S. M. Anderson, K. R. Famous, G. Sadri-vakili, V. Kumaresan, H. D. Schmidt et al., CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking, Nature Neuroscience, vol.142, issue.3, pp.344-353, 1038.
DOI : 10.1038/nn2054

M. A. Ariano, J. Wang, K. L. Noblett, E. R. Larson, and D. R. Sibley, Cellular distribution of the rat D4 dopamine receptor protein in the CNS using anti-receptor antisera, Brain Research, vol.752, issue.1-2, pp.26-34, 1997.
DOI : 10.1016/S0006-8993(96)01422-9

P. Bäckström and P. Hyytiä, Involvement of AMPA/kainate, NMDA, and mGlu5 receptors in the nucleus accumbens core in cue-induced reinstatement of cocaine seeking in rats, Psychopharmacology, vol.8, issue.4, pp.571-580, 2007.
DOI : 10.1007/s00213-007-0753-8

H. S. Bateup, E. Santini, W. Shen, S. Birnbaum, E. Valjent et al., Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors, Proceedings of the National Academy of Sciences, vol.107, issue.33, pp.14845-14850, 2010.
DOI : 10.1073/pnas.1009874107

J. Bertran-gonzalez, C. Bosch, M. Maroteaux, M. Matamales, D. Hervé et al., Opposing Patterns of Signaling Activation in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons in Response to Cocaine and Haloperidol, Journal of Neuroscience, vol.28, issue.22, pp.5671-5685, 2008.
DOI : 10.1523/JNEUROSCI.1039-08.2008

A. Besnard, N. Bouveyron, V. Kappes, V. Pascoli, C. Pagès et al., Alterations of Molecular and Behavioral Responses to Cocaine by Selective Inhibition of Elk-1 Phosphorylation, Journal of Neuroscience, vol.31, issue.40, pp.14296-14307, 2011.
DOI : 10.1523/JNEUROSCI.2890-11.2011

A. Besnard, B. Galan-rodriguez, P. Vanhoutte, C. , and J. , Elk-1 a Transcription Factor with Multiple Facets in the Brain, Frontiers in Neuroscience, vol.5, 2011.
DOI : 10.3389/fnins.2011.00035

K. Brami-cherrier, E. Roze, J. Girault, S. Betuing, C. et al., Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse, Journal of Neurochemistry, vol.271, issue.18, pp.1323-1335, 2009.
DOI : 10.1111/j.1471-4159.2009.05879.x

URL : https://hal.archives-ouvertes.fr/hal-00407701

K. Brami-cherrier, E. Valjent, D. Hervé, J. Darragh, J. C. Corvol et al., Parsing Molecular and Behavioral Effects of Cocaine in Mitogen- and Stress-Activated Protein Kinase-1-Deficient Mice, Journal of Neuroscience, vol.25, issue.49, pp.11444-11454, 2005.
DOI : 10.1523/JNEUROSCI.1711-05.2005

URL : https://hal.archives-ouvertes.fr/hal-00084993

S. B. Caine, M. Thomsen, K. I. Gabriel, J. S. Berkowitz, L. H. Gold et al., Lack of Self-Administration of Cocaine in Dopamine D1 Receptor Knock-Out Mice, Journal of Neuroscience, vol.27, issue.48, pp.13140-13150, 2007.
DOI : 10.1523/JNEUROSCI.2284-07.2007

W. A. Carlezon, J. Thome, V. G. Olson, S. B. Lane-ladd, E. S. Brodkin et al., Regulation of Cocaine Reward by CREB, Science, vol.282, issue.5397, pp.2272-2275, 1998.
DOI : 10.1126/science.282.5397.2272

M. Cerovic, R. Isa, R. Tonini, and R. Brambilla, Molecular and cellular mechanisms of dopamine-mediated behavioral plasticity in the striatum, Neurobiology of Learning and Memory, vol.105, 2013.
DOI : 10.1016/j.nlm.2013.06.013

F. Cesari, S. Brecht, K. Vintersten, L. G. Vuong, M. Hofmann et al., Mice Deficient for the Ets Transcription Factor Elk-1 Show Normal Immune Responses and Mildly Impaired Neuronal Gene Activation, Molecular and Cellular Biology, vol.24, issue.1, pp.294-305, 2004.
DOI : 10.1128/MCB.24.1.294-305.2004

C. Chiamulera, M. P. Epping-jordan, A. Zocchi, C. Marcon, C. Cottiny et al., Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice, Nature Neuroscience, vol.26, issue.9, pp.873-874, 2001.
DOI : 10.1038/nn0901-873

