, for non-resolved mixed modes, the width Γn is less
than the frequency resolution δfres, a dilution factor must
be considered (Dupret et al. 2009). It expresses

Hn =
π

2

Γn
δfres

H0, (21)

when radial modes are resolved, which is the common case.

2.4. Synthetic mixed-mode pattern

The previous ingredients can be used to depict an oscilla-
tion pattern. Figure 1 shows the synthetic spectrum of a
typical star on the low RGB, based on Eq. (16) for the ro-
tational splittings, on Eq. (19) for the mode widths, and on
Eq. (21) for the mode heights of unresolved modes. This
spectrum resembles the description derived by Grosjean
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et al. (2014) from non-adiabatic computations, with a time-
dependent treatment of convection which provides the life-
times of radial and non-radial mixed modes.

3. Case studies

In this Section, we use RGB stars showing clear oscilla-
tion spectra as case studies, in order to test the descrip-
tion of the mixed-mode spacings, widths, heights, and ro-
tational splittings, which were previously introduced. The
first steps consist in identifying their oscillation spectra and
in fitting as many dipole mixed modes as possible. One of
the two stars considered here, KIC 6144777 was already
investigated in many previous articles (e.g., Corsaro et al.
2015; Garćıa Saravia Ortiz de Montellano et al. 2018). The
other one, KIC 3955033, was less studied since it shows a
complicated mixed-mode spectrum; it belongs to the list
of red giants with period spacings automatically computed
by Vrard et al. (2016). We used data downloaded from the
KASOC site3, processed using the Kepler pipeline devel-
oped by Jenkins et al. (2010), and corrected from outliers,
occasional jumps, and drifts (see Garćıa et al. 2011, for
details).

3.1. Identification of the mixed modes

The location of the mixed modes primarily relies on the
firm identification of the pure pressure-mode spectrum.
The determination of the large separation ∆ν, first de-
rived from the envelope autocorrelation function (Mosser
& Appourchaux 2009), is based on the universal red giant
oscillation pattern. This method provides the efficient iden-
tification of the radial modes and helps to locate the fre-
quency ranges where mixed modes cannot be mistaken for
radial or quadrupole modes. For ` = 1 modes, the second-
order asymptotic expansion writes

νp =

(
np + εp +

1

2
+ d01 +

α

2
[np − nmax]2

)
∆ν, (22)

where εp is the acoustic offset, nmax = νmax/∆ν − εp, and
α = 0.076/nmax. The parameter d01 is function of the large
separation, under the form A+ B log ∆ν (where ∆ν is ex-
pressed in µHz), with A = 0.0553 and B = −0.036, as
determined from the large-scale analysis along the RGB
conducted by Mosser et al. (2014). The accurate determi-
nation of d01 is crucial for the determination of the pure
dipole pressure modes, hence for the determination of the
minima of the function ζ. In that respect, the small mod-
ulation of the radial-mode pattern induced by the sound-
speed glitches (Miglio et al. 2010; Vrard et al. 2015) must
be considered also. Therefore, we fit the actual position of
the radial modes first, then use them to refine the pure
pressure dipole-mode frequencies according to

νp =
(
νnp,0 + νnp+1,0

)
/2 + d01

(
νnp+1,0 − νnp,0

)
. (23)

The background parameters, derived as in Mosser et al.
(2012a), are used to correct the granulation contribution
in the frequency range around νmax. Hence, mixed modes
can be automatically identified in frequency ranges that
have no radial and quadrupole modes when their heights

3 http://kasoc.phys.au.dk

are significantly above the background. The automatic se-
lection of the modes relies on a statistical test: the height-
to-background ratio of the modes must be higher than a
threshold level Rp in order to reject the null hypothesis to a
low probability p. According to Appourchaux et al. (2006),
the relation between Rp and p depends for long-lived modes
on the observation duration Tobs and on the width ∆ν of
the frequency range where a mode is expected. This relation
expresses

Rp ' ln
Tobs∆ν

p
, (24)

when expressed in noise unit. This situation applies here,
since the precise identification of the mixed-mode pattern
is based on gravity-dominated mixed modes. With 4-year
observations and the search of a couple of modes in a fre-
quency range ∆ν = ∆ν/N , the threshold is typically 10
for a secure probability rejection at the 10−2 level. In prac-
tice, mixed modes with a height-to-background ratio higher
than 10 are used to initiate the fit. A lower threshold is
enough for the final agreement, when the synthetic mixed-
mode pattern based on secure modes can be used to search
for long-lived mixed modes in narrow frequency ranges.
We benefit from the fact that the asymptotic fit is precise
and enables to search for thin modes in a frequency range
∆ν narrower than 0.1µHz. Therefore, a threshold of 7 is
enough for rejecting the null hypothesis at the 1 %-level for
these modes whose detection benefits from the information
gained by larger peaks. The thin mode widths (Eq. 19) are
of great use to map the observed spectrum: a thin gravity-
dominated mixed mode must be found in the close vicinity,
less than 4 times the mode width, of its expected position.
For unresolved peaks, this condition is relaxed to 4 times
the frequency resolution. The global seismic parameters of
the gravity component are then derived from the methods
described in Vrard et al. (2016) and Mosser et al. (2017b),
with a least-square fit between the observed and asymptotic
patterns.

At this stage, global seismic parameters are measured
and mixed modes are identified, so that it is possible to
measure their individual properties.

3.2. Individual fitting procedure

When fitting individually mixed modes, we aim at testing
the validity of the asymptotic expression, but not at reach-
ing the ultimate precision, which is the role of a dedicated
fit of individual modes (e.g., Gaulme et al. 2009). Therefore,
in order to simplify the fit, we supposed (and checked a pos-
teriori) that all multiplets can be fitted independently. This
is not the case in all red giant spectra, but it is verified for
most stars on the early RGB or in the red clump.

From the asymptotic fit, we identify in the background-
corrected spectrum the power excess associated to each
mode. Then, we determine the central frequency of the peak
as the barycenter of the power excess. The height H and
full width at half maximum Γ are simultaneously derived
from the Lorentzian fit of the mode. We use Eqs. (19) and
(21) as priors. Modes are fitted individually when the mode
density is low, or simultaneously when the Lorentzians used
as priors overlap.

The fitted spectrum and the seismic parameters of KIC
6144777, used as a first study case, are given in Fig. 2 and
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Fig. 2. Fit of the oscillation pattern of the RGB star KIC 6144777, showing the pressure radial orders np from 9 to 12. The
power spectrum density has been divided by the fit of the background. Radial and quadrupole modes are highlighted in red and
green. The expected locations of dipole mixed modes are labelled with their mixed radial orders. When detected, mixed modes
are highlighted in dark blue (m = −1), light blue (m = 0), or purple (m = 1). ` = 3 modes, which are also mixed, are located
near the abscissa 0.22; extra peaks in the range [−0.2, −0.05] are mixed quadrupole modes. The gray dashed lines indicate the
two thresholds used in this work, corresponding to height-to-background ratios of 7 and 10.

Fig. 3. Relative residuals, multiplied by 1000, between the ob-
served and asymptotic mixed-mode frequencies in KIC 6144777.
The color of the symbols indicates the azimuthal order: dark blue
squares form = −1, light blue diamonds form = 0, or purple tri-
angles for m = 1; 1-σ uncertainties are also shown. The dashed
line corresponds to a perfect fit. The dotted lines show the
frequency resolution plus an extra-modulation ∆ν(1 − ζ)/100,
which is empirically used to define the quality of the fit.

in Table A.1. We note the large agreement between the
observed and asymptotic peaks. As in other stars show-
ing a seismic signal with a high signal-to-noise ratio (S/R),
outliers with a height-to-background value R higher than 7
are present. Their detection does not invalidate the method

presented above: they correspond either to ` = 2 or 3 mixed
modes, possibly also to ` = 4 modes, or to aliases (since the
duty cycle is about 93 %), or even to noise since the detec-
tion of 1 noisy peak with R ≥ 8 is expected in a 30-µHz
frequency range after 4 years of observation, assuming that
the noise statistic is a χ2 with two degrees of freedom.

The quality of the fit is shown by the small residuals
between the observed frequencies and the asymptotic fits
(Fig. 3); we note that these residuals are comparable to
the uncertainties, derived from Libbrecht (1992) or slightly
larger when the quality of the fit may be affected by the
high mode density. These residuals are of about the fre-
quency resolution. When pressure-dominated mixed modes
are excluded, the standard deviation of the asymptotic fit
is 11 nHz. This value represents 1.3 times the frequency res-
olution δfres, or ∆ν/1000, or a relative precision at νmax of
about 10−4. The quality of the fits is based on a small num-
ber of parameters: the radial mode frequencies, the mean
location d01 of the expected pure pressure dipole modes,
and four asymptotic parameters: the period spacing ∆Π1,
the coupling factor q, gravitational offset εg, and the mean
core rotational splitting δνrot. Residuals reach maximum
values near the pressure-dominated mixed modes: there, de-
viations of about ∆ν/200 are observed, to be compared to
the amplitudes of pressure glitches of about ∆ν/40 (Vrard
et al. 2015). We suspect that these residuals are mostly due
to the variation of the parameter d01 with frequency.
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Fig. 4. Period spacings of the RGB star KIC 6144777. Top: plot
as a function of the arithmetical mean value (ζ(νn)+ζ(νn+1))/2.
Bottom: plot as a function of the mean value 〈ζ〉n. The colors
code the azimuthal orders, as in Fig. 2; the dashed line indicates
the 1:1 relation; 1-σ uncertainties on both the spacings and the
mean values of ζ are indicated by vertical and horizontal error
bars.

3.3. Relationships with ζ

With the identification of the mixed-mode pattern, we aim
to verify the relevance of the use of 〈ζ〉n for the period
spacings, to test the relevance of 〈ζ〉m for the rotational
splittings, and further test the predictions for the mode
widths and heights.

