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At the hand of the adsorption of the metal atoms Zn, Cd and Hg on a graphene sheet we

propose a combination of range-separated hybrid density-functional theory in combination

with the incremental scheme in localized orbitals and extrapolation procedures for the de-

scription of this type of extended systems. Using only dispersion terms for the long-range

part, we were able to obtain results comparable to incremental CCSD(T) calculations. Re-

pulsive three-center increments reduce the overall correlation contribution to the binding

energy by 20%.
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INTRODUCTION

Range-separated density-functional theory (RSH-DFT) has been introduced in the literature by

Andreas Savin in 1996,1 and has been further developed in recent years, leading to a powerful tool

to describe van-der-Waals interactions in a DFT framework. The long-range correlation part, based

on an expansion in contributions from excited determinants, remains nevertheless a challenging

task, as the advantageous scaling of DFT with system size is partly lost. On the other hand, the

significant reduction of the basis-set superposition error and the possibility to use smaller basis sets

than in “standard”, wavefunction-based post-Hartree-Fock calculations render the combination of

DFT and long-range correlation very appealing.

For a correlation treatment, localized molecular orbitals have the advantage that they both

provide for an a priori fragmentation of several interacting systems, and allow for separating exci-

tations of the long-range correlation part into intra-molecular and inter-molecular ones, depending

on the site or the fragment the occupied and virtual orbitals are located on. Back in 1992 Stoll

proposed2–4 to determine the correlation energy of an extended system not from one single calcu-

lation, but from increments, i.e. contributions calculated for small model systems with only a few

localized orbitals.

In the present study, all the before-mentioned aspects (range-separated DFT, orbital localiza-

tion, fragments and the method of increments) are combined and applied to the adsorption of a

metal atom (Zn, Cd, Hg) on a graphene sheet. These systems present one of the most difficult

challenges of today’s quantum chemistry, as we deal neither with a molecular nor a perfectly infinite

system. The solution is an asymptotic process, either diluting a periodic set-up – this has been done

abundantly for different metal atoms on graphene by DFT approaches5–9 or model Hamiltonians10

– or by augmenting stepwise the dimension of the support until convergence or until arriving at a

systematic extrapolation scheme.11 Since graphene is conducting, difficulties for the convergence of

perturbative methods may be encountered as well.12 Very recently, Illas et al. published a system-

atic study of the adsorption of metal atoms on graphene within a periodic approach, using DFT

with empirical van-der-Waals corrections.13 References therein provide a good literature survey of

metal adsorption on a graphene sheet.

The organization of the article is as follows: after a brief review of the employed theory and the

computational approach we present our results: first for global calculations, next for incremental

calculations using localized orbitals, before extrapolating to an adsorption on the infinite graphene

sheet and drawing our conclusions. All purely computational details as well as additional data are
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collected in supplementary material to this article.

I. THEORY

In the present work we need three basic ingredients: the range-separated hybrid density-

functional theory, the random phase approximation (RPA) for the long-range correlation energy,

and the method of increments for exploiting localized orbitals.

A. RSHDFT

Density functional theory in the Kohn-Sham formalism was developed and systematically ap-

plied in theoretical chemistry since the 1990’s.14,15 In following years it became the most powerful

method for precise routine calculations in many domains. Nevertheless, as density, simply said, is

absent between two distant fragments of a system interacting exclusively via long-range electron

dispersion, the distance-dependence of the interaction energy cannot be described accurately by

DFT with usual approximations (LDA, GGA). To cure this shortcoming, several propositions have

been made in the past decades. The most popular are the different versions of empirical Grimme

dispersion correction for common DFT functionals.16–18

Studying degeneracy in the context of DFT, Savin proposed a continuous, seamless transition

procedure from Kohn-Sham DFT to multi-determinant wavefunction theory1 by separating the

electron-electron interaction into a short-range and a long-range part. The former is calculated

by DFT, and the latter is added through long-range exact-exchange and correlation contributions.

The separation is not a geometrical one as in QM/MM methods, which define near-field and far-

field regions in space around a center of interest and struggle with boundary effects, but a more

fundamental one by picking out two electrons and distinguishing situations where they are close or

where they are distant. Kohn et al showed19 that indeed the separation of the Coulomb interaction

into a short-range DFT part and a long-range correlation part leads to a formalism, from which

the van-der-Waals interaction can be extracted. We should add that the range-separation has been

further extended by several other groups, leading to different classes of modern functionals.20–24

In practice the Coulomb electron-electron interaction 1/r is split by help of the error function

erf(x) = 2√
π

∫ x

0 e−t2 dt and a single parameter µ (which is fixed in the present work to the commonly

accepted value of µ = 0.5 a.u.) into

1

r
=

erf(µ r)

r
+

1− erf(µ r)

r
(1)
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and the Kohn-Sham RSH procedure is written as a minimization of an energy functional with

respect to one determinant as

ERSH = minΦ

{

〈Φ|T + Vne +W lr
ee|Φ〉+Esr

Hxc [nΦ]
}

(2)

with an explicit short-range Hartree-exchange-correlation functional,25 Esr
Hxc, and the long-range

electron-electron interaction, W lr
ee. The Hartree part of the functional employs the short-range part

of the 1/r interaction, and the long-range interaction the complementary long-range part of 1/r.