E. S. Choe, K. T. Chung, L. Mao, W. , and J. Q. , Amphetamine Increases Phosphorylation of Extracellular Signal-regulated Kinase and Transcription Factors in the Rat Striatum via Group I Metabotropic Glutamate Receptors, Neuropsychopharmacology, vol.27, issue.02, pp.565-575, 2002.
DOI : 10.1016/S0893-133X(02)00341-X

E. D. Collins, S. K. Vosberg, A. S. Ward, M. Haney, and R. W. Foltin, The effects of acute pretreatment with high-dose memantine on the cardiovascular and behavioral effects of cocaine in humans., Experimental and Clinical Psychopharmacology, vol.15, issue.3, pp.228-237, 2007.
DOI : 10.1037/1064-1297.15.3.228

G. Cui, S. B. Jun, X. Jin, M. D. Pham, S. S. Vogel et al., Concurrent activation of striatal direct and indirect pathways during action initiation, Nature, vol.154, issue.7436, pp.238-242, 1038.
DOI : 10.1038/nature11846

D. Chiara, G. Imperato, and A. , Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats., Proceedings of the National Academy of Sciences, vol.85, issue.14, pp.5274-5278, 1988.
DOI : 10.1073/pnas.85.14.5274

I. Dulubova, A. Horiuchi, G. L. Snyder, J. A. Girault, A. J. Czernik et al., ARPP-16/ARPP-19: a highly conserved family of cAMP-regulated phosphoproteins Dopamine D1-dependent trafficking of striatal Nmethyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32, J. Neurochem. Mol. Pharmacol, vol.77, issue.65, pp.229-238, 2001.

A. W. Dunah and D. G. Standaert, Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane, J. Neurosci, vol.21, pp.5546-5558, 2001.

D. Engblom, A. Bilbao, C. Sanchis-segura, L. Dahan, S. Perreau-lenz et al., Glutamate Receptors on Dopamine Neurons Control the Persistence of Cocaine Seeking, Neuron, vol.59, issue.3, pp.497-508, 2008.
DOI : 10.1016/j.neuron.2008.07.010

B. J. Everitt, T. W. Robbins, and R. Brambilla, Neural systems of reinforcement for drug addiction: from actions to habits to compulsion Ras-ERK signaling in behavior: old questions and new perspectives, Nat. Neurosci. Front. Behav. Neurosci, vol.8, pp.1481-1489, 2005.

S. Fasano, A. Antoni, P. C. Orban, E. Valjent, E. Putignano et al., Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) Controls Activation of Extracellular Signal-Regulated Kinase (ERK) Signaling in the Striatum and Long-Term Behavioral Responses to Cocaine, Biological Psychiatry, vol.66, issue.8, pp.758-768, 2009.
DOI : 10.1016/j.biopsych.2009.03.014

S. M. Ferguson, S. Fasano, P. Yang, R. Brambilla, R. et al., Knockout of ERK1 Enhances Cocaine-Evoked Immediate Early Gene Expression and Behavioral Plasticity, Neuropsychopharmacology, vol.20, issue.12, pp.2660-2668, 2006.
DOI : 10.1038/83976

F. Ferraguti and R. Shigemoto, Metabotropic glutamate receptors, Cell and Tissue Research, vol.73, issue.2, pp.483-504, 2006.
DOI : 10.1007/s00441-006-0266-5

A. A. Fienberg, N. Hiroi, P. G. Mermelstein, W. Song, G. L. Snyder et al., DARPP-32: Regulator of the Efficacy of Dopaminergic Neurotransmission, Science, vol.281, issue.5378, pp.838-842, 1998.
DOI : 10.1126/science.281.5378.838

C. Fiorentini, F. Gardoni, P. Spano, D. Luca, M. Missale et al., Regulation of Dopamine D1 Receptor Trafficking and Desensitization by Oligomerization with Glutamate N-Methyl-D-aspartate Receptors, Journal of Biological Chemistry, vol.278, issue.22, pp.20196-20202, 2003.
DOI : 10.1074/jbc.M213140200

C. Fiorentini, M. C. Rizzetti, C. Busi, S. Bontempi, G. Collo et al., Loss of synaptic D1 dopamine/N-methyl-D-aspartate glutamate receptor complexes in L-DOPA-induced dyskinesia in the rat, Mol. Pharmacol, vol.69, pp.805-812, 2006.

D. Fontana, R. M. Post, S. R. Weiss, and A. Pert, The role of D1 and D2 dopamine receptors in the acquisition and expression of cocaine-induced conditioned increases in locomotor behavior, Behavioural Pharmacology, vol.4, issue.4, pp.375-387, 1993.
DOI : 10.1097/00008877-199308000-00011

T. V. Gerdjikov, G. M. Ross, and R. J. Beninger, Place preference induced by nucleus accembens amphetamine is impaired by antagonists of ERK of p38 MAP kinases in rat, Behav. Neurosci, vol.118, pp.7405-7750, 2004.

