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We study the relation between number of contributors and product size in Wikipedia and GitHub.
In contrast to traditional production, this is strongly probabilistic, but is characterized by two
quantitative nonlinear laws: a power-law bound to product size for increasing number of contributors,
and the universal collapse of rescaled distributions. A variant of the random-energy model shows that
both laws are due to the heterogeneity of contributors, and displays an intriguing finite-size scaling
property with no equivalent in standard systems. The analysis uncovers the right intensive densities,
enabling the comparison of projects with different numbers of contributors on equal grounds. We
use this property to expose the detrimental effects of conflicting interactions in Wikipedia.

I. INTRODUCTION

Achieving a quantitative understanding of collective
human activities is both a challenge and an opportunity
for contemporary statistical physics [1–3]. In our soci-
ety, new important forms of production are promoted by
information-communication technology and the internet.
Crowdsourcing is the process of obtaining contributions
to a project (services, ideas, or content) by soliciting in-
put from a large online community. This new way of
collaborating is changing the scale and efficiency of social
endeavors [4–7].The success of open collaborations as par-
ticipative self-organised projects has catalysed new ways
of thinking about innovation and sustainability [8]. Some
of the main open questions concern the efficiency and
the predictability of such social collaboration processes [9–
15]. However, despite the large amount of available data,
they are still largely unexplored quantitatively, making
it difficult to interpret empirical data and make useful
predictions [16–19].

A long-standing question in software engineering, rel-
evant for other productive processes, concerns the rela-
tions between different variables characterising a project,
such as size, number of developers, effort, and duration.
Classic empirical studies have found polynomial scaling
laws relating these quantities [20, 21]. The existence of
clear relationships among these variables is crucial for
estimating the costs for a project of a given size and
complexity [22, 23]. In particular, the question of how
the size of a piece of software is related to the total effort
(the number of contributors times the time spent) was
first addressed in the pioneering book “The mythical man
month” [24], where a superlinear scaling was conjectured.

In this Letter, we focus on the relationship between the
number of contributors and the size of open collaborative
projects [25], and consider two paradigmatic examples:
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FIG. 1. The relation between effort and project size is prob-
abilistic and shows the presence of sublinear bounds. Both
features are demonstrated by scatterplots of the number of
contributors versus the project size in Wikipedia pages (A)
and GitHub software (B). The thick dashed lines show the av-
erage bounds from several realisations of the model described
in the text (examples are shown in the insets): dotted lines
are reference power laws fitted from the data (we used the
procedure developed in [30] for smoothing out the roughness
and fitting the power-law exponent of the bound).

Wikipedia, the free on-line encyclopaedia, and GitHub,
the web-based platform for collaborative software devel-
opment. Taking a statistical-mechanics approach to these
data, we define a novel variant of the random-energy
model (REM), an exactly tractable model used to de-
scribe disordered systems in statistical physics. This
“neutral” model captures all the salient aspects relating
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size to contributors without the need to explicitly in-
clude agent interactions [26]. The crucial ingredient is the
highly heterogeneous activity of contributors, whose com-
mitment, measured as the number of edits, is power-law
distributed [26–29] (possibly also due to interactions).

II. RESULTS

A. Number of contributors and project size are not
related deterministically

We collected data on size (in bytes) and number of
contributors for 20 000 GitHub projects and 400 000
Wikipedia pages in English. Precisely, the GitHub set
contains 20 000 projects chosen at random among the
100 000 projects with the largest number of followers.
The Wikipedia set contains 200 000 alphabetically-ordered
pages starting with letter A, and the same number start-
ing with M, comprising ∼10% of the English Wikipedia.
Data were retrieved with the APIs of Wikipedia (En-
glish Wikipedia; en.wikipedia.org/w/api.php, accessed 8
May 2014) and GitHub (developer.github.com, accessed
21 March 2014).

Figure 1 shows that the variability in the size of projects
with a given number of authors is very high. Clearly, no
simple functional dependency can give a satisfactory de-
scription of the trends. Rather, they are better expressed
by the joint probability distribution of the two variables,
which we investigate in detail below.