Carrying out the minimization leads to the equations

(

T + Vne + VH + V lr
x + V sr

xc

)

|φRSH
i 〉 = ǫi |φ

RSH
i 〉 . (3)

For arriving at the correct, and in principle exact, total energy, multi-determinant contributions

for the long-range correlation part have to be added, either by minimizing E with respect to a real

multi-determinant wavefunction Ψ through

Eexact = minΨ

{

〈Ψ|T + Vne +W lr
ee|Ψ〉+ Esr

Hxc [nΨ]
}

, (4)

or by adding a long-range correlation part in a second step as Etotal = ERSH+Elr
corr, making use of

the previously obtained RSH orbitals and orbital energies (or RSH matrix elements, equivalent to

a Kohn-Sham or Fock matrix as result of the minimization of a single-determinant wavefunction).

The molecular orbitals need not to be canonical orbitals, diagonalizing the RSH matrix, but may

as well be localized ones. This will be expoited in the next sections.26

For instance a µ-dependent long-range MP2 contribution28 is obtained in canonical orbitals as

E
(2)
µ,MP2 =

∑

ijab

(ia|jb)lr,µ (2(ia|jb)lr,µ − (ib|ja)lr,µ)

ǫi + ǫj − ǫa − ǫb
(5)

and equivalently, if localized orbitals are used, by minimizing the Hylleraas functional,29 leading

to a CEPA-like system of linear equations in the coefficients of the excited determinants. Other

long-range correlation treatments may be employed like configuration interaction in size-consistent

variants, coupled-cluster schemes, or the random-phase approximation, RPA.

For intermolecular interaction energies in particular, the explicit choice of the short-range

functional has little influence on calculated values. Other advantages of a combination of range-

separated DFT with a long-range correlation part are the reduced dependence on basis sets, and

thus a generally small basis-set superposition error, and an advantageous scaling of the Kohn-Sham

step with system size.
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B. RPA

For adding the long-range correlation to the RSHDFT energy, we use here the Random-Phase

Approximation, a method which recently became popular due to its reduced needs of computational

resources (reduced set of bielectronic integrals over molecular orbitals), , nevertheless more accurate

than second-order perturbation theory due to self-consistently screened or collective excitations.30

The underlying RPA equations may be derived in several ways, based on single excitations and their

coupling, showing thus the close connection to time-dependent DFT approaches to single-electron-

excited states.31–33 Based on the different derivations,34 one may arrive at different flavors of the

Random Phase Approximation, using anti-symmetrization or not for the occurring kernel, and

contracting the obtained amplitudes with direct or with anti-symmetrized integrals. We employ

in the following the RPAx–I variant, i.e. an antisymmetrized kernel, however multiplied only with

direct bielectronic integrals, without antisymmetrization. From the 4 different flavours directly

accessible through the combinations of antisymmetrization (dRPA, RPAx, –I, –II)34 this variant

has been shown to be the most reliable for several test sets.35

All of the aforementioned correlation methods have in common that the correlation energy

is expressed as a sum over amplitudes of doubly-excited determinants and bielectronic integrals

(note that this is not the case for MP4 or CCSD(T) for instance). This allows (for two fragments)

for a decomposition in 6 different classes of the excitations if orbitals are localized on different

fragments.36–39 Two separate mono-excitations form a contribution that we may qualify as “dis-

persion”. It has been shown40 that in a context which does not include strong electrostatic fields

or important charge-transfer situations, the overall long-range correlation contribution to the cor-

relation energy is already well described by taking into account only this part of the whole sum. A

separate calculation of the monomer correlation energy is not necessary. A further step, which we

did not apply here, is given by solving the RPA equations in the same-monomer monoexcitations

only, thus reducing again considerably the necessary computational resources.40

C. The method of increments

The method of increments is a scheme for the calculation of energy-related properties for ex-

tended systems.41,42 In its traditional formulation by Stoll,2–4 the electron correlation energy of a

system is expressed exactly in a many body expansion

Ecorr =
∑

I

ǫI +
∑

I

∑

J>I

∆ǫIJ +
∑

I

∑

J>I

∑

K>J>I

∆ǫIJK + · · · (6)
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The one-center increments, ǫI , are defined as the correlation energy of the electrons in one group

of occupied orbitals denoted by I. In practice these groups are defined by geometrical criteria,

e.g. including all orbitals from one well defined fragment of the total system, called centers, e.g.

one molecule, atom or bond. The two-center increments, ∆ǫij , represent non-additive parts of the

correlation energy from correlating all electrons from two fragments at the same time:

∆ǫIJ = ǫIJ − ǫI − ǫJ , (7)

with ǫIJ being the total correlation energy of fragments I and J , which also includes contributions

from the individual groups which have to be subtracted to avoid double counting of these terms.