C. R. Gerfen, T. M. Engber, L. C. Mahan, Z. Susel, T. N. Chase et al., D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons, Science, vol.250, issue.4986, pp.1429-1432, 1990.
DOI : 10.1126/science.2147780

J. A. Girault, A. Horiuchi, E. L. Gustafson, N. Rosen, and P. Greengard, Differential expression of ARPP-16 and ARPP-19, two highly related cAMP-regulated phosphoproteins, one of which is specifically associated with dopamine-innervated brain regions, J. Neurosci, vol.10, pp.1124-1133, 1990.

J. A. Girault, E. Valjent, J. Caboche, and D. Hervé, ERK2: a logical AND gate critical for drug-induced plasticity?, Current Opinion in Pharmacology, vol.7, issue.1, pp.77-85, 2007.
DOI : 10.1016/j.coph.2006.08.012

URL : https://hal.archives-ouvertes.fr/inserm-00128883

M. Haney, A. S. Ward, R. W. Foltin, and M. W. Fischman, Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine self-administration by humans, Psychopharmacology, vol.155, issue.4, pp.330-337, 2001.
DOI : 10.1007/s002130100725

Y. Hara and V. M. Pickel, Overlapping intracellular and differential synaptic distributions of dopamine D1 and glutamate N-methyl-D-aspartate receptors in rat nucleus accumbens, The Journal of Comparative Neurology, vol.575, issue.4, pp.442-455, 2005.
DOI : 10.1002/cne.20740

H. C. Hemmings, . Jr, P. Greengard, H. Y. Tung, and P. Cohen, DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1, Nature, vol.126, issue.5977, pp.503-505, 1038.
DOI : 10.1083/jcb.84.1.66

D. Hervé, Identification of a Specific Assembly of the G Protein Golf as a Critical and Regulated Module of Dopamine and Adenosine-Activated cAMP Pathways in the Striatum, Frontiers in Neuroanatomy, vol.5, 2011.
DOI : 10.3389/fnana.2011.00048

C. Heusner and R. D. Palmiter, Expression of Mutant NMDA Receptors in Dopamine D1 Receptor-Containing Cells Prevents Cocaine Sensitization and Decreases Cocaine Preference, Journal of Neuroscience, vol.25, issue.28, pp.6651-6657, 2005.
DOI : 10.1523/JNEUROSCI.1474-05.2005

N. Hiroi, A. A. Fienberg, C. N. Haile, M. Alburges, G. R. Hanson et al., Neuronal and behavioural abnormalities in striatal function in DARPP-32-mutant mice, European Journal of Neuroscience, vol.88, issue.3, pp.1114-1118, 1999.
DOI : 10.1046/j.1460-9568.1999.00570.x

J. L. Hu, G. Liu, Y. C. Li, W. J. Gao, and Y. Q. Huang, Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons, Molecular Brain, vol.3, issue.1, pp.10-1186, 2010.
DOI : 10.1186/1756-6606-3-20

Q. Huang, D. Zhou, K. Chase, J. F. Gusella, N. Aronin et al., Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus., Proceedings of the National Academy of Sciences, vol.89, issue.24, pp.11988-11992, 1992.
DOI : 10.1073/pnas.89.24.11988

S. E. Hyman, R. C. Malenka, and E. J. Nestler, NEURAL MECHANISMS OF ADDICTION: The Role of Reward-Related Learning and Memory, Annual Review of Neuroscience, vol.29, issue.1, pp.565-598, 2006.
DOI : 10.1146/annurev.neuro.29.051605.113009

F. Ibba, S. Vinci, S. Spiga, A. T. Peana, A. R. Assaretti et al., Receptors, Alcoholism: Clinical and Experimental Research, vol.28, issue.Suppl. 1, pp.858-867, 1038.
DOI : 10.1111/j.1530-0277.2009.00907.x

K. M. Kampman, C. Dackis, K. G. Lynch, H. Pettinati, C. Tirado et al., A double-blind, placebo-controlled trial of amantadine, propranolol, and their combination for the treatment of cocaine dependence in patients with severe cocaine withdrawal symptoms, Drug and Alcohol Dependence, vol.85, issue.2, pp.129-137, 2006.
DOI : 10.1016/j.drugalcdep.2006.04.002

K. M. Kampman, C. Dackis, H. M. Pettinati, K. G. Lynch, T. Sparkman et al., A double-blind, placebo-controlled pilot trial of acamprosate for the treatment of cocaine dependence, Addictive Behaviors, vol.36, issue.3, pp.217-221, 2011.
DOI : 10.1016/j.addbeh.2010.11.003