B. An anomalous upper bound limits the number
of contributors for a project of a given size

Albeit highly dispersed, the number of developers shows
a clear size-dependent bound. This is visible in Fig. 1,
where it is compared with (markedly sublinear) power
laws. While the relation is probabilistic, a scaling law
appears to describe the minimum size of a project with a
given number of contributors, or, equivalently, the maxi-
mum number of contributors to a project of a given size.
Remarkably, both Wikipedia and GitHub display the
same non-extensive feature. Such a constraint is unusual,
but a similar phenomenology (a “soft bound”) was found
in other empirical systems [30, 31]. In brief, the scenario
for open collaborations is one where no deterministic law
exists between product size and “man-cost” (measured
here as number of contributors, not man-months), but
a sublinear scaling relates the maximum cost with the
size. These results give a fresh look to the question of
the “Mythical man month” [24] for the case of open col-
laborations. Central to this debate is the impossibility
of measuring progress as number of men times number
of months. Since complex tasks cannot be partitioned,
because of hierarchical constraints (e.g., efforts in com-
munication, coordination, etc.), cost is expected to scale
with project size in a poorer than linear way.
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FIG. 2. The number of edits per contributor (A) and the
total number of contributors per project (B) follow fat-tailed
distributions. Wikipedia edits (circles) are aggregated for all
pages, while GitHub edits (lines) are shown separately for the
10 projects with most contributors (shifted upwards by a factor
100 to increase readability). Dotted lines show reference power
laws with exponents α+1 (left panel) and β (right panel) fitted
from data: αw = 1.1(1), αg = 0.6(1), and βw = βg = 2.4(1).

C. Effort and number of contributors are widely
distributed

The marginal distribution of the number of contrib-
utors, i.e., the number N(n) of projects with a given
number n of contributors, is well described by a power
law, N(n) = N1n

−β , for both Wikipedia and Github
(Fig. 2), where N1 is the number of one-man projects.
Such a wide distribution has been already noted, and
may reflect preferential-attachment dynamics [32], or the
variable intrinsic appeal of projects [33]. A relevant ad-
ditional observation regards the distribution of contribu-
tor activity, estimated by the total number of edits per
contributor: it has a large-activity tail that follows a
power law P (A) ∼ A−(α+1) (Fig. 2), with α ≈ 1.1 in
Wikipedia and α ≈ 0.6 in GitHub. This confirms previ-
ous results on human activity in these and other systems
(see e.g. [26, 32, 34]).

D. Size distributions collapse onto a single
characteristic curve

Conversely, conditional size distributions at fixed num-
ber of contributors show a striking regularity. Rescaling
size with an appropriate power of n exposes a universal
curve common to all marginal distributions (separately
for the two model systems, Fig. 3). The best-collapse
exponent [35] is approximately 0.8 for Wikipedia and 1.7
for Github. We note that the inverse of these values (1.25
and 0.59 respectively) coincide quite precisely with the
exponents α obtained above. This leads to the definition
of the reduced size as the empirical size (in bytes) mul-
tiplied by n−1/α. This nonlinear rescaling realises the
correct intensive quantity (the “specific size”) in these
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FIG. 3. The marginal size distributions at fixed number
of contributors collapse onto universal curves, characterising
Wikipedia (A) and GitHub (B). The power-law rescaling yield-
ing the best collapse is given by n raised to the exponent 0.8
for Wikipedia and 1.7 for Github. These exponents (obtained
by a a minimization procedure [35]) are equal to the inverse
of the activity exponent α, as predicted by the model.

non-extensive systems and defines a “law of corresponding
states”, in analogy with the eponymous thermodynamic
law, asserting that all van der Waals gases behave alike at
the same reduced conditions. Importantly, the universal
collapse allows to compare projects with widely different
numbers of contributors through their reduced size.

E. A random-energy model explains the scaling
laws in a non-interacting scenario

Capturing the regularities within the strong stochas-
ticity of these data demands an approach based on the
methods of statistical mechanics. We find that the basic
mechanisms and observations are fully elucidated by the
following analytically solvable stochastic model. Each of
the n users working on a project (piece of software or page)
adds a number of contributions proportional to her/his
intrinsic activity, independently of the actions of other
users. The model assumes that each edit contributes a
fixed amount to the project’s size; this choice is justified
by the compact edit-size distribution (see [13]). The size
of a project with n active users is modelled as the sum X
of n independent and identically-distributed random vari-
ables {Ai}i=1...n, extracted from the activity distribution
P (A). For economy of parameters, subtractive contribu-
tions are neglected; this ingredient enhances noise near
the bound and is likely responsible for the points lying
outside the predicted bounds in Fig. 1 (more details are
given in Sec. II G). (We note in passing the similarity of
this framework with a model of bursty human dynamics
[36]; see also [37].) One key result can be obtained via
the generalised central-limit theorem (CLT) [38], which
constrains the sum of a large number of random variables
to obey the α-stable distribution, where the parameter α
is related to the tail exponent of P (A). Such variables

satisfy a notable scaling relation, namely X ∼ n1/αA [39].
Therefore, the model predicts the collapse of the distri-
butions at different n, when size is rescaled by n1/α, as
observed empirically.