Higher order increments, such as three-center increments,

∆ǫIJK = ǫIJK −∆ǫIJ −∆ǫIK −∆ǫJK − ǫI − ǫJ − ǫK , (8)

are defined likewise by subtracting from the highest-order correlation energies all lower-order in-

crements involving the corresponding indices. In principle only the full many-body expansion

yields the correct electron correlation energy, however, when using localized orbitals even trun-

cated expansions including all one, two and a few three-center increments up to a certain cut-off

distance between fragments I, J , K, often recover more than 98 % of the full electron correlation

energy.42,43

Energy differences can easily be expressed in a similar way and often converge even faster with

respect to the order of increments and the cut-off distance.43–48 In an expansion of an adsorption

energy :

Eads =
∑

I

ηI +
∑

I

∑

J>I

ηIJ +
∑

I

∑

J>I

∑

K>J

ηIJK + · · · , (9)

the adsorption energy increments, ηI , ηIJ , and so on, represent firstly the change in correlation

energy increments ǫI , ∆ǫIJ , ... when adsorbing e.g. an atom, A, at a surface:

ηI = ǫA+surface
I∈surface − ǫsurfaceI∈surface , (10)

and secondly the dispersion interaction between the atom and the surface:

ηIJ = ∆ǫA+surface
I∈A,J∈surface . (11)

For weakly bound systems – such as investigated in this study – the latter type of adsorption

energy increment represents the major part of the atom-surface interaction, while the influence

of the adsorbent on electrons in the surface – covered mainly by all ηI and ηIJ of the first type
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– is of minor importance. For such a system we propose and test here as well a dispersion-only

approximation which combines two ideas: first, we neglect all purely intra-fragment increments

Eads ≈
∑

I∈A

∑

J∈surface

ηIJ +
∑

I∈A

∑

J,K∈surface, J<K

ηIJK +
∑

I,J∈A, I<J

∑

K∈surface

ηIJK , (12)

and secondly, the same simplification is applied to the calculation of the inter-fragment increments,

where we correct the three-center increments only for the two-center inter-fragment correlation

energies:

ηIJ = ǫIJ I ∈ A, J ∈ surface

ηIJK = ǫIJK − ǫIJ − ǫIK I ∈ A, J,K ∈ surface

ηIJK = ǫIJK − ǫIK − ǫJK I, J ∈ A, K ∈ surface

The latter approximation – which we only employed in combination with RPA – avoids thus the

calculation of any single-fragment and intra-fragment terms and all contributions are obtained from

calculations on the complete system only.

Due to the rapid 1/r6 decay of the electron dispersion interaction, the incremental expansion

of adsorption energies converges even quicker than the electron correlation energy expansion with

respect to the distances between the atom and the surface, and between surface atoms and the

adsorption site. Axilrod-Teller dispersion – i.e. 3-body dispersion – decaying with 1/r9, is often

well recovered by a very few 3-center increments between the atom and the surface.

II. COMPUTATIONAL PROCEDURE

For incremental MP2 or CCSD(T) calculations the occupied canonical Hartree-Fock orbitals

are localized with the Foster-Boys49 procedure before ordering them in groups. Before performing

the post Hartree-Fock calculation for one increment, the part of the Fock matrix that corresponds

to the orbitals in which electrons are correlated for this increment is diagonalized again (“partial re-

canonicalization”), allowing for the use of standard implementations of post Hartree-Fock methods

with canonical orbitals. All increments are constructed from the same set of localized occupied

and canonical virtual orbitals of the whole system.

For the RSHDFT calculations we localize the orbitals in a different way, in several steps, allowing

for a unique attribution of each orbital to each fragment: monomers are first calculated in the

respective monomer and the dimer basis, and the occupied valence orbitals of the second calculation

are localized with the Foster-Boys procedure. From the first set the (canonical) virtual orbitals

are taken, and from the second set the (localized) occupied orbitals, serving as starting orbitals
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for an orbital optimization through a Singles-CI procedure of the complete dimer system. We

showed elsewhere26 that the (approximate) Singles-CI procedure is usable in a DFT framework

as an alternative to a standard iterative Kohn-Sham procedure, avoiding thus delocalizations due

to the diagonalization of the Fock or Kohn-Sham matrix. The obtained dimer orbitals have the

best overlap with the starting orbitals, and, in this way we can identify and compare individually

orbital contributions to the total correlation energy.

After a full four-index transformation the excitation space is selected according to the intended

respective increments, and an RPA correlation energy is calculated, adding to the RSH-DFT

interaction energy the missing long-range correlation energy.