R. Karler, L. D. Calder, I. A. Chaudhry, and S. A. Turkanis, Blockade of ???reverse tolerance??? to cocaine and amphetamine by MK-801, Life Sciences, vol.45, issue.7, pp.599-606, 1989.
DOI : 10.1016/0024-3205(89)90045-3

J. W. Kebabian, C. , and D. B. , Multiple receptors for dopamine, Nature, vol.51, issue.5692, pp.93-96, 1979.
DOI : 10.1016/0028-3908(76)90056-3

A. E. Kelley, Memory and Addiction, Neuron, vol.44, issue.1, pp.161-179, 2004.
DOI : 10.1016/j.neuron.2004.09.016

P. J. Kenny, N. E. Paterson, B. Boutrel, S. Semenova, A. A. Harrison et al., Metabotropic Glutamate 5 Receptor Antagonist MPEP Decreased Nicotine and Cocaine Self-Administration but Not Nicotine and Cocaine-Induced Facilitation of Brain Reward Function in Rats, Annals of the New York Academy of Sciences, vol.167, issue.3, pp.415-418, 2003.
DOI : 10.1196/annals.1300.040

N. W. Kleckner and R. Dingledine, Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes, Science, vol.241, issue.4867, pp.835-837, 1988.
DOI : 10.1126/science.2841759

G. Köhr and P. H. Seeburg, Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family., The Journal of Physiology, vol.492, issue.2, pp.445-452, 1996.
DOI : 10.1113/jphysiol.1996.sp021320

G. Krapivinsky, L. Krapivinsky, Y. Manasian, A. Ivanov, R. Tyzio et al., The NMDA Receptor Is Coupled to the ERK Pathway by a Direct Interaction between NR2B and RasGRF1, Neuron, vol.40, issue.4, pp.775-784, 2003.
DOI : 10.1016/S0896-6273(03)00645-7

URL : https://hal.archives-ouvertes.fr/inserm-00484801

A. V. Kravitz, B. S. Freeze, P. R. Parker, K. Kay, M. T. Thwin et al., Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry Metabotropic glutamate receptor 5 (mGluR5) antagonists attenuate cocaine priming and cue-induced reinstatement of cocaine seeking, Nature Frontiers in Pharmacology | Neuropharmacology Kumaresan, Behav. Brain Res, vol.466, issue.14, pp.622-626, 2009.

C. G. Lau and R. S. Zukin, NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders, Nature Reviews Neuroscience, vol.29, issue.6, pp.413-426, 2007.
DOI : 10.1038/nrn2153

B. Laube, H. Hirai, M. Sturgess, H. Betz, and J. Kuhse, Molecular Determinants of Agonist Discrimination by NMDA Receptor Subunits: Analysis of the Glutamate Binding Site on the NR2B Subunit, Neuron, vol.18, issue.3, pp.493-503, 1997.
DOI : 10.1016/S0896-6273(00)81249-0

J. Lavaur, F. Bernard, P. Trifilieff, V. Pascoli, V. Kappes et al., A TAT DEF Elk-1 Peptide Regulates the Cytonuclear Trafficking of Elk-1 and Controls Cytoskeleton Dynamics, Journal of Neuroscience, vol.27, issue.52, pp.14448-14458, 2007.
DOI : 10.1523/JNEUROSCI.2279-07.2007

URL : https://hal.archives-ouvertes.fr/hal-00258855

L. Moine, C. Bloch, and B. , D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum, The Journal of Comparative Neurology, vol.259, issue.3, pp.418-426, 1995.
DOI : 10.1002/cne.903550308

F. J. Lee, S. Xue, L. Pei, B. Vukusic, N. Chéry et al., Dual Regulation of NMDA Receptor Functions by Direct Protein-Protein Interactions with the Dopamine D1 Receptor, Cell, vol.111, issue.2, pp.219-230, 2002.
DOI : 10.1016/S0092-8674(02)00962-5

A. S. Leonard and J. W. Hell, Cyclic AMP-dependent Protein Kinase and Protein Kinase C Phosphorylate N-Methyl-D-aspartate Receptors at Different Sites, Journal of Biological Chemistry, vol.272, issue.18, pp.12107-12115, 1997.
DOI : 10.1074/jbc.272.18.12107

D. Lévesque, J. Diaz, C. Pilon, M. P. Martres, B. Giros et al., Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin., Proc. Natl, 1992.
DOI : 10.1073/pnas.89.17.8155

X. Y. Liu, X. P. Chu, L. M. Mao, M. Wang, H. X. Lan et al., Modulation of D2R-NR2B Interactions in Response to Cocaine, Neuron, vol.52, issue.5, pp.897-909, 2006.
DOI : 10.1016/j.neuron.2006.10.011

M. K. Lobo and E. J. Nestler, The Striatal Balancing Act in Drug Addiction: Distinct Roles of Direct and Indirect Pathway Medium Spiny Neurons, Frontiers in Neuroanatomy, vol.5, 2011.
DOI : 10.3389/fnana.2011.00041