We now turn to the bound, i.e., the minimum xm of the
sum of the contributions at fixed n. This quantity shows
an intriguing finite-size scaling property. One may expect
an “extensive” scaling, where xm is linearly proportional
to the number of contributors n, since the convolution of n
distributions with a fixed lower cutoff in a0 has support in
(na0,∞): taking an infinite number of samples N at fixed
n gives a linear scaling independently of the tail exponent.
In our case, instead, the reverse order of taking this limit
(physically meaningful observations are performed on a
finite system), together with the sub-exponential scaling
of the sampling N(n), may lead to a non-trivial scaling law
for the bound, xγm ∼ n, with γ < 1. We have computed
the exponent γ considering in particular N(n) = N1n

−β

(for positive β, one has the empirical case; note that
N(n) ≥ 1). Our calculation is based on the asymptotic
form of the cumulative distribution function of a stable
law Lα, which has the following behavior [39] for x close
to x0 (with x0 ≡ 0 if α < 1, and x0 = −∞ if α > 1):∫ x

x0

Lα(y) dy ∼ |x|
α

2(1−α) exp

[
− |1− α|

∣∣∣x
α

∣∣∣− α
1−α
]
. (1)

The typical minimum of X is estimated as the value xm
such that P {X ≤ xm} = 1

N(n) . When xm is small this

condition becomes

x̃1/2exp

[
−
(

1− α
x̃

)
α

α
1−α

]
=
nβ

N1
, (2)

where xm appears only through the scaling variable

x̃ = x
α/(1−α)
m n−1/(1−α). For constant N(n) (β = 0)

the equation only depends on x̃, thus giving the scal-
ing n ∼ xαm (i.e., γ = α). For β > 0, deviations set in,
such that the effective exponent γ observed is a slowly
varying function of xm (see the Appendix). Specifically,
for small n the effective exponent takes the value γ = α
independently of β, while for large n (i.e, when N(n) ≈ 1),
the bound is well described by a power law of exponent

γ = α− 2(1− α)αβ

1 + 2(1− α)β + 2(1− α)/e
.

These considerations apply to the case α < 1; when
α > 1, one simply obtains γ = 1 independently of α
and β, due to an additional translation required by the
CLT (see the Appendix; we do not expect α = 1 to be
pathologic). We have studied also the asymptotics of
all possible diverging N(n) (including the case β < 0),
and proved that for α < 1 the bound becomes linear as
soon as the sampling N(n) grows at least exponentially
fast with n. It is possible to further characterize the
fluctuations of the minimum of X, and prove that they
follow the extreme-value Gumbel distribution; however,
X does not belong to any min-stable basin of attraction,
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FIG. 4. The exponent γ of the bound depends on the exponent
α of the activity distribution. Open symbols are fits from
simulated data (Pareto variables in the main plot, α-stable in
the inset), for β = 0 (red squares), β = 0.8 (blue triangles),
and β = 2.4 (magenta rhombi). The dashed lines are the
theoretical estimates for stable variables. The solid red circle
and blue pentagon are the empirical values in Wikipedia and
GitHub: αw and αg as in Fig. 2, and γw = 0.65(5), γg = 0.4(1).
The shaded region displays the allowed values of γ for the
empirical case β = 2.4 (i.e., those lying between the case of
Pareto variables and the asymptotic result, γ = α for α < 1,
and γ = 1 for α > 1).

thus a non-linear transformation is needed to obtain this
result (details are reported in the Appendix).

The analytical predictions for the bounds are fully in
line with both computer simulations and empirical data
(Fig. 1 and 4). The results strictly apply only to α-
stable variables. Wikipedia and GitHub data are better
described by Pareto distributions, whose left tails drop
abruptly at the cutoff a0 ≈ 1. The convergence to the
stable distribution in the small-activity regime close to a0
corrects the measured exponents γ. Numerical analysis
(Fig. 4) shows that γ deviates from the α-stable prediction
only for α & 0.8. The corrections have negative sign, and
are largest for α ≈ 1.