3.3.1. Period spacings

Period spacings were fitted with different functions of ζ,
according either to the integrated value 〈ζ〉n (Eq. 10) or
to the arithmetical mean ζ = (ζn + ζn+1)/2. The result-
ing plots are shown in Fig. 4. When 〈ζ〉n is not used, one
remarks that the ∆P (ζ) relation shows a modulation that
results from the concavity of ζ. When ζ is close to unity for
gravity-dominated mixed modes, no modulation is seen; in
the range [0.7, 0.9], where the function is convex, the pe-
riod spacings are larger than predicted; below 0.7, where
the function is concave, the period spacings are smaller than
expected. The relation between ∆P and 〈ζ〉n does not show
such a modulation. Furthermore, the fit with 〈ζ〉n is nearly
linear, with residuals two times smaller. From this compar-
ison, we confirm that the use of 〈ζ〉n is preferable for fitting
the period spacings.

Fig. 5. Mean rotation splittings of the RGB star KIC 3955033.
Top: plot as a function of ζ. Bottom: plot as a function of the
mean value 〈ζ〉m. The colors code the azimuthal orders; the
dashed line indicates the 1:1 relation; 1-σ uncertainties on both
the splittings and the mean values of ζ are indicated by vertical
and horizontal error bars.

3.3.2. Rotational splittings

We performed similar test for the rotational splittings.
We a priori excluded a dependence on ζ(νn,0), since we
clearly observe asymmetrical splittings (see below, Section
5.1) that cannot be reproduced with ζ(νn,0). In fact, the
rotation rate of KIC 6144777 is not important enough
to observe any difference between the variations with ei-
ther ζ or 〈ζ〉m. We therefore performed the fit of the star
KIC 3955033 (Fig. A.3), which shows a much more rapid
rotation (Fig. 5). From the comparison of δνrot(ζ) and
δνrot(〈ζ〉m), we derive that this latter expression is more
convenient since it provides a χ2 ten times smaller than
when using ζ, associated with a much more precise esti-
mate of the core rotation: δνrot,core = 765 ± 10 nHz with
〈ζ〉m, versus δνrot,core = 730 ± 50 nHz with ζ. From this
test, we conclude positively about the relevance of the use
of 〈ζ〉m for the rotational splittings.

3.3.3. Widths, amplitudes, and heights

As expected from Eq. (19), the mixed-mode width shows
large variations: pressure-dominated mixed modes have
widths comparable to those of the radial modes, contrary
to gravity-dominated modes that are much thinner (Fig. 6,
top panel). Figure 6 also shows the validity of Eq. (19), with
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Fig. 6. Mode widths as a function of the cyclic frequency (top)
or as a function of (1 − ζ)Γ0 (bottom), for the RGB star KIC
6144777. Radial modes are plotted with square symbols and
dipole mixed modes with +; 1-σ uncertainties on Γ are indi-
cated by vertical error bars. The value 2δfres/π (Eq. 21) plotted
as a dotted line is proportional to the 4-year long frequency res-
olution. In the bottom plot, radial modes have been considered
too, assuming they have ζ = 0 as pure pressure modes. The
dashed line indicates the 1:1 relation.

the mixed-mode width proportional to (1 − ζ), except for
low values where the observations resolution hampers the
measurement of very thin widths. The precision of the fit
is limited by the stochastic excitation, especially for long-
lived peaks: the presence or absence of signal in a single fre-
quency bin can modify the width in large proportion. This
limit added to the limitation in frequency resolution does
not allow us to test if small additional radiative damping
affects the gravity-dominated mixed modes (Dupret et al.
2009; Grosjean et al. 2014).

As shown by Mosser et al. (2015), Eq. (20) has a strong
theoretical justification, since it expresses the conservation
of energy: the sum of all the energy distributed in the mixed
modes corresponds to the energy expected in the single pure
pressure mode that should exist in absence of any coupling.
So, our result is in line with the findings of Mosser et al.
(2012a), who measured that, except for depressed modes,
the observed total visibility of dipole modes matches the
theoretical expectations.

Due to the stochastic nature of the excitation, the mode
heights show a large spread (Fig. 7). Dips in the distribu-
tions occur when modes are not resolved. It is however clear
in Fig. 7 bottom that the dipole mode heights follow the

Fig. 7. Mode heights as a function of the cyclic frequency (top)
or as a function of the radial mode height, modified when
the modes are not resolved, (bottom), for the RGB star KIC
6144777. Radial modes are plotted with square symbols and
dipole mixed modes with +. The Fourier spectrum is plotted in
red (green) for emphasizing the radial (quadrupole) modes. The
dot-dashed line provides the expected heights of dipole modes,
under the assumption that the power excess mimics a Gaussian
relation (dotted line). The dashed line indicates the 1:1 relation.

radial distribution according to the trend of Eq. (21). We
note that all mixed modes associated with a given pressure
radial order show a systematic behavior. For instance, all
mixed modes of KIC 6144777 in the frequency range [137,
143µHz] associated with the pressure mode np = 11 show
lower amplitudes than expected from the Gaussian fit of the
power excess. Such a behavior recalls us that the excitation
of a mixed mode is due to its acoustic component.

3.4. Validation

From these two case studies and from other examples shown
in Appendix, we can conclude that the asymptotic fits
are relevant at all evolutionary stages, when the signal-to-
noise ratio is high enough. So, the equations developed in
Section 2 allow us to depict the mixed-mode spectrum with
a very high accuracy, when the integrated values 〈ζ〉n and
〈ζ〉m are considered for the period spacings and the rota-
tional splittings, respectively. Up to now, only red clump
stars showing buoyancy glitches cannot be fitted with a
single set of parameters.
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Fig. 8. Seismic diagram of the 372 red giants studied in this
work, with ν−1

max used as a proxy for the luminosity. The color
codes the stellar mass. Stars on the RGB are plotted with +
symbols, red clump stars with �. The dotted and dashed lines
indicate the limit of the visibility of mixed modes for RGB
and clump stars, respectively, as defined by Eq. (31). Evolution
tracks on the RGB, computed with MESA for solar metallic-
ity (Gehan et al. 2018), are shown for the stellar masses 1.0,
1.3, 1.6, and 1.9M�. The error box indicates the typical 1-σ
uncertainties on Teff and νmax.

4. Asymptotic period spacings and gravity offsets

In this section, we show how previous findings can be used
to derive accurate period spacings. We also explore the vari-
ation of the gravity offsets εg with stellar evolution. These
studies rely on the determination of the pure-gravity mode
pattern.

4.1. Observations

Our analysis was conducted over 372 red giants at various
evolutionary stages, mainly from Mosser et al. (2014) and
Vrard et al. (2016), with stars also considered in Beck et al.
(2012), Kallinger et al. (2012), Deheuvels et al. (2014), and
Corsaro et al. (2015). Data were obtained as for the two
stars considered in Section 3. When available, effective tem-
peratures are from APOGEE spectra (Albareti et al. 2017).
Selection criteria are mainly based upon the noise level,
with Kepler magnitudes brighter than 12 on the low RGB
or 14 for more evolved stars. Following the method exposed
in Section 3.1, we need data with a S/R high enough to al-
low the identification of gravity-dominated mixed modes.
When such modes are too few, measurements are impos-
sible. This condition induces a selection bias, specifically
addressed in Section 6.

The 372 stars that were analyzed are shown in a seis-
mic diagram (Fig. 8). We considered stars from the low
RGB (Fig. A.1) to more evolved RGB stars (Fig. A.2). The
spectrum of the evolved RGB star KIC 2443903 (Fig. A.4)
corresponds to a case near the limit of visibility of gravity-
dominated mixed modes, with a mode density N ' 22.4
close to the limit value above which the detection is im-
possible (Section 6). The fitting process for red clump stars
can be achieved only when the amplitude of the buoyancy
glitches remains limited (Fig. A.5); the same limitation ap-
pears in the secondary red clump (Fig. A.6). In fact, except
for red-clump stars with large buoyancy glitches (Cunha
et al. 2015; Mosser et al. 2015), the asymptotic expansion

Fig. 9. Stretched-period échelle diagram of KIC 3216736, the
only RGB star in our sample showing buoyancy glitches. The
spectrum is simple, since only m = 0 dipole mixed modes are
present, but shows a large-period modulation instead of the ex-
pected vertical alignment. Modes plotted in light blue are pres-
sure dominated; extra peaks that do not follow the global trend
are either ` = 3 modes or ` = 2 mixed modes. Red figures indi-
cate the radial orders of the radial modes. For clarity, the power
spectrum density is also plotted twice, top to tail.

Fig. 10. Comparison of the asymptotic period spacings with
previous values. Light blue triangles show the bias in period
spacings computed under the assumption εg = 0 (Mosser et al.
2014), whereas dark blue diamonds are free of this hypothesis
(Vrard et al. 2016).

provides a relevant fit. We could then obtain precise mea-
surements of the asymptotic gravity parameters in Eq. (4)
and of their uncertainties for a large number of stars. We
must report one exception: KIC 3216736 is the only RGB
star of our sample where we found buoyancy glitches and
could not provide a relevant fit of the spectrum, but only an
échelle diagram based on stretched periods (Fig. 9). Since
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Table 1. Period spacings and gravity offsets

KIC νmax ∆ν ∆Π1 q εg δνrot

(µHz) (µHz) (s) (nHz)
1576469 90.60± 0.98 7.41± 0.04 284.80± 0.64 0.23± 0.03 −0.102± 0.096 67± 6
1723700 39.42± 0.57 4.48± 0.04 323.40± 0.17 0.24± 0.04 0.066± 0.043 57± 5
2437976 89.37± 1.10 8.22± 0.05 74.70± 1.00 0.10± 0.02 −0.006± 0.095 320± 30
2443903 66.76± 0.90 7.01± 0.04 71.10± 0.02 0.12± 0.02 −0.184± 0.078 360± 4
3955033 106.10± 1.24 9.23± 0.05 74.65± 0.06 0.13± 0.02 0.207± 0.115 765± 10
5024476 68.66± 0.75 5.73± 0.04 299.60± 1.00 0.27± 0.03 −0.199± 0.102 63± 6
5112373 43.82± 0.59 4.63± 0.04 240.30± 0.14 0.19± 0.02 −0.246± 0.058 37± 3
6144777 128.23± 1.50 11.03± 0.05 79.05± 0.04 0.13± 0.02 0.210± 0.055 244± 5

10272858 341.45± 6.16 22.71± 0.14 96.90± 0.30 0.19± 0.02 0.338± 0.098 660± 20
11353313 127.29± 1.46 10.75± 0.05 76.95± 0.06 0.14± 0.02 0.290± 0.088 465± 7

The list of the full data set with 372 red giants showing an uncertainty in εg less than 0.15 is available on line as a CDS/VizieR
document.