M. J. Lohse, V. O. Nikolaev, P. Hein, C. Hoffmann, J. P. Vilardaga et al., Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors, Trends in Pharmacological Sciences, vol.29, issue.3, pp.159-165, 2008.
DOI : 10.1016/j.tips.2007.12.002

L. Mao, W. , and J. Q. , Distinct inhibition of acute cocaine-stimulated motor activity following microinjection of a group III metabotropic glutamate receptor agonist into the dorsal striatum of rats, Pharmacology Biochemistry and Behavior, vol.67, issue.1, pp.93-101, 2000.
DOI : 10.1016/S0091-3057(00)00307-5

P. N. Mardikian, S. D. Larowe, S. Hedden, P. W. Kalivas, M. et al., An open-label trial of N-acetylcysteine for the treatment of cocaine dependence: A pilot study, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol.31, issue.2, pp.389-394, 2007.
DOI : 10.1016/j.pnpbp.2006.10.001

M. L. Mayer, G. Westbrook, G. , and P. B. , Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones, Nature, vol.289, issue.5965, pp.261-263, 1038.
DOI : 10.1038/309261a0

C. Mazzucchelli, C. Vantaggiato, A. Ciamei, S. Fasano, P. Pakhotin et al., Knockout of ERK1 MAP Kinase Enhances Synaptic Plasticity in the Striatum and Facilitates Striatal-Mediated Learning and Memory, Neuron, vol.34, issue.5, pp.807-820, 2002.
DOI : 10.1016/S0896-6273(02)00716-X

F. S. Menniti, W. S. Faraci, and C. J. Schmidt, Phosphodiesterases in the CNS: targets for drug development, Nature Reviews Drug Discovery, vol.16, issue.8, pp.660-670, 2005.
DOI : 10.1038/nrd2058

L. L. Miner, J. Drago, P. M. Chamberlain, D. Donovan, and G. R. Uhl, Retained cocaine conditioned place preference in D1 receptor deficient mice, NeuroReport, vol.6, issue.17, pp.2314-2316, 1995.
DOI : 10.1097/00001756-199511270-00011

C. Missale, S. R. Nash, S. W. Robinson, M. Jaber, C. et al., Dopamine receptors: from structure to function, Physiol. Rev, vol.78, pp.189-225, 1998.

D. A. Mitrano and Y. Smith, Comparative analysis of the subcellular and subsynaptic localization of mGluR1a and mGluR5 metabotropic glutamate receptors in the shell and core of the nucleus accumbens in rat and monkey, The Journal of Comparative Neurology, vol.50, issue.4, pp.788-806, 2007.
DOI : 10.1002/cne.21214

J. P. Mothet, A. T. Parent, H. Wolosker, R. O. Brady, D. J. Linden et al., D-Serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor, Proceedings of the National Academy of Sciences, vol.97, issue.9, pp.4926-4931, 2000.
DOI : 10.1073/pnas.97.9.4926

Q. Nai, S. Li, S. H. Wang, J. Liu, F. J. Lee et al., Uncoupling the D1-N-Methyl-D-Aspartate (NMDA) Receptor Complex Promotes NMDA-Dependent Long-Term Potentiation and Working Memory, Biological Psychiatry, vol.67, issue.3, pp.246-254, 2010.
DOI : 10.1016/j.biopsych.2009.08.011

T. Nakazawa, S. Komai, T. Tezuka, C. Hisatsune, H. Umemori et al., Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor Historical review: molecular and cellular mechanisms of opiate and cocaine addiction, J. Biol. Chem. E. J. Trends Pharmacol. Sci, vol.276, issue.25, pp.693-699, 2001.

K. A. Neve, J. K. Seamans, and H. Trantham-davidson, Dopamine Receptor Signaling, Journal of Receptors and Signal Transduction, vol.275, issue.309, pp.165-205, 2004.
DOI : 10.1124/pr.55.3.2

C. M. Niswender and P. J. Conn, Metabotropic Glutamate Receptors: Physiology, Pharmacology, and Disease, Annual Review of Pharmacology and Toxicology, vol.50, issue.1, pp.295-322, 2010.
DOI : 10.1146/annurev.pharmtox.011008.145533

T. H. Nguyen, J. Liu, and P. J. Lombroso, Striatal Enriched Phosphatase 61 Dephosphorylates Fyn at Phosphotyrosine 420, Journal of Biological Chemistry, vol.277, issue.27, pp.24274-24279, 2002.
DOI : 10.1074/jbc.M111683200