We note the similarity of this approach with the random-
energy model (REM), widely used to investigate disor-
dered systems [40–42]. The REM considers an ideal sys-
tem of n binary variables (“spins”), with M = 2n states,
and assumes that the energy of each state is the sum
of O(n) IID random variables with a fixed distribution.
The minimum of X then corresponds to the ground-state
energy (minimum over the states) in the REM. At vari-
ance with the standard REM, however, the number N(n)
of projects built by n contributors (the analogue of M
above) scales as a negative power law for both Wikipedia
and GitHub (Fig. 2). This quantity has an impact on the
observed bounds, which can be understood as a complex
finite-size effect. Note that for the standard REM the
linear scaling is a requirement, as the ground-state energy
of a magnetic system has to be extensive [43]. One can
imagine that our results may also apply to disordered
systems of physical nature where, due to constraints, few
of the O (en) possible configurations are accessible. The
calculations reported in the Appendix show that, in order
to exhibit this anomalous finite-size scaling of the bound,
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FIG. 5. Controversial Wikipedia pages are biased towards
small sizes. Circles in the contributors/size scatterplot (A)
are shaded according to the conflictuality M (lighter red cor-
responds to larger M). Panel B compares the reduced-size
distributions (see Fig. 3) of all pages (dashed line) with those of
conflictual pages in four ranges of the controversiality index M
(solid red lines). [Wikipedia data (accessed 12 February 2015)
and conflictuality values (obtained from wwm.phy.bme.hu,
accessed 12 February 2015) were matched by page title.]

it is sufficient that the accessible configurations grow less
than exponentially with the number of degrees of freedom.

F. Conflicts decrease project size

Our model assumes that contributions are independent
and always additive. In reality, contributors interact,
and crowdsourced collaborative projects are not fully
consensual. Controversies (edit wars in Wikipedia jar-
gon) can arise during the creation and maintenance of
projects [44, 45]. A proposed measure M of the con-
flictuality of each Wikipedia page [46] is based on revert
counts, and comprehensive lists of M values are available
publicly (at wwm.phy.bme.hu). By means of this quantity,
we asked whether controversial topics in Wikipedia fall in
notable areas in the contributors/size plots. The upper
panel of Fig. 5 shows joint data for 200 000 pages of the
English Wikipedia starting with the letter A. While, as
might be expected, the general trend shows some correla-
tion between conflictuality and page size (Fig. 5A), the
upper bound is populated mostly by conflictual pages,
while medium to large pages with few contributors are
always consensual (M = 0). The same phenomenology is
captured by a simple variant of our model that includes
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FIG. 6. Subtractive contributions affect the bound mildly.
Their main effect is the blurring of the bound (red lines)
because of the larger variance, which increases with increasing
deletion probability; a secondary effect is a small readjustment
of the slope. The points are the Wikipedia data set.

subtractive contributions, without relaxing the hypothesis
of independent agents (Sec. II G). Most importantly, it
is possible to gain a full quantitative grasp on the effect
of conflicts by making use of the reduced size, whose dis-
tributions fall into two distinct classes, depending on the
conflictuality (Fig. 5B).

Altogether, these considerations suggest the existence
of at least two different forms of user interactions: edit
wars, biasing the size of projects, and other interactions,
affecting the individuals’ activity patterns.

G. Deletions affect the bound mildly

We briefly report here the numerical results obtained
for a model variant taking into account deletions as well
as additions. Contributions in the pure-growth model
described above are always additive, so the definition of
project size is X =

∑n
i=1Ai. Deletions can be incorpo-

rated — in a simplified description — by allowing the
terms in the sum to be negative. Let σi be indepen-
dent Bernoulli random variables, taking the value 1 with
probability p and 0 with probability 1− p. Then project
size is defined as X =

∑n
i=1(−1)σiAi. This is a rough

approximation of the real production processes; for in-
stance, the partial sums in the computation of X should
be constrained to be positive, as size can never become
negative during the life of a project. However, this simple
description already helps to clarify the role of deletions
in shaping the bound.