The core electrons of the metal atoms were described by scalar relativistic pseudopotentials ,

another field of interest of Andreas Savin.50 Medium-size pseudopotentials51 of the Stuttgart group

were employed throughout, leaving 20 electrons on the metal atom (n − 1 spd and n s electrons).

For the RSHDFT calculations also the 1s electrons of the carbon atoms are treated through a

pseudopotential.52 Unless otherwise stated, the corresponding polarized valence-double-zeta basis

sets (5s5p4d2f for the metal atoms, 2s2p1d for carbon) are used throughout.51–53 The explicitly

treated metal electrons form one single center of which only the 12 valence electrons (d10s2) are

correlated.

For some of the calculations with the C24 fragment all-electron basis sets were used for the

carbon atoms. As an all-electron aug-cc-pvdz basis set54 revealed to be too demanding, the

inner circle of the C24 fragment was described with the aug-cc-pvdz basis set (4s3p2d) and the

augmentation functions were dropped for the outer circle (3s2p1d), leading to a total number of

504 contractions. Hydrogen is described by a 2s1p basis set.54

III. RESULTS

A. Full systems

For reference, we first present counterpoise-corrected canonical-orbital calculations for the metal

atoms adsorbing at the hollow-site of a C6 hydrogen-terminated, ideally flat graphene fragment –

the simplest model for our system. The experimental structure of graphene has a lattice constant

of 2.4612 Å, and a unique C–C distance of 1.42097 Å results, which is a little longer than in a

benzene molecule (139 pm), reflecting the C–C bond order, lower in graphene than in benzene.

The C–H bond length is set to 1.09621 Å. The metal atom is placed above the center of the ring,
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forming thus a set-up with C6v symmetry.

−−−put Table I here−−−

We see from Table I that the equilibrium distance follows the order Cd > Hg > Zn. This ordering

is well-known already from the corresponding metal dimers.56 We recognize that MP2 overbinds

and CCSD(T) gives slightly lower binding energies than the range-separated DFT approach. The

contribution of the correlation energy is smaller (compared to the total interaction energy) for the

RSHDFT approach than for MP2 or CCSD(T), as already some of the correlation contributions

are accounted for in the density-functional part. We see from the data as well that the dispersion

approximation yields about the same results as the complete RSH+RPA calculations, showing the

validity of this approach in the present case.

Applying a larger triple-zeta basis set for Zn reveals that indeed the range-separated DFT+RPA

comes closer to the basis-set limit than RHF + MP2. As shown by Franck et al.57 RSHDFT results

should be extrapolated toward the complete basis set limit via an exponential expression, needing

however at least three points. Since we calculated only double and triple-zeta results, we use the

two-parameter formula E(X) = E∞ + B/X3 of Helgaker et al.55 for basis set extrapolations for

both, HF + MP2 and RSHDFT + RPA cases.

B. Orbital-generating RHF and RSHLDA calculations

As calculations are carried out for hydrogen-terminated finite fragments of graphene, we require

an extrapolation scheme for estimating the interaction energy with an infinite graphene sheet. For

studying the adsorption on three different sites (“on top”, “hollow”, “bridge”) different models

of a graphene sheet may be used. Either all calculations are done on the same finite fragment,

breaking thus the symmetry of the infinite system, or different fragments of graphene are used for

each adsorption site, maintaining the highest possible symmetry. However, when associating three

C6 rings with a three-fold symmetry for the on-top adsorption, the number of π electrons in the

fragment becomes odd, leading to a doublet ground state. We therefore prefer to study all three

adsorption sites in the same fragment with a central C6 unit.

−−−put Figure 1 here−−−
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The next larger, reasonable fragments are a C24 (coronene-like) and a C54 fragment. For all

three we calculate the adsorption of Zn at different distances, and we observe that the difference

between C24 and C54 becomes negligible, see Figure 1, which leads us to the conclusion that the

RHF interaction energy is already converged for the C24 fragment. Hence no further extrapolation

is used for estimating the interaction energy at the RHF and RSH-DFT level with the infinite

graphene sheet.

In the same figure we show the interaction curves at the RSH-DFT level for the C24 fragment

for all three metals for the hollow site, which present again an ordering Zn – Hg – Cd. For Zn we

explore as well the two other adsorption sites (on top and bridge), with the result that all three

positions appear to be equivalent at this level of calculation.

C. Correlation contributions via increments

In section IIIA we calculated the correlation energy for the full system as the difference be-

tween the fragments and the interacting system (RHF + CCSD(T)) or directly via the dispersion

contribution only (RSHLDA + RPAx–I). This was possible for the C6 fragment as a medium-sized

system. For the C24 model of graphene this direct approach becomes too costly due to the steep

increase in computational demand with system size. Instead we resort to incremental calculations

of the correlation energy.