A. Nishi, G. L. Snyder, A. C. Nairn, and P. Greengard, Role of Calcineurin and Protein Phosphatase-2A in the Regulation of DARPP-32 Dephosphorylation in Neostriatal Neurons, Journal of Neurochemistry, vol.4, issue.5, pp.2015-2021, 1999.
DOI : 10.1046/j.1471-4159.1999.0722015.x

V. Pascoli, A. Besnard, D. Hervé, C. Pagès, N. Heck et al., Cyclic Adenosine Monophosphate???Independent Tyrosine Phosphorylation of NR2B Mediates Cocaine-Induced Extracellular Signal-Regulated Kinase Activation, Biological Psychiatry, vol.69, issue.3, pp.218-227, 2011.
DOI : 10.1016/j.biopsych.2010.08.031

V. Pascoli, M. Turiault, and C. Lüscher, Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour, Nature, vol.5, issue.7379, pp.71-75, 2011.
DOI : 10.1038/nature10709

S. Paul, G. L. Snyder, H. Yokakura, M. R. Picciotto, A. C. Nairn et al., The dopamine/D1 receptor mediates the phosphorylation and inactivation of the protein tyrosine phosphatase STEP via a PKA-dependent pathway, J. Neurosci, vol.20, pp.5630-5638, 2000.

L. Pei, F. J. Lee, A. Moszczynska, B. Vukusic, and F. Liu, Regulation of Dopamine D1 Receptor Function by Physical Interaction with the NMDA Receptors, Journal of Neuroscience, vol.24, issue.5, pp.1149-1158, 2004.
DOI : 10.1523/JNEUROSCI.3922-03.2004

J. Perroy, F. Raynaud, V. Homburger, M. C. Rousset, L. Telley et al., Direct Interaction Enables Cross-talk between Ionotropic and Group I Metabotropic Glutamate Receptors, Journal of Biological Chemistry, vol.283, issue.11, pp.6799-6805, 2008.
DOI : 10.1074/jbc.M705661200

R. C. Pierce, K. Bell, P. Duffy, and P. W. Kalivas, Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization, J. Neurosci, vol.16, pp.1550-1560, 1996.

D. M. Platt, J. K. Rowlett, and R. D. Spealman, Attenuation of cocaine self-administration in squirrel monkeys following repeated administration of the mGluR5 antagonist MPEP: comparison with dizocilpine, Psychopharmacology, vol.179, issue.2, pp.167-176, 2008.
DOI : 10.1007/s00213-008-1191-y

R. Pulido, A. Zúñiga, and A. Ullrich, PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif, The EMBO Journal, vol.17, issue.24, pp.7337-7350, 1998.
DOI : 10.1093/emboj/17.24.7337

A. J. Ramsey, A. Laakso, M. Cyr, T. D. Sotnikova, A. Salahpour et al., Genetic NMDA Receptor Deficiency Disrupts Acute and Chronic Effects of Cocaine but not Amphetamine, Neuropsychopharmacology, vol.22, issue.11, pp.2701-2714, 2008.
DOI : 10.1016/S0896-6273(04)00048-0

A. Rivera, I. Alberti, A. B. Martin, J. A. Narvaez, A. De-la-calle et al., Molecular phenotype of rat striatal neurons expressing the dopamine D5 receptor subtype Limbic-striatal memory systems and drug addiction, Eur. J. Neurosci. Neurobiol. Learn. Mem, vol.16, issue.78, pp.2049-2058, 2002.

A. J. Robinson, E. J. Nestler, M. K. Romach, P. Glue, K. Kampman et al., Transcriptional and epigenetic mechanisms of addiction, Nature Reviews Neuroscience, vol.59, issue.11, pp.623-637, 1999.
DOI : 10.1038/nrn3111

M. W. Salter, L. V. Kalia, C. Marie-claire, S. Le-guen, B. P. Roques et al., Src kinases: a hub for NMDA receptor regulation, Nature Reviews Neuroscience, vol.69, issue.4, pp.317-328, 2003.
DOI : 10.1074/jbc.M103501200

S. Schenk, A. Valadez, C. Mcnamara, D. T. House, D. Higley et al., Development and expression of sensitization to cocaine's reinforcing properties: role of NMDA receptors, Psychopharmacology, vol.23, issue.3, pp.332-338, 1993.
DOI : 10.1007/BF02244949

D. D. Schoepp and P. J. Conn, Metabotropic glutamate receptors in brain function and pathology, Trends in Pharmacological Sciences, vol.14, issue.1, pp.13-20, 1993.
DOI : 10.1016/0165-6147(93)90107-U

W. Schultz, Dopamine signals for reward value and risk: basic and recent data, Behavioral and Brain Functions, vol.6, issue.1, pp.10-1186, 2010.
DOI : 10.1186/1744-9081-6-24

J. Schumann, Y. , and R. , Prolonged Withdrawal from Repeated Noncontingent Cocaine Exposure Increases NMDA Receptor Expression and ERK Activity in the Nucleus Accumbens, Journal of Neuroscience, vol.29, issue.21, pp.6955-6963, 2009.
DOI : 10.1523/JNEUROSCI.1329-09.2009

D. B. Scott, T. A. Blanpied, G. T. Swanson, C. Zhang, and M. D. Ehlers, An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing, J. Neurosci, vol.21, pp.3063-3072, 2001.