Figure 6 shows the bounds computed by simulation of
this model for small values of the deletion probability p.
The main effect of p is that of increasing the roughness of
the bound, making it more probable for outliers to appear.
This suggests that the discrepancies between model and
data in Fig. 1 are due to code or text removal, reverts,
deletions, etc. The prevalence of conflictual pages among

those populating the bound in Wikipedia confirms this
observation, as the measure M of conflictuality is based
on the dynamics of reverts. Moreover, the exponent of
the bound slightly changes as a consequence of deletions,
giving a possible explanation for the small deviations
between the data and the simulations of the model in
Fig. 4. However, we expect these effects to be less marked
in a more refined model of deletions, taking into account
positivity of size, as this would decrease the fluctuations
for small projects.

III. DISCUSSION

Scaling laws involving size (or “allometry”) are a com-
mon feature of complex structures as diverse as cities,
languages, living matter, and software [47–52]. Such a
behavior is usually explained in terms of cooperative
mechanisms, correlations, feedback, or non-linear system
response [53]. Contrary to physical intuition, the power
law in the bound emerges here in the neutral hypothe-
sis of independent agents. Similarly to what happens in
the standard REM, non-trivial behaviour stems from the
simple assumption of random non-cooperative elements,
which in turn can be interpreted as an effective description
of the cooperative interactions observed e.g. in mean-field
spin-glass models. Activity patterns may well be related
to interactions between the agents, but the joint distri-
bution and bounds in size are consequences solely of the
activity patterns themselves. We should add that, as in
the case of human correspondence, some features may
emerge from non-stationarity, such as circadian patterns
[54, 55] (which can be detected in Wikipedia as well [56]).

A significant finding of this study is the fact that the
marginal size distributions, when properly rescaled by
a power of the number of contributors, collapse onto a
universal master curve. This curve can be interpreted as
a quantitative signature of the interactions present in the
system. Similar considerations apply when scaling behav-
ior emerges in other systems [57–60]. On the practical
side, this feature is essential for revealing the anomalous
size distribution of projects affected by conflict. More in
general, the reduced size realises a size metric indepen-
dent of manpower, a significant goal in software sizing [61].
For instance, it allows to define an intensive measure of
project growth, which can be used for quantifying the in-
fluence of extrinsic changes on the developmental process,
without being sensitive to the fluctuations in the number
of contributors.
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Appendix A: Analytical calculations

1. Details of the model and relation with the REM

In our model of open-collaborative production, the dis-
tribution of contributor activity — to be meant as the
total number of edits per contributor — has a power law
tail, P (A) ∼ A−(α+1). Each user working on a project
(piece of software or page) adds a number of contribu-
tions proportional to her/his activity, independently of
the other users’ actions. Thus, the size X of a project
with n active users is defined as the sum X =

∑n
i=1Ai

of n independent random variables {Ai}i=1...n sampled
from the activity distribution P (A). The minimum size
of a project with n users among N(n) projects corre-
sponds to the sampling of the minimum of X among
N(n) independent realizations X1, . . . , XN(n), in symbols

Xm = min
{
X1, . . . , XN(n)

}
.

In the REM, a disordered system of n spins, with
M = 2n possible states, is modelled by assigning a ran-
dom energy to each of its configurations. Each state is
assumed to be the sum of O(n) IID random variables; the
interplay between this scaling and that of M is crucial
for the emergence of non-trivial behaviour. In our model
N(n) (the number of projects with n contributors) is
the equivalent of M in the REM. At variance with the
standard REM, however, N(n) can scale differently from
2n. Empirically, it scales as a power law, N(n) = N1n

−β

for both Wikipedia and Github (Fig. 2).
The lowercase letter xm will be used to denote the

typical value of the random variable Xm. Note that
n as a function of xm, gives information on how the
maximum number of contributors at a fixed size depends
on size. One may expect the extensive scaling xm ∼
n to occur, since the sum of n random variables with
support in (a0,∞) has support in (na0,∞). However,
the sampling of this distribution (i.e., the number of
samples) affects the actual value of the minimum observed.
In a standard REM, the linear scaling corresponds to
the physical requirement that the ground-state energy
of a magnetic system be extensive. On the contrary, a
slow scaling of the sampling N(n) with the number of
summands n, may lead to a nontrivial bound xγm ∼ n,
with γ < 1. A sufficient condition for the breaking of the
linear scaling is derived below. In the empirically relevant
case N(n) = N1n

−β , if β = 0 the number of summands
scales as a power law with the minimum, n = xγm, while for
β > 0 deviations set in, such that the effective exponent
γ observed is a slowly varying function of xm.