As stated above, the orbitals are localized with the Foster-Boys procedure, either a posteriori

(RHF) or on each fragment separately before determining the orbitals of the full system through

the Single-CI procedure (RSHLDA). This yields for the C24 fragment the pattern of double and

single bonds as depicted in the upper left panel of Figure 2.

For calculating the RHF or RSHLDA interaction energy the localization pattern is irrelevant,

however a choice has to be made for the incremental calculations, as the number of electrons to be

correlated depends on the orbital groups chosen (two for a single bond, four for a double bond).

In the following we use the obtained Foster-Boys pattern which may be extended to larger finite

fragments of graphene, and even to the infinite sheet as indicated in the upper right panel of figure

2.

−−−put Figure 2 here−−−

Having decided on one “Lewis” pattern, we can count the number of individual increments
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which have to be calculated for the hollow adsorption site, exploiting the symmetry of the model.

We find in total 5 one-center, 50 two-center and 407 unique three-center increments, the latter for

instance representing the ensemble of all 4495 three-center increments if symmetry were ignored.

From these symmetry-unique increments only 4 two-center and 46 three-center increments are

actually to be considered for the dispersion-only approximation, the others being intra-fragment

increments or presenting excitations from one to the other fragment.

Since without the dispersion-only approximation the number of increments is still large, we

analyze the decay of the increments with respect to the metal-graphene distance in the Zn/C6

system to identify increments that could be neglected as contributing only little to the overall

result. From the data in Table II, left side, we conclude that three-center intra-fragment increments

may be dropped. Thus we do not calculate them for the C24 system and consider only 28 out of

the remaining 46 three-center inter-fragment increments which include at least one double bond,

correlating 18 or 20 electrons for each of these (the metal and one or two double bonds). In the case

of RSHLDA + RPA we apply the dispersion-only approximation: (1) calculating only the 2-center

and the previously selected 28 3-center terms and (2) taking from the correlation energy only those

contributions which can be decomposed into two monoexcitations on either fragment, needing no

corrections from one-center increments to exclude intra-fragment contributions to the correlation

energies. This leaves us in this case with only 4 two-center and 28 three-center increments that are

actually to be considered.

−−− put Table II here−−−

The overall interaction energies and equilibrium metal-graphene distances are shown in the

upper part of Table IV (vide infra). We observe that the ordering of the energies remains the same

as for the C6 fragment, however Cd and Hg result are in very similar positions of the minimum.

Figure 3 presents for the Zn/C24 system the contributions of each class of increments at a metal-

graphene distance of 3.5 Å, illustrating the importance of the three-center terms, which we may

estimate for the RPAx–I case to be about 20% of the two-center increments, but with opposite

sign.

−−− put Figure 3 here−−−
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D. Extrapolation to infinite systems

From the obtained results for the C24 model we may extrapolate towards the infinite graphene

sheet. In section IIIB we showed that the Hartree-Fock calculations are converged for C24 —

exchange interactions decay exponentially with the distance and induction should be absent as the

metal atoms do not bear permanent moments — however, correlation, in particular dispersion,

decays much slower, as r−6.

By now we calculated explicitly the contribution of each individual metal–C-C-bond interaction

as one, two- and three-center increments for the metal-C24 system. In the following, two com-

plementary ways are explored for extrapolating these results to an adsorption energy of a metal

atom on an infinite graphene sheet: in the first place directly from the data already obtained, and

secondly by accumulating simplified calculations.

1. Extrapolation of the Increments

In the C24 fragment we have radial double bonds in the inner ring, and circular double bonds in

the outer ring, leading to two distinct curves to be fitted. The single bonds are all mainly oriented

circularly.

If one traces the contribution of each type of bond in the C24 fragment against the distance of

its bond center to the metal, one may first extrapolate these to the next two larger fragments C54

and C96 of a graphene sheet, and further to an infinite system, by the help of a double-logarithmic

plot assuming asymptotically a simple power law y(r) = C rm. Indeed, the double-logarithmic plot

shows straight lines (see Figure 4 for one example), and the fit yields parameters with small errors,

as assembled in Table III.

−−− put Figure 4 here−−−

−−− put Table III here−−−

In Table III we distinguish “inner” and “outer” bonds, as present in the C24 fragment, corre-

sponding to the two distinct decays in the log-log plot. For the extrapolation we use the increments

obtained from the C24 calculations, and we continue the pattern of single and double bonds of the
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infinite graphene sheet to 25 Å, by using the average of the exponents and pre-factors as extrapo-

lation function

f(r) =
1

2
(C1 + C2) r

1

2
(m1+m2) .

We accumulate the extrapolated increments to a convergent correlation contribution to the binding

energy. To this we add the RHF or RSH contribution of the binding on the C24 fragment, which

we considered converged with the size of the fragment (see section IIIB).