Fig. 11. Relative precision of the asymptotic period spacings.
Same style as in Fig. 8.

we have tested more than 160 stars on the RGB, with a
systematic approach, we can conclude that the most com-
mon case on the RGB is the absence of buoyancy glitches,
as expected theoretically (Cunha et al. 2015).

Characterizing the sample we studied in terms of bias
is difficult. Apart from the RGB stars that were already
studied in detail in previous works, we have mostly treated
the stars with increasing KIC numbers. This systematic
method implies that we did not introduce any further bias
compared to the Kepler sample of red giants. Considering
a high enough S/R, which is almost equivalent to select
bright stars in the red giant domain, is not supposed to
introduce biases either. Contrary to many previous stud-
ies, we are not limited to stars showing rotational split-
tings smaller than the confusion limit (δνrot ≤ ν2

max∆Π1).
However, the presence of a strong cutoff (Section 6) lim-
its the sample, when gravity-dominated mixed modes dis-
appear. Red-clump stars with strong buoyancy glitches are
absent in our data set since the fitting process requires then
to account for the extra-modulation, which can be quite
large (about ∆Π1/10). When mixed modes are depressed,
the low height-to-background ratio of the mixed modes al-
lows the measurement of ∆Π1 (Mosser et al. 2017a) but
is not enough for fitting the pattern. Both cases deserve
specific care beyond the scope of this work.

4.2. Pure gravity modes

The identification of the mixed modes depicted in Section
3.1 allows us to retrieve the periods of the pure gravity
modes and to infer global asymptotic parameters of the
gravity components. We compute these periods from the
mixed-mode frequencies ν, using Eqs. (1) and (2),

1

νg
=

1

ν
− ∆Π1

π
atan

(
tan θp

q

)
. (25)

Close to each radial mode, when θp varies from values
less than but close to π/2 to values higher than but close
to −π/2, the atan correcting term introduces an offset of
−∆Π1, which in fact allows to relate the (N + 1) mixed
modes in the ∆ν-wide interval to N only gravity modes. In
order to use all mixed modes, including the |m| = 1 com-
ponents, we corrected first the rotational splittings, using
Eq. (16) in order to obtain ν values that are corrected from
the rotational splitting.

From the periods of the gravity modes 1/νg, we could
then derive the asymptotic parameters ∆Π1 and εg, assum-
ing the first-order asymptotic expression for pure gravity
modes (Eq. 4). In practice, a first estimate of ∆Π1 derived
from the formalism of Mosser et al. (2015) and Vrard et al.
(2016) is used in Eq. (25), then iterated with a least-square
fit of the linear variation of the gravity modes (Eq. 4).

4.3. Asymptotic period spacings

Up to now, measurements of ∆Π1 considering that εg is
a free parameter have been obtained for a few stars only
(Buysschaert et al. 2016; Hekker et al. 2018, for 3 and 22
observed stars, respectively). The offset εg being arbitrar-
ily fixed, Mosser et al. (2012b) and Mosser et al. (2014)
reported a very high precision for the period spacings, of
typically 0.1 s for stars on the RGB and 0.3 s in the red
clump. However, owing to the choice of εg = 0, their period
spacings were slightly affected by a bias of about a fraction
of νmax∆Π2

1. The values reported by Vrard et al. (2016),
free of any hypothesis on εg, are not biased but show un-
certainties typically five to fifteen times higher than the
new values. Their comparison with our data confirms the
absence of systematic offsets (Fig. 10). So, the new method
ensures accuracy, in the sense that the measurements of
∆Π1 are now free of any hypothesis on εg and prove that
the asymptotic expansion for gravity modes (Eq. 4) is rel-
evant. The relative accuracy we obtained for the period
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Fig. 12. Left: variation of εg with ∆ν, with the same style as Fig. 11. The horizontal dark gray domain corresponds to the
expected range predicted for RGB stars by Takata (2016a), whereas the dot-dashed line shows the value εg,as = 1/4 derived from
the asymptotic expansion (Provost & Berthomieu 1986). Uncertainties on εg are indicated by vertical lines; uncertainties on ∆ν
are smaller than the symbol size. Right: histograms of the distributions of εg on the RGB (blue curve) and in the red clump (red
curve). The dot-dashed line and the gray domain have the same meaning as indicated above.

spacings, assuming Eq. (4), is shown in Fig. 11. The me-
dian relative accuracies on the RGB and in the red clump
are similar, of about 7 10−4. They translate, respectively,
into 0.06 s on the RGB and 0.22 s in the red clump; Hekker
et al. (2018) reach a similar precision.

4.4. Gravity offsets εg

We could measure εg for a large set of stars. We however
have to face the indetermination of εg modulo 1: we simply
assume that εg is in the range [−0.5, 0.5]. The εg values
computed for the set of stars presented in the paper is given
in Table 1 and plotted in Fig. 12, where an histogram is also
given. The complete table is given online only. Uncertainties
on εg are small, related to the uncertainties in ∆Π1 by

δεg =
δ∆Π1

νmax ∆Π2
1

. (26)

This relation comes from the derivative of Eq. (4). As a
result, the median uncertainties are of about 0.08 on the
RGB and 0.06 in the red clump.

We noticed that the median value of εg on the RGB
is in fact close to 1/4, which is the expected asymptotic
value in absence of stratification below the convection zone
(Provost & Berthomieu 1986), derived from the contribu-
tion `/2− εas with ` = 1 and εas = 1/4. Hence, we inferred
that the degeneracy on the determination of εg is removed.
We then noted a slight decrease in εg when stars evolve on
the RGB, with an accumulation of values close to 0 for red-
clump stars. Hekker et al. (2018) reported values of εg in
the range [−0.2, 0.5] for 21 stars on the RGB, but did not

identify the accumulation of values in the range [0.20, 0.35]
predicted by Takata (2016a) for stars on the low RGB. Our
measurements fully confirm this prediction. From a check
of their data set, we interpret the differences in εg as re-
sulting from less precise gravity spacings when large ro-
tational splittings apparently modify the period spacings.
As made clear by the recent theoretical developments of
the asymptotic expansion (Takata 2016b,a), the accurate
measurement of the leading-order term ∆Π1 is necessary
to provide reliable estimates of εg.

We can study the variation of εg along stellar evo-
lution. On the RGB, the asymptotic expansion predicts
εg = 1/4 − ϑ (Provost & Berthomieu 1986), where ϑ is
a measure of the stratification just below the convection
zone. From this dependence, we can infer that the term ϑ is
certainly very small for most stars on the low RGB. Higher
values are suspected for evolved RGB stars, but with too
few stars to firmly conclude, whereas lower values are seen
for evolved RGB. We checked that the change of regime
of εg is not associated with the luminosity bump since it
occurs for more evolved stars than our sample (Khan et al.
2018). In the red clump, the ϑ correction seems important,
on the order of 0.3, with a larger spread than observed on
the RGB.

An extended study of εg can now be performed to use
this parameter as a probe of the stratification occurring
in the radiative region. This study is however beyond the
scope of this work.
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Fig. 13. Splitting asymmetry at low frequency in KIC 3955033.
Each dipole mixed mode of the spectrum is labelled with its ra-
dial and azimuthal orders. The rotational splittings of the radial
orders from −142 to −140, plotted with diamonds, do no match
the function ζ. Only the multiplet with n = −141 is complete:
the m = +1 splitting is much larger than the m = −1 splitting;
the colored regions indicate the ranges over which the function
ζ is integrated for the components of the multiplet n = −141.
The dashed lines indicate height-to-background values of 7 and
10.

5. Rotation

The fits based on the function ζ also allow us to analyze
rotational splittings in detail.

5.1. Splitting asymmetry

Recently, asymmetries in the rotational splittings were re-
ported by Deheuvels et al. (2017), as the signature of the
combined effects of rotation and mode mixing. Using both
perturbative and non-perturbative approaches, they com-
puted near-degeneracy effects and could fit the data. In fact,
the asymptotic development of mixed modes also describes
the combined effects of rotation and mode mixing, so that
the rotational splittings based on 〈ζ〉m (Eqs. 16 and 18) are
not symmetric. Inversely, the symmetrical rotational split-
ting based on ζ (Eq. 15) does not reproduce the observed
asymmetry. Hence, observing asymmetrical triplets is a way
to prove the relevance of the use of 〈ζ〉m instead of ζ.

Observing the asymmetry is challenging but possible
for stars with a rapid rotation rate. As explained by Gehan
et al. (2017, 2018), rapid rotation means δνrot ≥ ∆ν/N
for seismology. This rotation is however very slow in terms
of interior structure, so that the formalism developed by
Goupil et al. (2013) and Deheuvels et al. (2014), summa-
rized by Eq. (16), remains relevant. It simplifies the study,
as shown by Ouazzani et al. (2013) who treated the case
where rotational splittings can be as large as ∆ν. We fitted
the mixed-mode spectrum of KIC 3955033 with both the
symmetrical and asymmetrical splitting. At high radial or-
der np, it is hard to distinguish them. At low orders, when
the rotational splittings exceed the mixed-mode spacings,
the symmetrical splittings fail whereas the asymmetrical
one provides a consistent solution along the whole spec-
trum. The radial order np = 8 is shown in Fig. 13, the
whole spectrum is shown in Fig. A.3.

Fig. 14. Histogram of the inclinations measured in NGC 6819.
The dashed line indicates the sin i distribution.

5.2. Surface rotation

For stars on the low RGB, surface rotation can be inferred
from the rotational splittings (Eq. 15). The measurement
is however difficult, since it results from an extrapolation
at ζ = 0, when values are mostly obtained above ζ = 0.6
only (Fig. 5). The highest level of precision, hence the use
of 〈ζ〉m instead of ζ, is required for deriving a correct es-
timate of the surface rotation. The case of KIC 3955033
is illustrative, with a negative surface rotation when using
ζ; the use of 〈ζ〉m provides a null value (5± 20 nHz). This
case also confirms the general situation shown by previous
works (Goupil et al. 2013; Di Mauro et al. 2016; Triana
et al. 2017): deriving surface rotation can be achieved for
the low RGB only.