2. Generalized central limit theorem and stable
distributions

The starting point for studying the scaling of Xm is the
analysis of the asymptotic distribution of the size of a sin-
gle project. The sum X of n variables whose distribution
has power law tails of exponent α+1 and infinite variance

converges (when scaled and shifted appropriately) to an
α-stable variable, defined by its characteristic function

Ψα,c,σ(t) = exp {− |ct|α [1− iσ sgn(t) tan(πα/2)]}

(with α 6= 1). The probability density function Lα(x) of
an α-stable variable has support on [0,∞) if α < 1 and
σ = 1, it has support on (−∞, 0] if α < 1 and σ = −1,
while in all other cases the support is the whole real
line. Since in our case Ai > 0, the corresponding stable
distributions attracting X are the ones with the largest
allowed skewness parameter, namely σ = 1. We will stick
to this value in the following and also fix c = 1.

In order to examine the minimum of the size Xm, it
is important to control the (asymptotic) distribution of
small sizes. The cumulative distribution function of a
stable law has the following behavior for x close to x0,
with x0 ≡ 0 for α < 1 and x0 ≡ −∞ for α > 1 [39]∫ x

x0

Lα(y) dy ∼ |x|
α

2(1−α) exp

[
− |1− α|

∣∣∣x
α

∣∣∣− α
1−α
]
. (A1)

[This expression neglects an α-dependent prefactor, which
only slightly corrects Eq. (A7).]

3. Asymptotic analysis for diverging N(n)

When both n and N(n) diverge one can give a complete
characterisation of the asymptotic behaviour of Xm.

a. The case α < 1. Since the distribution of n−1/αX
converges for n→∞ to an α-stable distribution, we can
assume that X has the same distribution of n1/αA. It is
worth noticing that this is true only asymptotically, but it
holds for any finite n whenever the Ai’s are stable random
variables. Under this hypothesis, when N(n) diverges,
Xm is self-averaging. Specifically, for large n,

Xm ' xm :=
n

1
αα(1− α)

1−α
α

log(N(n))
1−α
α

. (A2)

We prove this by showing that Xm/xm converges in prob-
ability to 1, that is P{Xm/xm > y} goes to 1 if y ≤ 1
and to 0 if y > 1. The fact the distribution for each
X is the same as n1/αA implies that Xm has the same
law as n1/α min

{
A1, . . . , AN(n)

}
. Hence, the cumulative

distribution of Xm/xm is

P{Xm/xm > y} = P{A1 > yxm/n
1/α,

. . . , AN(n) > yxm/n
1/α}

= (1− P{A1 ≤ yxm/n1/α})N(n).

This can be written as P{Xm/xm > y} =

[1− gn(y)]
N(n) ∼ exp [−N(n)gn(y)], where gn(y) is

given by the right-hand side of Eq. (A1) evaluated at

x = yxm/n
1
α . A brief calculation then shows that

N(n)gn(y) → 0 if y ≤ 1 and N(n)gn(y) → ∞ if y > 1,
which proves the statement.
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Note that, in particular, a polynomially diverging sam-
pling N(n) = N1n

β contributes to xm only via logarithmic
corrections, where β is a prefactor. Importantly Eq. (A2)
gives the rate of divergence of N(n) needed to recover the
scaling xm ∼ n: the sample size must grow exponentially
in n. From the point of view of a REM with power-law-
distributed energies, this is the condition for which the
ground-state energy remains extensive.

The fluctuations of Xm/xm around 1 can be character-
ized by a similar calculation, which shows that

log(N(n))
[( xm
Xm

) α
1−α − 1− log(log1/2(N(n)))

log(N(n))

]
obeys, for large N(n), the extreme-value Gumbel distribu-
tion. Note that the random variables X do not belong to
any min-stable basin of attraction of extreme value distri-
butions. This explains why the nonlinear transformation

X
−α/(1−α)
m is needed (in the case of the standard REM

this problem does not arise since the energies summed
are not bounded from below [43]).

b. The case α > 1. The variables Ai have finite mean
µ, and the generalised central limit theorem states that
n−1/α(X − nµ) is asymptotically an α-stable random
variable (notice the additional translation of the mean).
Hence we may assume that Xm has asymptotically the
same law as n1/α min

{
A1, . . . , AN(n)

}
+nµ where Ai are

α-stable random variables. Again, this is true for finite n,
and not only asymptotically, whenever the distribution
of contributor activity is an α-stable law with mean µ.
Arguing as for α < 1, recalling that in this case x0 = −∞
in (A1), one can prove that (Xm − nµ)/bn converges in
probability to −1 for

bn =
n

1
α log(N(n))

α−1
α

α(α− 1)
α−1
α

.