L. Scott, S. Zelenin, S. Malmersjö, J. M. Kowalewski, E. Z. Markus et al., Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines, Proceedings of the National Academy of Sciences, vol.103, issue.3, pp.762-767, 2006.
DOI : 10.1073/pnas.0505557103

V. Sgambato, P. Vanhoutte, C. Pages, M. Rogard, R. Hipskind et al., In vivo expression and regulation of Elk-1, a target of the extracellularregulated kinase signaling pathway, in the adult rat brain, J. Neurosci, vol.18, pp.214-226, 1998.

J. F. Smiley, A. I. Levey, B. J. Ciliax, and P. S. Goldman-rakic, D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines., Proceedings of the National Academy of Sciences, vol.91, issue.12, pp.5720-5724, 1994.
DOI : 10.1073/pnas.91.12.5720

R. J. Smith, M. K. Lobo, S. Spencer, and P. W. Kalivas, Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways), Current Opinion in Neurobiology, vol.23, issue.4, pp.546-552, 2013.
DOI : 10.1016/j.conb.2013.01.026

E. M. Snyder, Y. Nong, C. G. Almeida, S. Paul, T. Moran et al., Regulation of NMDA receptor trafficking by amyloid-??, Nature Neuroscience, vol.23, issue.8, pp.1051-1058, 1038.
DOI : 10.1126/science.285.5433.1569

A. Dopamine, D1 receptor/protein kinase A/dopamine-and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor, J. Neurosci, vol.18, pp.10297-10303

A. Stipanovich, E. Valjent, M. Matamales, A. Nishi, J. H. Ahn et al., A phosphatase cascade by which rewarding stimuli control nucleosomal response Cocaine effects on dopamine and NMDA receptors interactions in the striatum of Fischer rats, Nature Brain Res. Bull, vol.453, issue.80, pp.879-884, 2008.

D. J. Surmeier, J. Bargas, H. C. Hemmings, A. C. Nairn, and P. Greengard, Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons, Neuron, vol.14, issue.2, pp.385-397, 1995.
DOI : 10.1016/0896-6273(95)90294-5

W. G. Tingley, M. D. Ehlers, K. Kameyama, C. Doherty, J. B. Ptak et al., Characterization of Protein Kinase A and Protein Kinase C Phosphorylation of the N-Methyl-D-aspartate Receptor NR1 Subunit Using Phosphorylation Site-specific Antibodies, Journal of Biological Chemistry, vol.272, issue.8, pp.5157-5166, 1997.
DOI : 10.1074/jbc.272.8.5157

P. Trifilieff, J. Lavaur, V. Pascoli, V. Kappes, K. Brami-cherrier et al., Endocytosis controls glutamate-induced nuclear accumulation of ERK, Molecular and Cellular Neuroscience, vol.41, issue.3, pp.325-336, 2009.
DOI : 10.1016/j.mcn.2009.04.006

E. Valjent, J. Bertran-gonzalez, B. Aubier, P. Greengard, D. Hervé et al., Mechanisms of locomotor sensitization to drugs of abuse in a twoinjection protocol, pp.401-415, 2010.

E. Valjent, J. C. Corvol, C. Pages, M. J. Besson, R. Maldonado et al., Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties, J. Neurosci, vol.20, pp.8701-8709, 2000.

E. Valjent, J. C. Corvol, J. M. Trzaskos, J. A. Girault, and D. Hervé, Role of the ERK pathway in psychostimulant-induced locomotor sensitization, BMC Neuroscience, vol.7, issue.1, pp.20-30, 1471.
DOI : 10.1186/1471-2202-7-20

URL : https://hal.archives-ouvertes.fr/inserm-00081437

E. Valjent, A. G. Corbillé, J. Bertran-gonzalez, D. Hervé, and J. A. Girault, Inhibition of ERK pathway or protein synthesis during reexposure to drugs of abuse erases previously learned place preference, Proceedings of the National Academy of Sciences, vol.103, issue.8, pp.2932-2937, 2006.
DOI : 10.1073/pnas.0511030103

E. Valjent, C. Pagès, D. Hervé, J. A. Girault, C. et al., Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain, European Journal of Neuroscience, vol.36, issue.7, pp.1826-1836, 2004.
DOI : 10.1016/S0959-4388(96)80079-1