5.3. Stellar inclination

From its ability to fit the gravity-dominated modes that
carry useful information, the asymptotic fit can be used
to derive the stellar inclination i. The amplitude of the
m = 0 component of the dipole multiplet is proportional
to sin2 i whereas the sum of the amplitudes of the m = ±1
mode is proportional to cos2 i. From Eq. (20), a correction
factor of 1/(1− ζ) should be applied on the amplitudes: its
differential effect is however much below the precision one
can get on i.

We tested our results on a set of stars for which the incli-
nations measured with other methods have been obtained.
We checked that our results are relevant, with a precision
limited by the uncertainties on the amplitude measure-
ments. In order to avoid bias, we consider only peaks with a
height-to-background ratio larger than 8. Nevertheless, we
noted that the stochastic excitation of the modes induces
a small bias for large inclinations. Equator-on inclinations,
near 90◦, cannot be retrieved precisely, with measurements
reduced toward the range 70–80◦. As a consequence, they
are rare in our analysis. However, many stars show inclina-
tions that, according to the uncertainties, are compatible
with equator-on measurement, so that the bias does not
affect the following analysis.

We measured inclinations of red giants in the open clus-
ters NGC 6819 observed by Kepler (e.g., Basu et al. 2011;
Stello et al. 2011; Miglio et al. 2012). We selected the stars
that exhibit mixed modes and could fit 20 mixed-mode
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Table 2. Asymptotic and rotational parameters in NGC 6819

KIC ID ∆ν ∆Π1 q δνrot i
(µHz) (s) (nHz) (◦)

4937056 4.76 291.0 0.21 90 60±15
4937257a 4.13 292.1 0.19 27 72±13
4937770b 7.82 161.0 0.18 × ×
4937775a 7.33 226.3 0.21 110 75±15
5023953 4.74 293.9 0.24 50 51±28
5024327 4.72 269.5 0.20 55 56±13
5024404 4.78 242.6 0.25 110 80±10
5024414 6.47 283.0 0.30 90 45±20
5024476 5.73 299.5 0.24 56 71±11
5024582 4.76 323.5 0.22 70 55±18
5111718 10.59 88.4 0.12 410 69±21
5111949 4.81 319.0 0.28 35 66±15
5112072 10.08 91.9 0.15 350 72±12
5112361c 6.19 99.0 0.12 350 70±20
5112373 4.63 240.2 0.19 37 47±18
5112387 4.70 267.2 0.28 84 25±17
5112401 4.03 311.0 0.26 50 54±13
5112467 4.75 285.2 0.25 90 61±12
5112491 4.68 324.3 0.30 150 31±16
5112730 4.56 320.0 0.25 45 56±18
5112938 4.73 320.0 0.30 65 45±11
5112950 4.35 319.5 0.38 38 61±18
5112974 4.32 309.6 0.24 60 50±12
5113441c 11.75 89.0 0.13 730 18±18
5200152 4.73 327.2 0.28 50 70±15

a: KIC 4937257 and KIC 4937775 are absent in Corsaro et al. (2017).
b: × symbols indicate the absence of any reliable asymptotic fit for KIC
4937770.
c: Different solutions in ∆Π1 are possible for KIC 5112361, which all pro-
vide a high inclination. Different solutions in δνrot are possible for KIC
5113441, which all provide a low inclination.
Typical uncertainties for those stars with low S/R spectra are 0.7 % in ∆ν
and ∆Π1, 12 % in q, and 8 % in δνrot.

patterns with the asymptotic expansion. In one case, the
asymptotic fit is impossible, due to a low S/R. In two other
cases, different possible solutions exist, based either on dif-
ferent period spacings, or on different rotational splittings,
but without any ambiguity for the inclination measure-
ment: when two peaks dominate per period spacing, the
inclination is necessarily high, whereas it is low when one
single peak only is present. We completed this list with
other NGC 6819 members listed in Handberg et al. (2017)
and could fit two additional stars, which incidentally show
a large inclination. Results for the inclinations and rota-
tional splittings are given in Table 2. As shown in Fig. 14,
the distribution of the stellar inclinations mimics the sin i
relation expected for random inclinations, except near 90◦,
due to bias mentioned above. A similar test performed on
the open cluster NGC 6791 reaches the same conclusion.

Low stellar inclinations in NGC 6819 and 6791 were
measured by Corsaro et al. (2017), using a Bayesian anal-
ysis, from which aligned spins were inferred. Our measure-
ments however contradict their claim, as shown in Fig. 15
for NGC 6819. In fact, our measurements compared to
theirs agree for high inclinations, whereas they mostly dis-
agree for low inclinations. Comparison with the asymptotic
fits shows that their Bayesian rotational splittings are most
often overestimated and that the related inclinations are
most often underestimated.

In fact, the asymptotic fit can be used as a prior for the
Bayesian fit. It indicates that the rotational splitting is de-
rived from the thin gravity-dominated mixed modes, with

Fig. 15. Comparison of the inclinations of the spin axis of the
stars in NGC 6819. Inclinations measured by Corsaro et al.
(2017) are plotted on the x-axis, while inclinations derived from
the asymptotic analysis are on the y-axis; 1-σ uncertainties are
indicated by vertical and horizontal error bars. The red sym-
bol shows the case where no asymptotic fit could be found, and
the green ones to cases without Bayesian fit. The dashed line
corresponds to the 1:1 relation.

narrow widths (Eq. 19) and average rotational splittings
slightly inferior to the mean core rotation δνrot (Eq. 16).
Mixed modes at low pressure radial orders, with frequen-
cies much below νmax, are especially informative, since pre-
vious work has shown that their radial mode widths, hence
their mixed-mode widths according to Eq. (19), are the
thinnest possible (Fig. 5 of Vrard et al. 2018). Figure 1 of
the supplementary material of Corsaro et al. (2017) pro-
vides an explanation of the discrepant Bayesian values.
Their fit of the star KIC 5112373 in NGC 6819 provides
nearly uniform large mode widths, relevant for the pressure-
dominated mixed modes but much too high for gravity-
dominated modes, in contradiction with the physical vari-
ation indicated by Eq. (19). As a consequence, their fit as-
sumes that all the power is concentrated in the m = 0
mode; the resulting stellar inclination is 20± 8◦. We show
the asymptotic solution of KIC 5112373 in Fig. 16, with
thin gravity dominated mixed modes and the clear iden-
tification of triplets. Since m = ±1 modes are observed
all along the spectrum, our solution for the inclination is
larger, about 47± 18◦.

We provide another example with the star KIC 2437976,
a NGC 6791 member. As shown in Fig. 17, rotational split-
tings are explained in a consistent way with thin unre-
solved gravity-dominated mixed modes and a rotation rate
rapid enough to ensure that close modes do not belong
to the same multiplets. All peaks can be explained by the
m = ±1 modes. In practice, m = 0 modes are absent, so
that this star has necessarily an inclination close to 90◦,
whereas Corsaro et al. (2017) measured i ' 0◦. We con-
clude that some of the low inclinations reported in Corsaro
et al. (2017) are incompatible with the analysis presented
here. It seems that the difference is due to a too low range of
the linewidth priors in the Bayesian analysis, which favors
a solution with a low inclination angle and a high splitting.
As a result, stellar spins in old open clusters are neither
aligned nor quasi parallel to the line of sight. Our study
emphasizes a major role for the asymptotic analysis: pro-
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Fig. 16. Fit of the mixed modes corresponding to np = 7 in KIC
5112373 (NGC 6819 member). The color codes the azimuthal
order: m = +1 in purple, m = −1 in blue. The gray dashed lines
indicate the two thresholds used in this work, corresponding to
height-to-background ratios of 7 and 10. Contrary to the analysis
conducted by Corsaro et al. (2017), modes with m = ±1 are
clearly identified.

Fig. 17. Fit of the mixed modes corresponding to np = 9 in KIC
2437976 (NGC 6791 member). The color codes the azimuthal
order: m = +1 in purple, m = −1 in blue. The location of m = 0
modes is indicated in light blue, but none shows a large height
for this star seen equator-on. The gray dashed lines indicate the
two thresholds used in this work, corresponding to height-to-
background ratios of 7 and 10. Many peaks above the threshold
value 5.5 that rejects the null hypothesis at the 5 %-level follow
the mixed-mode pattern.

viding relevant estimates of all features of the mixed-mode
pattern, including mode widths.

6. Observability of the mixed modes

All the information derived from mixed modes relies on
their observability. The properties of the function ζ can be
used to assess under which conditions mixed modes can
be actually observed. To achieve this, we investigate first
the domain where pressure-dominated mixed modes are ob-
served, then the condition for observing gravity-dominated
mixed modes.

6.1. Pressure-dominated mixed modes

We can define the frequency range where mixed modes are
pressure-dominated (pm) from the full width at half min-
imum of the ζ function. So, these modes cover a range,
expressed in terms of the pressure phase θp (Eq. 6), verify-
ing

δθp|pm = 2q

√
1 +

1

N q
(27)

under the assumption that q is small, which is verified for
all stars except at the transition between subgiants and red
giants (Mosser et al. 2017b). When expressed in frequency
and compared to the large separation, this condition corre-
sponds to a frequency range surrounding each pure pressure
modes with a width δνpm defined by

δνpm

∆ν
=

2q

π

√
1 +

1

N q
. (28)

The variations in q and N explain the narrowing of the
region with pressure-dominated mixed modes when stars
evolve on the RGB. An example is shown in the Appendix
(Fig. A.4). The expression of δνpm also shows that red-
clump stars, with larger q show pressure-dominated mixed
modes in a broader region than RGB stars.