−−− put Figure 5 here−−−

−−− put Table IV here−−−

In Figure 5 we compare the three metals for the hollow adsorption site, once for the C24 fragment

(hollow symbols) treated in section IIIC, and once for the extrapolated data (full symbols). For

Zn, CCSD(T) and RPA + RSHDFT yield very similar results, and Cd and Hg lie very close. The

order of the latter two appears to be inverse with respect to the C24 fragment. Additionally,

we see in Table IV that range-separated hybrid DFT together with the RPAx–I correlation part

and the dispersion approximation, leads to similar extrapolated data as the CCSD(T) approach.

However, available computer resources did not allow for any further extension of this study to the

other two metals and other adsorption sites at the RSHLDA + RPAx-I level, but we are confident

that results will be similar to those of Zn.

2. Simplification

With a simpler model — inspired by the original work from Stoll2–4 — we may overcome the

resource restrictions mentioned above. We showed in Table II that we may indeed use the dispersion

part of the two-center and three-center increments in the RSHLDA-RPA context. If we neglect for

the moment all three-center increments, we only need a metal atom and one single ethane (C2H6)

or ethene (C2H4) molecule, cut as the previous fragments from the graphene sheet and saturated

with hydrogens, for modeling a single or double bond, respectively. Then we only have to add up

all the different contributions of symmetry-equivalent bonds. The difficulties due to different spin

functions of Lewis structures of graphene fragments do not arise any more. We may work directly
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with a supposedly infinite graphene structure with an underlying Lewis structure with equivalent

six-rings, see Figure 2, lower part.

Calculating the individual contributions of each bond in the graphene sheet one by one yields

indeed asymptotically a 1/R6 decay of the contributions, as shown in Figure 6, and the cumulative

sum converges smoothly to its asymptotic value, see Figure 7.

−−− put Figure 6 here−−−

−−− put Figure 7 here−−−

−−− put Table V here−−−

In Table V, two leftmost columns, we show the binding energies obtained by accumulating the

dispersion part of the correlation energies of the individually calculated two-body increments. As

expected, this binding energy is far too high with respect to the values obtained in the previous

section. A very crude approximation to the final binding will be to scale the correlation part

by the previously obtained 20%, which displaces slightly the equilibrium distance, and binding

energies closer to the values already reported. For having a more reliable approximation than a

global scaling, we select all 3-body increments which are composed of three adjacent carbon atoms

(distorted C3H8 or C3H6 molecules with two or one single bond), and calculate their contribution,

again relying on the dispersion approximation. Of these we correlate only the two or three C–C

bonds, localized with the Foster-Boys procedure, and ignoring for the correlation calculation the

C–H bonds. The obtained corrections are larger than the estimated 20%, which results in overall

binding energies weaker than for the previous extrapolation scheme.

IV. CONCLUSION

In the present study of the adsorption of Zn, Cd or Hg on graphene we see that range-separated

density-functional theory, complemented by long-range correlation contributions, is a reliable tool

for studying adsorption problems governed by dispersion interactions. For rendering the method

applicable to this kind of extended system, the correlation part was split into small increments
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calculated separately with localized orbitals, and results on small model systems (C6, C24) could

be extrapolated successfully towards an infinite graphene sheet. The first step, the mean-field

calculation, converges already for the hydrogen-saturated C24 fragment of the graphene sheet, as

interactions decay exponentially with the interatomic distance.

The proposed reduction of the correlation part to independent calculations on even smaller

subsystems, relying only on 2-center increments and the dispersion approximation is too crude an

approximation in the present case. The ensemble of repulsive three-center increments has to be

included in the calculations, which can be estimated to reduce by about 20% the correlation part

of the interaction energy. Considering connected 3-center increments explicitly a slightly larger

correction is obtained..

The two extrapolation approaches to the correlation energy of an infinite graphene sheet yield

similar results, with different advantages and disadvantages. The first, the extrapolation from

a C24 fragment, relies on a perfectly controllable system of reasonable size, needs however one

single, demanding calculation for obtaining common orbitals, and subsequently, large files to handle

before selection and truncation for the incremental correlation calculations. The latter approach,

subdivided in individual and independent, thus perfectly parallelizable, calculations, needs much

less resources in an astonishing simple approach, but the accuracy with respect to the chosen

system — a conducting graphene sheet — is reduced compared to the first approach.

All three metals are bound with similar binding strength of about 150 (Zn) – 200meV (Hg), in

good comparison to literature values,8,13.

V. ACKNOWLEDGEMENTS

The calculations have been carried out in the laboratory of theoretical chemistry in Paris and Ze-

Dat in Berlin. Additional computing resources, furnished by the computing platform jarvis@IP2CT

of the research federation IP2CT in Paris, are gratefully acknowledged. P.R. expresses his gratitude

and warmest regards for numerous outstanding discussions with A. Savin in Paris and elsewhere.