To do this one shows that P{(Xm−nµ)/bn > y} converges
to 0 for y > −1 and to 1 for y ≤ −1. Combining these
facts, one gets

Xm ' xm :=

{
bn(c− 1) if n/ log(N(n))→ c 6=∞,
nµ if n/ log(N(n))→ +∞.

(A3)
In particular, a polynomially diverging sampling N(n) =
N1n

β gives the linear scaling n ∼ xm.

4. Nonlinear bounds for finite N(n)

We now show how nonlinear bounds emerge for finite
N(n). In this case it is difficult to obtain a convergence
result akin to the one above. However, an analytical
estimate for the typical value xm of the variable Xm can
be attained by looking for the value xm such that

P {X ≤ xm} =
1

N(n)
, (A4)

which states that the average number of samples lying
beyond xm is 1. We consider again the case α < 1. When
xm is small and (A1) is applicable, (A4) becomes( xm

n1/α

) α
2(1−α)

exp

[
− (1− α)

( xm
αn1/α

)− α
1−α
]

=
nβ

N1
.

(A5)
The left-hand side is a function only of the scaling variable

x̃ = x
α/(1−α)
m n−1/(1−α).

If β = 0 (i.e., if the number of samples is independent
of n), the whole equation can be expressed in terms of x̃
only, giving the scaling n ∼ xαm, i.e., γ = α. Otherwise,
by taking the logarithm of Eq. (A5) and differentiating
with respect to log xm one obtains an effective exponent
γ = d log n/d log xm as a function of x̃:

γ = α
1 + f(α)/x̃

1 + f(α)/x̃+ 2(1− α)β
, (A6)

where f(α) = 2(1 − α)αα/(1−α). The prefactor of α in
(A6) is less than unity, so γ < α for β > 0. Note the
asymptotic values γ0 ≡ γ(x̃→ 0) = α and γ∞ ≡ γ(x̃→
∞) = α/[1 + 2β(1− α)]. For finite x̃, the effective power-
law exponent depends on how far into the tail of the
distribution the minimum lies, and this depends on n and
N1. As n ≥ 1, the small-n regime is realized at fixed n in
Eq. (A5) by taking the limit N1 → ∞. Since xm and x̃
go to zero, γ = γ0 — in accordance with Eq. (A2) — thus
recovering the same exponent as for β = 0. For large n
instead, at fixed N1, x̃ diverges (since x̃ ∼ n(α−γ)/γ(1−α)
with γ < α). However, n cannot become larger than

N
1/β
1 , since N(n) ≥ 1. Therefore the full asymptotic

scaling is never attained, and the exponent γ1 observed
around the largest available value of n (i.e., when N(n)
is of order 1) will be different from γ∞. This effect can
be quantified by considering the solution to Eq. (A5),
x̃ = f(α)−1W

(
f(α)N(n)2

)
, where W is the Lambert

function, defined by W (y) = log y − logW (y), and f(α)
is defined as above. By setting N(n) = 1, noting that
W (f(α)) is well approximated by its expansion 2(1−α)/e
around α = 1, and substituting the expression into (A6)
one obtains

γ1 = α− 2(1− α)αβ

1 + 2(1− α)β + 2(1− α)/e
, (A7)

which gives a remarkably good approximation of simulated
data at finite N(n). Figures 1 and 4 show the accord
between model and data.

We conclude by discussing the case α > 1. Re-
calling that in this case Xm has the same law as
n1/α min

{
A1, . . . , AN(n)

}
+nµ, condition (A4) now holds

for nµ− xm, and takes a similar form to Eq. (A5), with

x̃ = (nµ− xm)
α/(α−1)

n−1/(α−1). Following the same rea-
soning as for the infinite-mean case, one obtains estimates
of γ̃ = d log n/d log (nµ− xm). However, in this case
xm ∼ nµ− kn1/γ̃ , where k is a constant. Hence, for large
enough n, the effective behavior will always be n ∼ xm,
i.e., γ = 1, in agreement with the case in which N(n)
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diverges polynomially. We did not treat the case α = 1, but it is not expected to be pathologic. Notice that the
values of γ for α = 1+ and α = 1− agree.
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