6.2. Visible gravity-dominated mixed modes

The non-dilution of the mode height expressed by Eq. 21
can be used to define a criterion of visibility of the gravity-
dominated (gm) mixed modes. So, they are clearly visi-
ble when they show heights similar to those of the pres-
sure modes (Hn = H0), hence when Γ0(1 − ζ) ≥ 2δfres/π
(Eq. 19). This condition translates into

(1− q2) sin2 θp ≤
q

N

(
π

2

Γ0

δfres
− 1

)
− q2. (29)

Except at the transition from subgiants to red giants, where
mixed modes are unambiguously visible (Benomar et al.
2013; Deheuvels et al. 2014), the terms q2 are negligible, so
that modes are clearly visible if

| sin θp|gm ≤

√
q

N

(
π

2

Γ0

δfres
− 1

)
. (30)

This condition for observing gravity-dominated mixed
modes has many consequences:
- It can be fulfilled only if the definition of the right term is
ensured, which requires a frequency resolution low enough
compared to the radial mode width. With Γ0 in the range
[100, 150 nHz], the observation must last 50-75 days at least.
In fact, mixed modes were observable with CoRoT runs
lasting about 150 days (Mosser et al. 2011a), but are hardly
observable with K2 80-day time series (Stello et al. 2017).
- When stars evolve on the RGB, the decrease in q and
increase in N contribute to the narrowing of observable
modes. Mixed modes are more easily visible in the red
clump, owing to larger q values. This criterion is implic-
itly used by Elsworth et al. (2017) for their determination
of the evolutionary state of red-giant stars.
- All mixed modes are clearly visible when the condi-
tion expressed by Eq. (30) is always met, that is when
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N ≤ q(πΓ0/2δfres−1). This condition is met for subgiants,
on the lower RGB, and for secondary-clump stars (Mosser
et al. 2014).
- No mixed mode can be observed when the condition is
so drastic that only pressure-dominated mixed modes can
be observed. The combination of the conditions expressed
by Eq. (27) and Eq. (30) yields the limit of visibility of
gravity-dominated mixed modes, expressed by a condition
on the mixed-mode density

N ≤ 1

4q

(
π

2

Γ0

δfres
− 5

)
. (31)

In the conditions of observation of Kepler, with typical pa-
rameters defined as in Mosser et al. (2017a), this limit cor-
responds to a mode density N of about 25, for RGB and
clump stars, over which no gravity-dominated mixed modes
can be identified. This theoretical estimate is observed in
practice, with a few exceptions with larger N (Fig. 8). On
the RGB, observation of mixed modes with Kepler is lim-
ited to ∆ν ≥ 6µHz, whereas the limit is around 3µHz for
clump stars. As a consequence, visible mixed modes in an
oscillation spectrum with ∆ν in the range [3, 6µHz] most
often indicate a red-clump star. Incidentally, the location
of the RGB bump was recently identified by Khan et al.
(2018) in the range [5, 6µHz], depending on the stellar mass
and metallicity. This means that sounding the bump with
mixed modes will be very difficult, if not impossible.

7. Conclusion

The asymptotic analysis allows us to depict the whole prop-
erties of the mixed-mode spectrum in a consistent way.
Period spacings, rotational splittings, mode widths, and
mode heights, all depend on the mode inertia so that all
are related to the parameter ζ. We could derive interesting
properties:

- The asymptotic fit of the mixed modes proves to be
precise and unbiased. Its precision for the RGB stars is so
high that the asymptotic expansion of gravity modes can
be validated when buoyancy glitches are absent. This en-
sures the delivery of accurate asymptotic parameters ∆Π1,
q, and εg. We found only one RGB star with such buoy-
ancy glitches; on the contrary, buoyancy glitches are often
present in red-clump stars.

- The period spacings and rotational splittings are bet-
ter estimated with integrated values of the function ζ. The
use of these mean values 〈ζ〉n and 〈ζ〉m is useful for evolved
RGB stars and is mandatory for stars with intricate split-
tings and spacings. Using the stretched period (Mosser et al.
2015) is in fact equivalent.

- The gravity asymptotic parameters ∆Π1 and εg can
now be accurately determined, with typical accuracy of re-
spectively 0.06 s and 0.1 on the RGB, and 0.22 s and 0.08
in the red clump. This opens the way to a fruitful dialogue
with theoretical developments (Takata 2006, 2016b,a) and
modeling (e.g., Bossini et al. 2015; Cunha et al. 2015).

- We have made clear that observing mixed modes in
evolved red giants requires an observation duration longer
than ' 100 days. However, gravity-dominated mixed modes
are no longer observable when the stars are more evolved
than ∆ν ' 6µHz on the RGB, or ∆ν ' 3µHz in the red
clump. These thresholds are indicative values: the natural
spread of the seismic parameters with respect to their mean
values explain slight differences.

- We have demonstrated the non-alignment of the ro-
tation axis of the stars belonging to the old open clusters
NGC 6791 and NGC 6819. These results contradict pre-
vious findings by Corsaro et al. (2017) and illustrate how
useful the asymptotic fit will be in the future when used to
define priors to any Bayesian or other type of fit of mixed
modes.
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Appendix A: Seismic parameters

We used KIC 6144777 as a case study (Fig. 2). Table A.1
provides the fit of its radial dipole mixed modes. Our results
are in agreement with those published by Corsaro et al.
(2015) and derive a similar number of modes (about 100),
but also show differences:
- The determination of the frequencies in Corsaro et al.
(2015) can be as precise as 0.3 nHz. This precision of about
δfres/30 was corrected into about δfres/10 in their corrigen-
dum (Corsaro et al. 2018), which remains surprisingly good;
the frequencies we obtain are given with a precision that is
at best about half the frequency resolution ('4 nHz).
- Their mode widths are quite different and, most often,
larger than ours;
- Heights also differ, which can come from a different treat-
ment of the time series.
A large agreement is also met with the results obtained by
Garćıa Saravia Ortiz de Montellano et al. (2018) with a
peak detection algorithm that works in a fully blind man-
ner, if we relax their uncertainties that can be as low as
δfres/20.

The potential of the comparison between methods
based on different principles is very high: coupling the
physics of the asymptotic expansion and the power of a

pure numerical approach is the next step for delivering
duly identified mixed modes.

The échelle diagrams of the stars mentioned in the
main text are also presented:
- KIC 10272858 lies on the low part of the RGB (Fig. A.1);
- KIC 11353313 is on the RGB (Fig. A.2);
- KIC 3955033 is a RGB star with a rapid core rotation
(Fig. A.3); its frequencies are given in Table A.2;
- KIC 2443903 is more evolved on the RGB, at the limit of
detection of mixed modes (Fig. A.4);
- KIC 1723700 is in the red clump star (Fig. A.5);
- and KIC 1725190 is a secondary red clump star (Fig. A.6).
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Table A.1. Oscillation pattern of the RGB star KIC 6144777

np n m ζ νas ν x Γas Γ H R
(µHz) (µHz) (µHz) (µHz) (ppm2µHz−1)

Radial modes
8 101.916 101.916 ± 0.014 0.040 0.120 ± 0.023 1390 ± 316 24.1
9 112.612 112.612 ± 0.011 0.010 0.106 ± 0.016 3314 ± 497 85.2

10 123.726 123.622 ± 0.006 0.008 0.054 ± 0.007 23358 ± 3059 338.5
11 134.574 134.534 ± 0.008 −0.003 0.087 ± 0.012 10451 ± 1305 195.7
12 145.842 145.585 ± 0.017 −0.002 0.244 ± 0.057 1491 ± 441 26.6
13 156.846 156.846 ± 0.042 0.019 0.258 ± 0.074 317 ± 121 10.7