URL : https://hal.archives-ouvertes.fr/hal-00077883

E. Valjent, C. Pagès, M. Rogard, M. J. Besson, R. Maldonado et al., depends on dopaminergic transmission, European Journal of Neuroscience, vol.96, issue.2, pp.342-352, 2001.
DOI : 10.1126/science.283.5400.401

E. Valjent, V. Pascoli, P. Svenningsson, S. Paul, H. Enslen et al., From The Cover: Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum, Proceedings of the National Academy of Sciences, vol.102, issue.2, pp.491-496, 2005.
DOI : 10.1073/pnas.0408305102

P. Vezina, A. L. Queen, D. W. Aswad, and P. Greengard, Induction of locomotor sensitization by amphetamine requires the activation of NMDA receptors in the rat ventral tegmental area, Psychopharmacology, vol.151, issue.2-3, pp.184-191, 1038.
DOI : 10.1007/s002130000463

S. I. Walaas, S. Cala, and P. Greengard, Localization of ARPP-90, a major 90 kiloDalton basal ganglion-enriched substrate for cyclic AMP-dependent protein kinase, in striatonigral neurons in the rat brain, Molecular Brain Research, vol.5, issue.2, pp.149-157, 1989.
DOI : 10.1016/0169-328X(89)90006-5

S. I. Walaas and P. Greengard, ARPP-39, a membrane-associated substrate for cyclic AMP-dependent protein kinase present in neostriatal neurons, Journal of Molecular Neuroscience, vol.29, issue.2, pp.73-88, 1993.
DOI : 10.1007/BF02782120

F. J. White, A. Joshi, T. E. Koeltzow, and X. T. Hu, Dopamine receptor antagonists fail to prevent induction of cocaine sensitization, Neuropsychopharmacology, vol.1897, pp.26-40, 1998.

J. R. Wickens, Synaptic plasticity in the basal ganglia, Behavioural Brain Research, vol.199, issue.1, pp.119-128, 2009.
DOI : 10.1016/j.bbr.2008.10.030

T. Winhusen, E. Somoza, O. Sarid-segal, R. J. Goldsmith, J. M. Harrer et al., A double-blind, placebo-controlled trial of reserpine for Frontiers in Pharmacology | Neuropharmacology ? page 13 ? #13 Cahill et al. Dopamine and glutamate crosstalk onto ERK the treatment of cocaine dependence, Article Drug Alcohol Depend, vol.4, issue.91, pp.205-212, 2007.

R. A. Wise and M. A. Bozarth, A psychomotor stimulant theory of addiction., Psychological Review, vol.94, issue.4, pp.469-492, 1987.
DOI : 10.1037/0033-295X.94.4.469

M. E. Wolf, The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants, Progress in Neurobiology, vol.54, issue.6, pp.679-720, 1998.
DOI : 10.1016/S0301-0082(97)00090-7

A. S. Woods, F. Ciruela, K. Fuxe, L. F. Agnati, C. Lluis et al., Role of Electrostatic Interaction in Receptor???Receptor Heteromerization, Journal of Molecular Neuroscience, vol.26, issue.2-3, pp.125-132, 2005.
DOI : 10.1385/JMN:26:2-3:125

M. Xu, Y. Guo, C. V. Vorhees, and J. Zhang, Behavioral responses to cocaine and amphetamine administration in mice lacking the dopamine D1 receptor, Brain Research, vol.852, issue.1, 2000.
DOI : 10.1016/S0006-8993(99)02258-1

M. Xu, X. T. Hu, D. C. Cooper, R. Moratalla, A. M. Graybiel et al., Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutantmice, Cell, vol.7994, pp.945-955, 1994.

R. Yaka, D. Y. He, K. Phamluong, R. , D. R. Thornton et al., Pituitary adenylate cyclaseactivating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1 NMDA receptor function is regulated by the inhibitory scaffolding protein , RACK1, Proc. Natl. Acad. Sci. U.S.A. 99, pp.9630-9638, 2002.

M. J. Young, D. A. Sisti, H. Rimon-greenspan, J. L. Schwartz, and A. L. Caplan, Immune to addiction: the ethical dimensions of vaccines against substance abuse, Nature Immunology, vol.20, issue.6, pp.521-524, 2012.
DOI : 10.1038/ni.2321

Y. Zhang, T. M. Loonam, P. H. Noailles, J. A. Angulo, E. Argilli et al., Comparison of Cocaine- and Methamphetamine-Evoked Dopamine and Glutamate Overflow in Somatodendritic and Terminal Field Regions of the Rat Brain during Acute, Chronic, and Early Withdrawal Conditions, Annals of the New York Academy of Sciences, vol.594, issue.1, pp.93-120, 2001.
DOI : 10.1111/j.1749-6632.2001.tb03560.x