For the present project the advice and practical help of J. Toulouse and B. Mussard in Paris were of

great value, as well as discussions with H. Stoll in Stuttgart about recently published work.11 The

stay of F.W. in Paris was possible through a grant of the FU Berlin via the PROMOS program.



16

C.M. acknowledges support by the DFG GRK 1582 ”Fluorine as a key element”.

1 A. Savin, “On degeneracy, near-degeneracy and density functional theory”, in : J. Seminario, ed., “Recent

development and applications of Density Functional Theory”, Elsevier, Amsterdam, (1996) 327

2 H. Stoll, “Correlation energy of diamond”, Phys.Rev.B, 46 (1992) 6700

3 H. Stoll, “The correlation energy of crystalline silicon”, Chem.Phys.Lett., 191 (1992) 548

4 H. Stoll, “On the Correlation Energy of Graphite”, J.Chem.Phys., 97 (1992) 8449

5 K.T. Chan, J.B. Neaton, M.L. Cohen, “First-principles study of metal adatom adsorption on graphene”,

Phys.Rev.B, 77 (2008) 235430

6 Y. Mao, J. Yuan, J. Zhong, “Density functional calculation of transition metal adatom adsorption on

graphene”, J.Phys.Cond.Mat., 20 (2008) 115209

7 P.V.C. Medeiros, F. de Brito Mota, A.J.S. Mascarenhas, C.M.C. de Castilho, “Adsorption of monovalent

metal atoms on graphene: a theoretical approach”, Nanotech., 21 (2010) 115701

8 K. Nakada, A. Ishii, “Migration of adatom adsorption on graphene using DFT calculation”,

Sol.Stat.Comm., 151 (2011) 13

9 T. Zhang, L. Zhu, S. Yuan, J. Wang, “Structural and Magnetic Properties of 3d Transition-Metal-Atom

Adsorption on Perfect and Defective Graphene: A Density Functional Theory Study”, Chem.Phys.Chem.,

14 (2013) 3483

10 S.Y. Davydov, “Transition metal and rare-earth metal atoms on single-layer graphene: Estimations of

the charge transfer and adsorption energy”, Phys.Sol.Stat., 55 (2013) 1536

11 M.P. de Lara-Castells, A.O. Mitrushchenkov, H. Stoll, “Combining density functional and incre-

mental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions:

Ag2/graphene”, J.Chem.Phys., 143 (2015) 102804

12 V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, “Electron-Electron Interactions in

Graphene: Current Status and Perspectives”, Rev.Mod.Phys., 84 (2012) 1067
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35 W. Zhu, J. Toulouse, A. Savin, J. Ángyán, “Range-separted density-functional theory with random phase

approximation applied to non-covalent intermolecular interactions”, J.Chem.Phys., 132 (2010) 244108

36 In a general set-up we may have double excitations implication at maximum 4 different fragments.
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Zn Cd Hg

dist ∆E ∆ECorr dist ∆E ∆ECorr dist ∆E ∆ECorr

(Å) (meV) (meV) (Å) (meV) (meV) (Å) (meV) (meV)

RHF + MP2 3.37 −101 −146 3.44 −123 −216 3.35 −147 −263

RHF + CCSD(T) 3.62 −53 −106 3.72 −59 −100 3.65 −64 −110

RSHLDA + RPAx-I 3.37 −77 −107 3.48 −88 −121 3.44 −97 −131

disp.approx. RSHLDA + RPAx-I 3.39 −81 −108 3.49 −94 −126 3.44 −105 −139

pvtz RHF + MP2 3.23 −155 −286

pvtz RSHLDA + RPAx–I 3.37 −89 −131

CBS RHF + MP2 3.17 −179

CBS RSHLDA + RPAx–I 3.37 −93

TABLE I. Reference calculations, for the hollow adsorption site, on a C6 graphene fragment. We give the

equilibrium distance and the binding energies, and the correlation contribution. As the Hartree-Fock or DFT

interactions are repulsive, the correlation contribution is larger than the complete interaction energy. The

C–H bonds of the substrate are included in the calculation of the correlation energy. CBS are extrapolated

values of the X = 2 and X = 3 (pvdz and pvtz) curves with help of E(X) = E∞ +B/X3.
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C6 C24

Method Group n=1 n=2 n=3 n=1 n=2 n=3

MP2 ηMetal 8.7 −10.1

ηintra 27.6 28.0 0.9 28.9 −9.5 n.c.

ηinter −385.7 −16.5 −509.7 −24.0

CCSD(T) ηMetal 19.3 0.1

ηintra 36.0 29.7 −2.8 38.0 −11.5 n.c.