Dipole mixed modes
8 −112 1 0.9522 105.827 105.836 ± 0.007 0.396 0.009 0.007 ± 0.004 1185 ± 281 10.1
8 −111 1 0.8506 106.633 106.648 ± 0.007 0.469 0.027 0.011 ± 0.004 2124 ± 440 26.0
8 −110 −1 0.7311 106.957 106.985 ± 0.014 0.500 0.048 0.068 ± 0.017 454 ± 149 14.5
8 −110 0 0.6467 107.134 107.137 ± 0.010 0.514 0.064 0.042 ± 0.009 658 ± 145 13.9
8 −110 1 0.5989 107.278 107.322 ± 0.008 0.530 0.072 0.040 ± 0.007 1497 ± 250 30.6
8 −109 −1 0.6428 107.551 107.604 ± 0.009 0.556 0.064 0.055 ± 0.011 1272 ± 292 17.8
8 −109 0 0.7161 107.706 107.730 ± 0.010 0.567 0.051 0.036 ± 0.008 630 ± 157 11.2
8 −109 1 0.7983 107.899 107.909 ± 0.007 0.584 0.036 0.018 ± 0.005 1646 ± 323 18.0
8 −108 −1 0.8911 108.264 108.263 ± 0.010 0.616 0.020 0.016 ± 0.005 770 ± 254 12.2
8 −108 0 0.9206 108.482 108.484 ± 0.006 0.636 0.014 0.007 ± 0.004 1554 ± 335 14.0
8 −108 1 0.9406 108.710 108.700 ± 0.011 0.655 0.011 0.014 ± 0.005 505 ± 186 8.8
8 −107 −1 0.9617 109.140 109.138 ± 0.007 0.695 0.007 0.006 ± 0.004 1303 ± 313 11.9
8 −107 0 0.9683 109.373 109.375 ± 0.008 0.716 0.006 0.005 ± 0.004 783 ± 323 7.2
8 −106 0 0.9822 110.304 110.274 ± 0.008 0.798 0.003 0.006 ± 0.004 803 ± 175 8.4
8 −104 0 0.9889 112.235 112.235 ± 0.007 −0.024 0.002 0.005 ± 0.004 959 ± 335 9.3
9 −103 −1 0.9889 112.989 113.018 ± 0.012 0.047 0.002 0.006 ± 0.004 739 ± 269 8.1
9 −103 0 0.9889 113.228 113.226 ± 0.006 0.065 0.002 0.005 ± 0.004 1736 ± 480 17.3
9 −102 −1 0.9872 113.999 113.996 ± 0.007 0.135 0.002 0.006 ± 0.004 789 ± 174 8.2
9 −102 1 0.9856 114.477 114.478 ± 0.007 0.179 0.003 0.005 ± 0.004 919 ± 297 9.4
9 −101 0 0.9800 115.262 115.254 ± 0.008 0.249 0.004 0.005 ± 0.004 701 ± 221 7.3
9 −100 −1 0.9672 116.058 116.058 ± 0.006 0.322 0.006 0.006 ± 0.004 1721 ± 254 19.0
9 −100 0 0.9600 116.292 116.285 ± 0.007 0.343 0.007 0.006 ± 0.004 1150 ± 273 12.1
9 −100 1 0.9506 116.523 116.525 ± 0.006 0.364 0.009 0.006 ± 0.004 2571 ± 532 27.2
9 −99 −1 0.9056 117.072 117.076 ± 0.009 0.414 0.017 0.022 ± 0.006 459 ± 134 12.7
9 −99 0 0.8694 117.291 117.318 ± 0.025 0.436 0.023 0.040 ± 0.013 77 ± 34 7.2
9 −99 1 0.8189 117.489 117.520 ± 0.006 0.455 0.033 0.011 ± 0.004 4320 ± 641 54.2
9 −98 −1 0.6256 117.926 117.973 ± 0.007 0.496 0.067 0.043 ± 0.007 2105 ± 327 32.6
9 −98 0 0.5622 118.077 118.138 ± 0.009 0.511 0.079 0.033 ± 0.007 5534 ± 1222 91.7
9 −98 1 0.5461 118.211 118.282 ± 0.009 0.524 0.082 0.034 ± 0.007 3206 ± 652 69.8
9 −97 −1 0.6989 118.597 118.638 ± 0.008 0.556 0.054 0.034 ± 0.007 3294 ± 723 142.5
9 −97 0 0.7744 118.766 118.815 ± 0.007 0.572 0.041 0.013 ± 0.004 3831 ± 566 66.2
9 −97 1 0.8394 118.969 118.994 ± 0.006 0.588 0.029 0.010 ± 0.004 10109 ± 1478 154.7
9 −96 −1 0.9267 119.532 119.539 ± 0.008 0.638 0.013 0.017 ± 0.005 1339 ± 307 23.5
9 −96 0 0.9428 119.758 119.758 ± 0.006 0.658 0.010 0.008 ± 0.004 4038 ± 588 46.3
9 −96 1 0.9539 119.989 119.991 ± 0.007 0.679 0.008 0.008 ± 0.004 2271 ± 444 25.7
9 −95 −1 0.9717 120.623 120.617 ± 0.006 0.735 0.005 0.006 ± 0.004 3853 ± 586 44.1
9 −95 1 0.9778 121.096 121.088 ± 0.006 0.778 0.004 0.006 ± 0.004 6667 ± 971 77.7
9 −94 −1 0.9828 121.763 121.749 ± 0.006 −0.162 0.003 0.006 ± 0.004 5234 ± 769 61.2
9 −93 −1 0.9867 122.933 122.925 ± 0.010 −0.055 0.002 0.007 ± 0.004 2021 ± 647 27.2

10 −92 0 0.9861 124.367 124.355 ± 0.006 0.074 0.002 0.006 ± 0.004 1007 ± 169 13.4
10 −91 −1 0.9833 125.344 125.329 ± 0.007 0.162 0.003 0.005 ± 0.004 2714 ± 740 33.8
10 −91 0 0.9817 125.582 125.568 ± 0.006 0.184 0.003 0.005 ± 0.004 1574 ± 381 19.7
10 −91 1 0.9800 125.819 125.796 ± 0.006 0.205 0.004 0.006 ± 0.004 5347 ± 831 67.2
10 −90 −1 0.9706 126.575 126.561 ± 0.007 0.274 0.005 0.006 ± 0.004 1987 ± 407 25.3
10 −90 0 0.9661 126.810 126.799 ± 0.008 0.296 0.006 0.009 ± 0.004 2797 ± 714 35.8
10 −90 1 0.9594 127.042 127.032 ± 0.006 0.317 0.007 0.006 ± 0.004 5283 ± 1186 67.9
10 −89 −1 0.9167 127.792 127.789 ± 0.006 0.385 0.015 0.010 ± 0.004 2454 ± 424 31.9
10 −89 0 0.8900 128.014 128.018 ± 0.007 0.406 0.020 0.007 ± 0.004 1441 ± 297 18.8
10 −89 1 0.8528 128.220 128.231 ± 0.007 0.425 0.026 0.009 ± 0.004 6599 ± 1274 92.5
10 −88 −1 0.6144 128.822 128.875 ± 0.008 0.484 0.069 0.021 ± 0.005 6832 ± 1038 132.3
10 −88 0 0.5406 128.970 129.032 ± 0.008 0.498 0.083 0.043 ± 0.007 3925 ± 617 91.8
10 −88 1 0.5044 129.095 129.168 ± 0.009 0.510 0.089 0.034 ± 0.007 5624 ± 1181 130.5
10 −87 −1 0.6672 129.569 129.608 ± 0.009 0.550 0.060 0.049 ± 0.010 3066 ± 755 157.3
10 −87 0 0.7439 129.731 129.772 ± 0.007 0.565 0.046 0.014 ± 0.004 12352 ± 1855 257.9
10 −87 1 0.8133 129.927 129.955 ± 0.006 0.582 0.034 0.011 ± 0.004 16357 ± 2408 226.5
10 −86 −1 0.9294 130.677 130.670 ± 0.006 0.647 0.013 0.007 ± 0.004 4084 ± 855 55.9
10 −86 0 0.9433 130.903 130.896 ± 0.006 0.667 0.010 0.007 ± 0.004 7019 ± 1024 96.4
10 −86 1 0.9533 131.134 131.122 ± 0.006 0.688 0.008 0.006 ± 0.004 10575 ± 2196 145.8
10 −85 −1 0.9728 131.986 131.962 ± 0.009 0.764 0.005 0.009 ± 0.004 1419 ± 431 19.8
10 −85 0 0.9756 132.221 132.196 ± 0.009 0.785 0.004 0.006 ± 0.004 530 ± 151 7.4
10 −84 0 0.9833 133.590 133.573 ± 0.006 −0.090 0.003 0.006 ± 0.004 3228 ± 566 46.4
11 −83 0 0.9844 134.993 134.973 ± 0.006 0.037 0.003 0.006 ± 0.004 4520 ± 719 66.5
11 −82 −1 0.9806 136.185 136.161 ± 0.006 0.144 0.004 0.006 ± 0.004 1267 ± 184 20.0
11 −81 −1 0.9639 137.632 137.609 ± 0.006 0.275 0.007 0.006 ± 0.004 1148 ± 170 18.7
11 −81 0 0.9578 137.866 137.837 ± 0.007 0.296 0.008 0.006 ± 0.004 900 ± 151 13.9
11 −81 1 0.9494 138.096 138.075 ± 0.006 0.318 0.009 0.011 ± 0.004 2426 ± 366 39.1
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Table A.1. continued.

np n m ζ νas ν x Γas Γ H R
(µHz) (µHz) (µHz) (µHz) (ppm2µHz−1)

11 −80 −1 0.8644 139.037 139.015 ± 0.007 0.403 0.024 0.012 ± 0.004 2323 ± 388 36.5
11 −80 0 0.8183 139.247 139.230 ± 0.006 0.422 0.033 0.020 ± 0.005 2879 ± 427 50.3
11 −80 1 0.7594 139.431 139.438 ± 0.007 0.441 0.043 0.029 ± 0.006 942 ± 147 18.2
11 −79 −1 0.4672 140.063 140.116 ± 0.009 0.503 0.096 0.078 ± 0.015 2479 ± 552 102.8
11 −79 0 0.4628 140.175 140.185 ± 0.012 0.509 0.097 0.128 ± 0.031 1534 ± 491 74.4
11 −79 1 0.4939 140.295 140.352 ± 0.009 0.524 0.091 0.071 ± 0.012 1831 ± 330 49.4
11 −78 −1 0.8100 140.998 141.019 ± 0.006 0.585 0.034 0.013 ± 0.004 3675 ± 536 61.6
11 −78 0 0.8550 141.194 141.202 ± 0.006 0.601 0.026 0.009 ± 0.004 3583 ± 541 58.3
11 −78 1 0.8894 141.409 141.419 ± 0.009 0.621 0.020 0.027 ± 0.007 1200 ± 332 44.1
11 −77 −1 0.9561 142.436 142.432 ± 0.006 0.713 0.008 0.007 ± 0.004 1831 ± 358 30.4
11 −77 0 0.9617 142.668 142.663 ± 0.006 0.734 0.007 0.006 ± 0.004 1912 ± 278 33.3
11 −77 1 0.9667 142.902 142.895 ± 0.009 0.755 0.006 0.009 ± 0.004 434 ± 133 7.3
12 −74 −1 0.9778 147.312 147.297 ± 0.007 0.154 0.004 0.005 ± 0.004 528 ± 146 9.4
12 −74 0 0.9761 147.549 147.551 ± 0.007 0.177 0.004 0.006 ± 0.004 557 ± 102 11.1
12 −74 1 0.9739 147.785 147.778 ± 0.006 0.197 0.005 0.006 ± 0.004 665 ± 120 12.0
12 −73 −1 0.9511 148.996 148.980 ± 0.009 0.306 0.009 0.010 ± 0.004 747 ± 193 18.1
12 −73 0 0.9422 149.226 149.215 ± 0.007 0.327 0.010 0.009 ± 0.004 756 ± 160 13.9
12 −73 1 0.9306 149.452 149.441 ± 0.006 0.348 0.013 0.011 ± 0.004 726 ± 122 14.3
12 −72 −1 0.7456 150.556 150.584 ± 0.008 0.452 0.046 0.041 ± 0.008 545 ± 112 18.2
12 −72 0 0.6672 150.737 150.764 ± 0.011 0.468 0.060 0.051 ± 0.011 298 ± 79 19.8
12 −72 1 0.5911 150.880 150.951 ± 0.011 0.485 0.074 0.060 ± 0.012 444 ± 99 23.6
12 −71 −1 0.4722 151.509 151.598 ± 0.010 0.543 0.095 0.067 ± 0.012 650 ± 126 27.4
12 −71 0 0.5300 151.624 151.720 ± 0.009 0.554 0.085 0.026 ± 0.006 1788 ± 329 66.9
12 −71 1 0.6122 151.772 151.861 ± 0.012 0.567 0.070 0.077 ± 0.018 380 ± 113 20.2
12 −70 1 0.9339 153.268 153.289 ± 0.007 0.697 0.012 0.007 ± 0.004 572 ± 100 12.3
12 −69 0 0.9717 154.828 154.849 ± 0.007 −0.162 0.005 0.005 ± 0.004 587 ± 160 11.7
12 −69 1 0.9733 155.064 155.083 ± 0.007 −0.141 0.005 0.006 ± 0.004 546 ± 97 11.8

ζ is derived from the best asymptotic fit; νas are the asymptotic frequencies, whereas ν correspond to the observed values; x = ν/∆ν−(np−εp)
is the reduced frequency; Γas are the asymptotic mode widths, whereas Γ correspond to the observed values; H are the observed heights, and
R is the height-to-background ratio.
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Appendix B: Stars in open clusters

All stars studied by Corsaro et al. (2017) were investi-
gated. The fitting process is challenging, due to the dim
magnitudes of such dim stars in open clusters. However,
the combination of all pressure radial orders near νmax

provides in most cases an unambiguous fit, and at least a
few mixed-mode radial orders provide clear splittings.
- Figure B.1 provides the asymptotic fit of KIC 5024476,
member of the open cluster NGC 6819 observed by Kepler.
We note that m = ±1 modes are clearly identified and
derive a stellar inclination i = 79 ± 11◦ for this star. This
result is in disagreement with Corsaro et al. (2017) who
found an inclination i = 20± 7◦.
- Similar conclusions are reached for KIC 2437976
(Fig. B.2), member of the open cluster NGC 6791. Corsaro
et al. (2017) found an inclination i = 0 ± 10◦, despite
the fact |m| = 1 modes are clearly identified and indicate
i = 76± 14◦.

These stars are representative of the whole data set
treated by Corsaro et al. (2017): the inability of the fitting
process to identify thin short-lived mixed modes translates
into the identification of a single broad m = 0 peak. In such
cases, stellar inclinations derived from the Bayesian fits are
necessarily underestimated and biased toward low values.
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Table A.2. Oscillation pattern of the RGB star KIC 3955033

np n m ζ νas ν x Γas Γ H R
(µHz) (µHz) (µHz) (µHz) (ppm2µHz−1)

Radial modes
8 84.745 84.745 ± 0.077 0.033 0.198 ± 0.089 1015 ± 656 16.2
9 93.958 93.762 ± 0.012 0.010 0.094 ± 0.017 3985 ± 872 27.3

10 102.911 103.010 ± 0.013 0.012 0.138 ± 0.027 7641 ± 1745 30.2
11 112.215 112.143 ± 0.009 0.002 0.067 ± 0.012 18117 ± 3832 114.7
12 121.869 121.474 ± 0.016 0.013 0.122 ± 0.025 2495 ± 637 19.6

Dipole mixed modes
8 −144 1 0.8744 88.882 88.894 ± 0.006 0.483 0.019 0.007 ± 0.004 5748 ± 1146 15.9
8 −141 −1 0.8051 89.078 89.075 ± 0.009 0.503 0.029 0.020 ± 0.005 2011 ± 512 7.1
8 −142 0 0.7444 89.214 89.205 ± 0.008 0.517 0.038 0.032 ± 0.006 2964 ± 565 10.9
8 −143 1 0.6908 89.338 89.338 ± 0.010 0.531 0.046 0.041 ± 0.009 2226 ± 536 15.9
8 −140 −1 0.6640 89.507 89.496 ± 0.007 0.548 0.050 0.035 ± 0.006 6623 ± 1063 21.4
8 −141 0 0.6955 89.623 89.602 ± 0.011 0.560 0.046 0.036 ± 0.008 1250 ± 297 10.1
8 −142 1 0.7483 89.743 89.725 ± 0.012 0.573 0.038 0.043 ± 0.010 1315 ± 389 10.1
8 −139 −1 0.8432 89.969 89.956 ± 0.009 0.598 0.023 0.024 ± 0.006 2118 ± 541 9.8
8 −141 1 0.9111 90.251 90.238 ± 0.009 0.629 0.013 0.006 ± 0.004 2235 ± 601 7.4
9 −127 −1 0.9047 97.755 97.779 ± 0.011 0.446 0.014 0.023 ± 0.007 1041 ± 358 9.9
9 −126 −1 0.6934 98.346 98.392 ± 0.007 0.512 0.046 0.014 ± 0.004 36038 ± 5534 121.7
9 −127 0 0.6800 98.375 98.395 ± 0.007 0.512 0.048 0.024 ± 0.005 21840 ± 3803 121.7
9 −128 1 0.6615 98.413 98.395 ± 0.007 0.512 0.051 0.027 ± 0.005 19513 ± 3160 121.7
9 −125 −1 0.6969 98.825 98.818 ± 0.007 0.558 0.045 0.014 ± 0.004 10668 ± 1614 47.6
9 −126 0 0.7049 98.843 98.879 ± 0.007 0.565 0.044 0.028 ± 0.006 6104 ± 971 27.3
9 −127 1 0.7220 98.874 98.883 ± 0.007 0.565 0.042 0.031 ± 0.006 5427 ± 941 27.3
9 −124 −1 0.9050 99.430 99.435 ± 0.006 0.625 0.014 0.006 ± 0.004 9343 ± 1572 29.3
9 −126 1 0.9124 99.474 99.470 ± 0.006 0.629 0.013 0.012 ± 0.004 7355 ± 1118 23.3
9 −125 1 0.9647 100.170 100.166 ± 0.007 0.704 0.005 0.006 ± 0.004 2664 ± 543 9.3

10 −120 1 0.9883 103.940 103.940 ± 0.007 0.113 0.002 0.006 ± 0.004 3119 ± 574 11.1
10 −118 −1 0.9880 104.023 104.025 ± 0.010 0.122 0.002 0.007 ± 0.004 2677 ± 836 10.2
10 −118 0 0.9848 104.778 104.780 ± 0.011 0.204 0.002 0.007 ± 0.004 2318 ± 827 9.3
10 −117 −1 0.9844 104.838 104.842 ± 0.009 0.211 0.002 0.006 ± 0.004 4417 ± 1446 14.7
10 −116 −1 0.9748 105.657 105.666 ± 0.006 0.300 0.004 0.005 ± 0.004 4718 ± 1166 15.8
10 −115 −1 0.9438 106.481 106.502 ± 0.022 0.391 0.008 0.019 ± 0.011 1349 ± 1022 16.4
10 −116 1 0.8515 107.096 107.070 ± 0.008 0.452 0.022 0.008 ± 0.004 1890 ± 368 10.1
10 −115 0 0.8294 107.167 107.194 ± 0.011 0.466 0.026 0.041 ± 0.011 1090 ± 354 9.5
10 −114 −1 0.8023 107.238 107.259 ± 0.006 0.473 0.030 0.016 ± 0.004 5430 ± 799 21.0
10 −115 1 0.5811 107.710 107.706 ± 0.007 0.521 0.063 0.019 ± 0.005 22251 ± 3274 99.4
10 −114 0 0.5753 107.757 107.776 ± 0.011 0.529 0.064 0.082 ± 0.021 3573 ± 1204 70.9
10 −113 −1 0.5782 107.819 107.818 ± 0.008 0.533 0.063 0.042 ± 0.009 6466 ± 1487 71.0
10 −114 1 0.7802 108.260 108.253 ± 0.008 0.580 0.033 0.018 ± 0.005 7228 ± 1753 32.4
10 −113 0 0.8149 108.344 108.337 ± 0.009 0.589 0.028 0.027 ± 0.007 3135 ± 809 35.8
10 −112 −1 0.8468 108.441 108.429 ± 0.009 0.599 0.023 0.029 ± 0.007 3843 ± 1006 25.7
10 −113 1 0.9383 109.023 109.019 ± 0.006 0.663 0.009 0.008 ± 0.004 11460 ± 1670 41.2
10 −112 1 0.9728 109.876 109.870 ± 0.006 0.756 0.004 0.006 ± 0.004 6439 ± 938 23.4
11 −104 −1 0.9239 115.807 115.818 ± 0.006 0.400 0.011 0.007 ± 0.004 3908 ± 613 15.8
11 −105 1 0.8432 116.274 116.279 ± 0.006 0.450 0.023 0.009 ± 0.004 6992 ± 1054 26.2
11 −104 0 0.7745 116.468 116.470 ± 0.009 0.471 0.034 0.033 ± 0.008 1247 ± 360 18.8
11 −103 −1 0.6842 116.648 116.670 ± 0.007 0.492 0.047 0.028 ± 0.006 2247 ± 418 28.7
11 −104 1 0.5371 116.961 116.976 ± 0.010 0.525 0.069 0.054 ± 0.011 2255 ± 530 17.6
11 −103 0 0.5477 117.092 117.077 ± 0.015 0.536 0.068 0.082 ± 0.021 1275 ± 415 19.0
11 −102 −1 0.6181 117.248 117.211 ± 0.010 0.551 0.057 0.028 ± 0.007 1479 ± 387 11.9
11 −103 1 0.8015 117.612 117.600 ± 0.007 0.593 0.030 0.017 ± 0.005 2633 ± 464 14.5
11 −101 −1 0.9071 118.072 118.063 ± 0.017 0.643 0.014 0.031 ± 0.013 479 ± 289 10.9

Radial modes and mixed modes identified in KIC 3955033 with a height-to-background ratio R larger than 7. Same caption as Table A.1
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Fig.A.1. Fit of the oscillation pattern of the low RGB star KIC 10272858, at the limit of validity of the asymptotic pattern.
Owing to the small radial orders, small shifts are seen between observed and asymptotic spectra. Same style as Fig. 2, but ` = 3
modes appear near the abscissa 0.28

Fig.A.2. Fit of the oscillation pattern of the RGB star KIC 11353313. Same style as Fig. 2.
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Fig.A.3. Fit of the oscillation pattern of the RGB star KIC 3955033. The overlap of mixed modes with different mixed-mode
orders is the signature of the rapid core rotation. The second rotation crossing, where all components of the multiplets overlap
(Gehan et al. 2017), occurs at the mixed-order n = −122. Same style as Fig. 2.