ηinter −374.3 58.5 −475.0 111.9

RPAx–I ηinter −138.2 14.8 −273.8 68.5

TABLE II. Convergence behavior of specific groups of increments. Zn is placed at 3.0 Å above the C6 (left

columns) or C24 (right columns) graphene fragment. ηintra and ηinter denote the sums of all incremental

intra-fragment and inter-fragment contributions. All data are in meV.
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Method Center Metal Slope Offset Slope Offset

m logC m logC

inner outer

CCSD(T) SB Zn −5.93(4) 4.22(2) −6.51(1) 4.613(8)

DB −6.00(1) 5.094(6) −6.98(1) 5.765(6)

CCSD(T) SB Cd −5.88(3) 4.30(2) −6.527(3) 4.736(2)

DB −5.96(2) 5.16(2) −6.923(6) 5.827(4)

CCSD(T) SB Hg −6.24(3) 4.48(2) −6.780(8) 4.879(5)

DB −6.31(2) 5.35(2) −7.30(1) 6.05(1)

RPAx–I SB Zn −5.96(9) 4.17(7) −6.16(3) 4.37(2)

DB −6.00(9) 4.97(7) −6.21(2) 5.14(2)

TABLE III. Parameters m and C of a simple power law y(r) = C rm for the contribution of each type of

bond for the inter-fragment increments of the C24 systems and the hollow-place adsorption site; SB stands

for “Single Bond” and DB for “Double Bond”. Values were obtained from a linear fit using the last 4 data

points of each series. The number in parentheses indicate the precision of the last digit of each entry.
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Substrate Method distance (Å) EAds ERHF/RSH ECorr

Coronene

+Zn CCSD(T) 3.46 −104 121 −227

RPAx–I 3.40 −102 52 −154

+ Cd CCSD(T) 3.50 −129 117 −246

+ Hg CCSD(T) 3.51 −135 95 −230

Graphene

+Zn CCSD(T) 3.38 −145 114 −259

RPAx-I 3.37 −140 58 −197

+ Cd CCSD(T) 3.45 −180 131 −311

+ Hg CCSD(T) 3.47 −175 104 −279

TABLE IV. Optimum positions, interaction energies and contributions of mean-field and correlation to the

adsorption energy, in meV, for all three metals in the hollow position, once for the Coronene and once for

the extrapolated graphene sheet. See text for explanations.
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Metal d EAds d EAds d EAds

without scaling with scaling with 3-center terms

Zn 3.27 −192 3.36 −140 3.44 −119

Cd 3.31 −240 3.45 −176 3.49 −151

Hg 3.26 −259 3.37 −192 3.37 −173

TABLE V. Interaction energies for the hollow adsorption site, as calculated as the sum of the RSHLDA

interaction energy and the extrapolated RPAx–I long-range correlation contributions using the dispersion

approximation. In the left part we give the results for bare two-center fragments, in the middle we use

scaled ones (by a factor of 0.80), and for the third double column we include the calculated repulsive

3-center contributions. All data are in Å and meV.
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FIG. 1. Dependence of the RHF/RSHLDA repulsive interaction energies on the distance to the graphene

fragment. First two lines (RHF) show that passing from the C24 fragment to the C54 fragment does not alter

the interaction energy any more. The next three curves show the interaction energy for the three metals

on the C24 fragment, as calculated with the RSHLDA scheme. The last two lines show that the potential

surface, calculated at the RSHLDA level for Zn, is flat over the different possible adsorption positions.
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a) b) c)

FIG. 2. The alternation of single and double bonds as obtained from the Boys localization of the C24

fragment (upper left panel, a). The upper right panel (b) shows the possible extension to larger fragments,

based on the direct continuation of the Boys pattern. Superposition of three shifted structures gives the

graphene sheet with equivalent 6-rings. The lower panel (c) shows the alternative set-up with equivalent

hexagons, as used in section IIID 2.
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RHF + CCSD(T) RSHLDA + RPAx−I

FIG. 3. Contributions of the different classes of increments to the total interactions energy (rightmost item

in both diagrams), for Zn on the C24 at 3.5 Å. For the RPAx–I increments the dispersion approximation

was applied, thus there are no intra-fragment increments at all recorded, only inter-fragment contributions

are accounted for.
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FIG. 4. The two-segment fit in a log-log plot, at the hand of the double bonds of the Zn/C24 system.
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FIG. 5. Result of the extrapolation for the total binding energies in the hollow position of Zn (RSH+RPA

and RHF+CCSD(T)), Cd and Hg (RHF+CCSD(T)). The hollow symbols stand for the results on the C24

fragment, and full symbols give the corresponding extrapolated data.
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FIG. 6. The individual contributions in a double-logarithmic plot for a single metal-graphene distance of

3.0 Å, for showing easily the 1/R6 asymptotic behavior. For the short distances we see the two different

levels of contributions of 2 bonds in the double-bond case and one bond for the single-bond increments,

about three times less important. All three metals yield about the same graph. The 1/R6 curve is scaled

with 2 a.u.× Å6.
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FIG. 7. The cumulative calculation of the correlation contribution to the binding energy, for the Zn atom

adsorption at the hollow position, now at three different Zn-graphene distances.