Fig.A.4. Fit of the oscillation pattern of the evolved RGB star KIC 2443903, near the limit of capability of identification, with a
large crowding due to the high mode density. The second rotation crossing, where all m components apparently coincide, occurs
at n = −189 (with an abscissa ' 0.1 and np = 9); the third crossing, where |m| = 1 components apparently coincide with m = 0
inbetween, occurs at n = −233 (with an abscissa ' 0.25 and np = 7). Same style as Fig. 2. Note that the modes with large heights
at an abscissa ' 0.2 are ` = 3 modes.
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Fig.A.5. Fit of the oscillation pattern of the red-clump star KIC 1723700. Buoyancy glitches explain the small shifts between
observed and asymptotic spectra but do no hamper the mode identification. Same style as Fig. 2.

Fig.A.6. Fit of the oscillation pattern of the secondary-clump star KIC 1725190. Buoyancy glitches explain the small shifts
between observed and asymptotic spectra but do no hamper the mode identification. Same style as Fig. 2.
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Fig. B.1. Fit of the oscillation pattern of the RGB star KIC 5024476, member of the open cluster NGC 6819. The dim magnitude
of the cluster stars explains the low S/R. However, unambiguous doublets are identified all along the mixed-mode spectrum; m = 0
modes are mostly absent and |m| = 1 modes dominate the mixed-mode spectrum, so that a nearly pole-on inclination is not
possible. Same style as Fig. 2.

Fig. B.2. Fit of the oscillation pattern of the RGB star KIC 2437976, member of the open cluster NGC 6791. The dim magnitude of
the cluster stars explains the low S/R. The identification at radial order 9, supported by the radial orders 8 and 10, is unambiguously
conclusive: m = 0 modes are mostly absent and |m| = 1 modes dominate the mixed-mode spectrum, so that a pole-on inclination
is not possible. Same style as Fig. 2.
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Table B.1. Oscillation pattern of the red-clump star KIC 5024476 in NGC 6819

np n m ζ νas ν x Γas Γ H R
(µHz) (µHz) (µHz) (µHz) (ppm2µHz−1)

Radial modes
10 63.335 63.096± 0.174 −0.058 0.501± 0.216 698± 429 9.9
11 69.039 69.039± 0.055 −0.021 0.350± 0.102 1365± 536 9.7
12 74.941 74.941± 0.039 0.009 0.231± 0.067 1158± 452 35.6

Dipole mixed modes
10 −43 −1 0.9495 63.873 63.870± 0.009 0.077 0.013 0.019± 0.006 1887± 532 16.0
10 −43 1 0.9481 63.979 63.976± 0.007 0.095 0.013 0.009± 0.004 3002± 632 12.7
10 −42 −1 0.9006 65.035 65.005± 0.015 0.275 0.025 0.045± 0.012 497± 175 11.6
10 −42 0 0.8955 65.086 65.131± 0.012 0.297 0.026 0.028± 0.008 576± 191 7.6
10 −42 1 0.8903 65.136 65.131± 0.011 0.297 0.027 0.027± 0.008 589± 186 7.6
10 −41 −1 0.6178 66.050 66.050± 0.013 0.457 0.096 0.095± 0.020 1859± 503 20.0
10 −41 0 0.6011 66.085 66.061± 0.013 0.459 0.100 0.099± 0.022 1959± 563 20.0
10 −41 1 0.5866 66.117 66.083± 0.014 0.463 0.103 0.106± 0.025 1783± 534 18.7
10 −40 −1 0.6453 66.784 66.788± 0.017 0.586 0.089 0.085± 0.020 800± 240 8.9
10 −40 1 0.6794 66.858 66.897± 0.020 0.605 0.080 0.097± 0.023 632± 197 14.4
10 −39 1 0.9132 67.985 68.003± 0.007 0.798 0.022 0.009± 0.004 4805± 844 23.5
11 −37 −1 0.9084 70.563 70.562± 0.007 0.244 0.023 0.009± 0.004 2295± 521 11.4
11 −37 1 0.9003 70.665 70.672± 0.006 0.264 0.025 0.008± 0.004 2474± 398 14.8
11 −36 −1 0.6140 71.776 71.786± 0.015 0.458 0.097 0.103± 0.022 1228± 333 18.4
11 −36 1 0.5811 71.843 71.884± 0.019 0.475 0.105 0.127± 0.030 854± 264 12.1
11 −35 −1 0.6100 72.588 72.615± 0.010 0.603 0.097 0.072± 0.013 2715± 560 29.9
11 −35 1 0.6455 72.658 72.625± 0.011 0.605 0.089 0.078± 0.015 2287± 527 29.9
11 −34 −1 0.9051 73.870 73.881± 0.007 −0.176 0.024 0.016± 0.005 2320± 417 12.5
11 −34 1 0.9111 73.972 73.977± 0.007 −0.160 0.022 0.008± 0.004 4124± 750 22.2
12 −33 −1 0.9314 75.420 75.422± 0.006 0.093 0.017 0.007± 0.004 5610± 987 31.2
12 −33 1 0.9296 75.524 75.530± 0.008 0.112 0.018 0.008± 0.004 1498± 379 8.3
12 −32 −1 0.8053 76.972 76.954± 0.008 0.360 0.049 0.024± 0.006 1836± 391 14.5
12 −32 1 0.7828 77.061 77.060± 0.009 0.379 0.054 0.034± 0.007 1103± 222 13.2
12 −31 −1 0.4338 78.016 78.029± 0.017 0.548 0.142 0.156± 0.035 1362± 387 32.1
12 −31 0 0.4373 78.041 78.045± 0.018 0.550 0.141 0.160± 0.036 1326± 379 16.4
12 −31 1 0.4416 78.066 78.062± 0.017 0.553 0.140 0.154± 0.034 1354± 382 14.3
12 −30 −1 0.8397 79.185 79.226± 0.008 0.757 0.040 0.013± 0.004 2127± 377 12.8
12 −30 1 0.8538 79.280 79.310± 0.009 0.771 0.037 0.027± 0.006 977± 236 9.7

Same caption as Table A.1
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Table B.2. Oscillation pattern of the RGB star KIC 2437976 in NGC 6791

np n m ζ νas ν x Γas Γ H R
(µHz) (µHz) (µHz) (µHz) (ppm2µHz−1)

Radial modes
8 75.045 75.045± 0.041 0.013 0.106± 0.042 6520± 3676 7.8
9 83.284 83.172± 0.024 0.001 0.153± 0.036 15645± 4765 31.3

10 91.382 91.331± 0.013 −0.006 0.100± 0.017 22777± 4443 31.1
Dipole mixed modes

8 −161 −1 0.8533 78.887 78.893± 0.008 0.481 0.026 0.022± 0.006 10581± 2376 12.3
8 −160 −1 0.6438 79.234 79.170± 0.010 0.514 0.064 0.038± 0.007 14647± 2841 11.9
8 −161 1 0.6511 79.343 79.276± 0.012 0.527 0.063 0.031± 0.007 10930± 2616 9.6
8 −159 −1 0.7884 79.561 79.519± 0.008 0.557 0.038 0.026± 0.006 14986± 2978 15.1
8 −160 1 0.8566 79.691 79.671± 0.009 0.575 0.026 0.023± 0.006 6508± 1802 9.8
9 −146 −1 0.9726 86.115 86.141± 0.010 0.362 0.005 0.009± 0.004 16564± 5717 7.6
9 −144 −1 0.7541 87.141 87.185± 0.010 0.489 0.044 0.054± 0.013 20608± 6137 33.9
9 −145 1 0.7180 87.193 87.191± 0.009 0.490 0.051 0.049± 0.011 23464± 6034 33.9
9 −143 −1 0.6110 87.503 87.500± 0.011 0.528 0.070 0.067± 0.014 19703± 4780 29.1
9 −144 1 0.6404 87.550 87.517± 0.009 0.530 0.065 0.050± 0.009 26627± 5525 29.1
9 −142 −1 0.8736 87.940 87.943± 0.007 0.582 0.023 0.009± 0.004 21699± 5272 10.0
9 −143 1 0.8929 88.001 87.989± 0.006 0.587 0.019 0.009± 0.004 29926± 5102 13.8
9 −141 −1 0.9588 88.486 88.498± 0.007 0.649 0.007 0.007± 0.004 17180± 3838 8.1
9 −142 1 0.9622 88.537 88.540± 0.006 0.654 0.007 0.006± 0.004 38360± 5733 18.3

10 −132 1 0.9463 94.663 94.689± 0.007 0.402 0.010 0.006± 0.004 19058± 3790 9.7
10 −131 −1 0.9440 94.692 94.708± 0.008 0.405 0.010 0.005± 0.004 15841± 4952 7.6
10 −131 1 0.7969 95.259 95.216± 0.009 0.466 0.037 0.034± 0.008 21679± 5266 18.4
10 −130 −1 0.7827 95.284 95.257± 0.009 0.471 0.039 0.033± 0.008 19865± 4877 20.4
10 −130 1 0.5518 95.692 95.630± 0.008 0.517 0.081 0.025± 0.005 42908± 7274 26.4
10 −129 −1 0.5572 95.709 95.633± 0.008 0.517 0.080 0.027± 0.006 39045± 6386 26.4
10 −129 1 0.8453 96.161 96.162± 0.007 0.582 0.028 0.009± 0.004 29045± 5946 21.6
10 −125 0 0.9891 98.575 98.551± 0.008 −0.128 0.002 0.004± 0.004 15436± 11044 7.5
11 −118 −1 0.8082 103.469 103.439± 0.010 0.467 0.034 0.023± 0.006 6844± 1785 9.8
12 −108 1 0.7958 111.880 111.821± 0.012 0.487 0.037 0.022± 0.006 5310± 1445 7.9
12 −105 −1 0.9174 113.342 113.329± 0.007 0.670 0.015 0.006± 0.004 16746± 4518 8.6

Same caption as Table A.1
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